SAND2015-3037C

Dynamic Task Scheduling to Mitigate System
Performance Variability

Galen Shipmant
Patrick MCCormick
Los Alamos National Laboratory
Los Alamos, NM, USA

Kevin Pedretti
Stephen Olivier
Kurt B. Ferreira

Jackie Chen

Ramanan Sankaran
Oak Ridge National Laboratory
Oak Ridge, TN, USA

Sandia National Laboratories
Albuquerque, NM, USA
Livermore, CA, USA

Sean Treichler
Alex Aiken
Stanford University
Stanford, CA, USA

ABSTRACT

Application scalability can be significantly impacted by node
level performance variability in HPC. While previous studies
have demonstrated the impact of one source of variability,
OS noise, in message passing runtimes, none have explored
the impact on dynamically scheduled runtimes. In this pa-
per we examine the impact that OS noise has on the Le-
gion runtime. Our work shows that 2.5% net performance
variability at the node level can result in 25% application
slowdown for MPI4+OpenACC based runtimes compared to
2% slowdown for Legion. We then identify the mechanisms
that contribute to better noise absorption in Legion, quan-
tifying their impact. Furthermore, we assess the impact of
OS noise at the granularity of communication, task schedul-
ing, and application level tasks within Legion demonstrating
that where noise is injected can significantly effect scalabil-
ity. The implications of this study on OS and runtime ar-
chitecture is then discussed.

1. INTRODUCTION

Modern high performance computing systems and appli-
cations are composed of a variety of system and user level
services, all of which are subject to varying degrees of perfor-
mance variability. In particular, system level services such
as parallel file systems, I/O forwarding layers, and system
monitoring daemons can compete with application threads
for node level and system wide resources. Similarly, at the
application level, multi-physics packages and coupled ana-
lytics can create contention for resources. Emerging power
management services such as power capping at the node and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Michael Bauer
NVIDIA
Santa Clara, CA

CPU/GPU level can introduce similar performance variabil-
ity in the form of application and system level threads com-
peting for execution under a fixed power budget. All of these
sources of variability can significantly harm the performance
and scalability of production applications.

Traditionally the management of resource contention has
been an operating system (OS) level function and in HPC
the general approach has been to minimize OS level service
interrupts also known as OS noise. In practice, this is done
by containing OS level services through core specialization
or by function shipping OS services to a remote system.
Management of resource contention at the application level
is handled by the application developer. Many application
developers opt for a static partitioning of resources mirroring
domain decomposition due to its simplicity. However, this
approach leaves many HPC applications vulnerable to the
effects of OS noise, especially at scale.

The growing effects of OS noise has been one of the con-
tributing factors in the development of dynamic runtime sys-
tems such as Charm++ [1] and more recently, Legion |[2].
Dynamic runtime systems have the potential to react to the
performance variability introduced by resource contention
and mitigate its effects. While prior work has examined
the impact of OS noise within static runtime environments,
no prior work has examined the effects of OS noise on dy-
namic runtime systems. Our work explores these effects and
demonstrates the ways that a dynamic runtime system such
as Legion can mitigate the effects of OS noise in compar-
ison to traditional static systems such as MPI and Ope-
nACC. We investigate these effects within the context of
S3D, a production-grade turbulent combustion simulation.
This paper makes the following novel contributions:

1. A comparison of the impact of OS noise on both static
and dynamic runtime systems using a real-world ap-
plication

2. An analysis of the mechanisms that help absorb OS
noise in a dynamic runtime

3. Identification of dynamic runtime tasks that are more
susceptible to OS noise

Section 2| gives a brief overview of the Legion runtime sys-
tem. Section [3] discusses sources of performance variability
in the HPC systems, and Section [4] describes each version of
the S3D application used in this study, followed by related
work in Section[6] Our evaluation and results are then pre-
sented in Section and we conclude with implications of our
work for future systems in Section [7]

2. THE LEGION RUNTIME SYSTEM

Legion [2, 3, 4] is a dynamic task-based runtime system
which relies on a dynamic program analysis to both discover
parallelism and map applications on target machines. Le-
gion programs are structured as a hierarchical tree of tasks,
with tasks permitted to launch arbitrary numbers of sub-
tasks. All data in Legion is stored within logical regions, a
relational abstraction that decouples data specification from
both its layout and placement in the memory hierarchy. Im-
portantly, all tasks are required to name the set of logical
regions that they will access during their execution. The Le-
gion runtime performs a dynamic dependence analysis based
on the logical region usage of different tasks to implicitly ex-
tract parallelism from Legion programs. From this analysis,
the Legion runtime constructs an explicit asynchronous task
graph to be executed by the lower-level Realm runtime (see
Section . To hide the latency of this analysis, Legion
relies on a deferred execution model 5], in which the run-
time is performing its dynamic analysis well in advance of
the actual application execution. This allows Legion to dis-
cover tasks parallelism and execute tasks out-of-order while
still preserving a sequential semantics. In many ways this is
similar to how an out-of-order hardware processor operates,
but at the granularity of tasks instead of instructions. Le-
gion leverages deferred execution both to hide the latency
of analysis, as well as to discover additional task parallelism
for hiding long latency operations such as data movement
or OS noise events.

The dynamic analysis performed by Legion is important
for two reasons. First, it eases the burden on programmers
as the Legion runtime is capable of automatically extracting
parallelism based on the region usage of tasks. Second, it
makes it possible to dynamically adapt how a Legion pro-
gram is mapped onto a target architecture. In order to map
a Legion application onto a particular machine, every task
must be assigned a processor on which to run, and a phys-
ical instance of a logical region must be created for each
region requested by a task. These decisions are referred to
as the mapping of a Legion program. One of the crucial de-
sign points of Legion is that all of these mapping decisions
are exposed directly to the application programmer through
a mapping interface because it is unlikely the runtime can
make optimal choices for all applications across all machine
architectures. A crucial aspect of the Legion mapping in-
terface is that it allows the construction of mapper objects
(also called mappers) to handle dynamic queries from the
runtime about how to map tasks and logical regions. By
making this interface dynamic, mappers can introspect the
state of the application and the underlying hardware when
making mapping decisions.

The implications of this architecture are profound. The
Legion mapping interface facilitates the creation of Legion
applications that can dynamically react and adapt to the
changing state of the underlying machine. For example,
mappers can observe which processors are executing tasks

faster or slower (possibly depending on OS noise) and sched-
ule tasks onto more lightly loaded processors. Since mapping
decisions are made dynamically, mappers can continually
monitor the changing state of the machine, and decide the
best course of action as anomalous behavior occurs through-
out a run.

2.1 Realm

Realm[5] is a low-level runtime that provides a portable
interface for execution of asynchronous task graphs on sys-
tems with heterogeneous computational resources and com-
plicated memory hierarchies. Realm uses a deferred exe-
cution model in which all operations (tasks, copies, even
critical sections in the form of reservations) are included in
the task graph with explicit dependencies described in the
form of events.

Realm handles the scheduling of operations (i.e., deter-
mining when dependencies have been satisfied and when
the assigned execution resources are available), but leaves
the mapping decisions (i.e. where tasks and data should be
placed) to the Realm client - a combination of the Legion
runtime and the application’s mapper objects in this case.

To allow the client to make intelligent mapping decisions,
Realm provides a model of the underlying machine in the
form of a graph of processors (e.g. x86 CPU cores, CUDA-
capable GPUs) and memories (e.g. a node’s system memory,
a GPU’s framebuffer, or remote-DMA-accessible memory on
another node), with edges indicating memories accessible
to a given processor or pairs of memories between which
efficient copies can be performed.

The client’s control over the system is maximized by hav-
ing the performance of operations mapped to the machine
model be as predictable as possible. Thus, Realm focuses on
providing an efficient mechanism for execution and not in-
terfering with the mapping decisions made by the client. It
also reduces the number of performance-impacting decisions
available to the underlying operating system and hardware.

The most obvious way in which Realm does this is in
the way it sets the CPU affinity masks of threads. Realm
creates many threads to allow the asynchronous execution
of multiple operations:

e A persistent thread is created for each “CPU” proces-
sor exposed in the machine graph. (The number to
expose is configurable at runtime startup.) All tasks
that are mapped onto that processor by the client will
be executed in this thread. With good mapping deci-
sions, we expect these threads to be constantly busy
with application tasks.

e A persistent thread is created for each “GPU” proces-
sor that runs application tasks mapped to that proces-
sor. Since the typical activity of a task mapped to a
GPU processor is to perform CUDA kernel launches,
we expect these threads to spend most of their time
waiting for the CUDA operations to complete.

e Persistent threads are also created for “utility” proces-
sors, which are used by the Legion runtime for its dy-
namic analysis. The Legion runtime’s analysis work is
bursty, so while is it common to expose several utility
processors, they are often idle.

e Background DMA threads are created for each NUMA
domain and each GPU to perform copies that have
been requested by the Realm client. These threads
are often very busy, but entirely memory-bound.

e Finally, several background progress threads are cre-
ated to deal with sending and receiving inter-node mes-
sages via the GASNet API|[6].

Realm uses sched_setaffinity on Linux-based systems
to control which CPU cores may be used by each thread. For
each “CPU” processor thread, an available CPU core is cho-
sen and the thread’s affinity mask is set to include only that
core. The core is also removed from every other thread’s
affinity mask, eliminating processor interference due to any
other Realm threads. On machines that support Hyper-
Threading[7], the second core is removed from the affinity
mask of all threads. Once all “CPU” processor threads have
been assigned their cores, all other Realm threads share the
remaining cores, including any enabled by Hyper-Threading,
allowing resource sharing for the bursty workloads these
other threads perform. The affinity mask of the original
application thread is also adjusted, in the hopes that any
other background threads that are created (e.g. for asyn-
chronous file I/O) are similarly kept from interfering with
the main computation threads that are being used by the
application.

3. SOURCES OF VARIABILITY

There are many sources of performance variability in cur-
rent extreme-scale HPC systems, and the general trend is
toward more variability in the future. Much of the current
interest in dynamic adaptive runtime systems is motivated
by their promise to hide the complexity of dealing with per-
formance variability from application developers.

Historically OS noise, or jitter, has been one of the most
well-studied sources of variability. Many forms of jitter have
been shown to have a significant impact on application scal-
ability, including jitter related to hardware management ac-
tivities such as page-fault handling and network interrupt
servicing [8], jitter due to OS time keeping interrupts [9], jit-
ter caused by preemptive context switching overheads |10,
and jitter due to resilience activities such as uncoordinated
checkpointing [11].

In addition to OS noise, there many other sources of per-
formance variability that are inherit in modern HPC hard-
ware. Conceptually these can be thought of and modeled as
OS noise, but their cause is due to different underlying phe-
nomena. For example, modern processors can dynamically
ramp up their clock frequencies in order to exploit as much
power and thermal headroom as possible, however, part-to-
part manufacturing variability means that some parts will
be able to ramp higher than others or possibly at different
intervals and times, even for parts with the same model num-
ber [12]. Contention for shared resources, such as the inter-
connect 13| and parallel filesystem [14], is another prevalent
source of performance variability.

Finally, the usage model of modern HPC system is evolv-
ing to incorporate increasingly complex application compo-
sitions and workflows. These include multi-physics appli-
cations that employ code coupling systems [15] and in-situ
analytics packages such as Catalyst |16] that share CPU
and memory resources with the application. Such efforts
are directed at increasing productivity and addressing key
bottlenecks, such as data movement. However, they also in-
troduce the potential for increased performance variability
if the different components do not share resources efficiently
or if they are not well isolated from each other [17]. The

current trends toward increased single-node computational
density and significant node-local storage [18} [19] [20] are
likely to accelerate the move to these more complex appli-
cation scenarios.

4. APPLICATION

Our goal in this work is to undestand the effects of OS
noise on production applications. We therefore focused our
work on a real production application: S3D, a turbulent
combustion simulation. We first provide a brief overview of
S3D and then cover the several different implementations of
S3D used in our study.

4.1 Overview of S3D

S3D [21] is a reacting flow solver for the direct numerical
simulation of turbulent combustion in canonical geometries.
It solves the fully coupled unsteady conservation equations
for species mass, momentum and energy. The equations are
solved on a conventional structured Cartesian mesh using
higher order finite difference methods and advanced in time
with an explicit multi-stage Runge-Kutta integration scheme
with built-in error estimators. The derivative terms in the
conservation equations are computed using a eighth-order
accurate finite difference operator that requires a 9-point
stencil. A 10-th order spatial filter that uses a 11-point
stencil is applied periodically to remove high wavenumber
oscillations from the solution and thereby maintain numeri-
cal stability. The formulation used in S3D is specifically tai-
lored for simulating multi-species chemically reacting flow
using detailed models for the thermophysical, chemical and
molecular transport properties. The computational kernels
that compute these properties are a significant fraction of
the computational cost in comparison to other flow solvers
that are used for non-reacting flows.

Next, we describe the three implementations of S3D that
have been developed over time and whose performances are
compared in this paper. The same benchmark problem is
used when testing all three implementations. The bench-
mark problem measures the time to solution, presented as
wallclock time per timestep, for a grid size of 48% gridpoints
per node using a n-heptane/air chemical model that has 52
transported species, 16 quasi-steady state species and 283
chemical reactions. The problem size per node and chemi-
cal network parameters were chosen to be representative of
the range of grid and chemical network sizes that are used
in production S3D calculations.

4.2 S3D - MPI only

The original implementation of S3D used a pure MPI-
based single program multiple data (SPMD) paralleliza-
tion. The three-dimensional structured cartesian mesh was
equally partitioned among the multiple MPI tasks to achieve
perfect load balancing. On multi-core systems, multiple
MPI tasks are placed on each network node to utilize all
cores available on that node. The finite difference oper-
ators used for computing the derivatives and filtering the
solution require ghost zones that are 4 and 5 gridpoints
wide, respectively, to be exchanged. The ghost zone ex-
change occurs between the x, y and z neighbors of the three-
dimensional cartesian communication topology, also called
a box topology, using asynchronous point-to-point message
passing. Global communications are required for periodic
synchronization and monitoring, but are usually not perfor-

mance critical. The communication pattern of S3D is illus-
trated in Fig. [I] and is seen to be very regular due to the
nearest neighbor point-to-point (p2p) communication.

250
200

150

100

50

Receiving MPI Process

0

o & 7, Ve 3 2
° % o % D
Sending MPI Process

Figure 1: Spyplot of S3D communication pattern (9 point
stencil) at 256 processes

Since the communication is dominated by point-to-point
message passing among the neighbors in the cartesian
topology, the application benefits tremendously when the
task placement is chosen such as to minimize the distance
that such messages have to travel. In the case of the
pure-MPI implementation described here, task placement
is achieved at two levels. Since on-node communication
through shared memory is much faster than off-node com-
munication through the interconnect fabric, tasks are placed
so as to minimize the volume of communication that has to
travel off-node. This is achieved by selecting the tasks placed
on a node to form a mini-box topology that is as close to a
cube as possible. For the 16-core and 32-core node, the MPI
tasks on a node correspond to a 2x2x4 and 2x4x4 mini-box
of MPI tasks respectively. The second level of task place-
ment control seeks to minimize the mean communication dis-
tance by taking into account the interconnect topology. We
use GAMPI, a parallel genetic-algorithm based optimization
tool that takes the set of nodes allocated by the batch sched-
uler and computes a task ordering by minimizing the mean
internode distance [22]. Lastly, the code uses MPI collective
I/O [23] to save checkpoint data which also doubles up as
the analysis output.

4.3 S3D - MPI+OpenACC

The MPI-only S3D was refactored and augmented with
OpenMP and OpenACC directives by Levesque et al. [24]
thereby porting it to GPU accelerated architectures while
also improving its scalability on massively parallel multicore
systems. Since all of S3D’s computations occur in loops that
traverse the three-dimensional Cartesian grid, they could be
easily converted to OpenMP either manually or through au-
tomatic parallelization. However, such an approach would
have suffered from having too fine granularity and therefore
not having enough computation to offset the fixed cost in
spawning the threads for each OpenMP region. Therefore,
S3D was refactored by combining the various grid loops to
form large computational regions that could be hybridized
with OpenMP without loss of efficiency. Once S3D was hy-
bridized, the OpenACC directives were added in addition to
OpenMP to allow the kernels to be executed on accelerators
as described in Ref. [24]. Furthermore, recent advances in
the OpenACC directives and compiler support has allowed
the parallel regions in S3D-OpenACC to be executed asyn-
chronously on the accelerator using multiple parallel streams

of execution on the device. S3D-OpenACC only uses 1 MPI
rank per network node and so does not require on-node task
placement as described above for S3D-MPI. However, it uses
the multi-node task placement computed using GAMPI and
MPI collective I/O similar to S3D-MPI.

4.4 MPI+Legion Version of S3D

The Legion version of S3D takes an alternate approach.
Starting from the original MPI-only implementation, it re-
places an entire call to the integrate function (i.e. six
stages of right-hand-side calculation followed by explicit
Runge-Kutta integration) with a handoff of the input data
to a Legion task that performs the equivalent computation.
The main Fortran application thread then waits for the Le-
gion computation to finish and receiving the updated state
of the simulation. After possibly performing some occasional
filtering, analysis, or checkpointing, the data is given back
to then handed back to the Legion side to calculate the next
time step. This approach yields the performance benefits of
moving the main computation into Legion while allowing the
bulk of the code that deals with user interface, monitoring,
and file I/O unchanged.

The Legion implementation of the right-hand-side func-
tion and integration is implemented using a tree of tasks.
The top-level task creates logical regions that will be used
throughout the execution of the simulation. During each
time step, the top-level task launches sub-tasks for perform-
ing each of the various physical and chmemical computa-
tions performed as part of the right-hand-side computation.
Each task names which regions and it will access as part
of its execution. The Legion runtime performs a dynamic
analysis on this sequential stream of tasks and figures out
where data dependences exist as well as which tasks can be
executed out-of-order or in parallel. As we will show, this
ability to discover additional parallelism and execute tasks
out-of-order will be crucial to Legion’s ability to hide OS
noise events.

The Legion version of S3D also contains a customized
mapper which supports two different mapping strategies: a
mized strategy where work is divided between the CPUs and
GPUs on the machine and all-GPU strategy where as much
work as possible is placed on the GPU. When multiple CPUs
or GPUs are available, the mapper will load balance work
across processors by leveraging the mapper interface to as-
sign tasks to sets of processors where the task can execute.
In Section [f] we will show how this load balancing feature
improves tolerance to OS noise.

5. EVALUATION

All experiments were performed on two Cray XK-7 sys-
tems, the Titan supercomputer and a smaller scale testbed
of the same configuration at the Oak Ridge National Lab-
oratory. Each compute node in these systems is composed
of one 16-core AMD Opteron running at 2200MHz and one
Nvidia K20X GPU with 32 Gigabytes of DRAM memory
and 6 Gigabytes of GDDR memory. Nodes are intercon-
nected via the Cray Gemini interconnect in a 3-D torus
topology. The system software environment was Cray CLE
5.2U0P02.

To verify the experimental results as well as get a better
understanding of how noise gets amplified and absorbed in
S3D, a validated OS noise simulator was also used, though
results are not shown here due to space constraints. This

simulator framework comprises LogGOPSim [25] and the tool
chain developed by Levy et al. [26]. LogGOPSim uses the
LogGOPS model, an extension of the well known LogP
model [27], to simulate application traces that contain all
exchanged messages and group operations. In this way, Log-
GOPSim reproduces all happens-before dependencies and the
transitive closures of all delay chains of the application exe-
cution. It can also extrapolate traces from small application
runs with p processes to application runs with k-p processes.
The extrapolation produces exact communication patterns
for all collective communications and approximates point-
to-point communications [25]. Levy et al.’s tool chain adds
the capability to simulate resilience activities such as check-
pointing and other scenarios such as in-situ analytics and
coupled codes. This tool chain extension has been validated
against experiments and established models in |26}, |2§].

OS Noise was injected into the application using the Self-
ish Detour [29] utility developed as part of the ZeptoOS
project at Argonne National Laboratory. This utility uti-
lizes the SIGALRM signal available in POSIX environments
to trigger noise injection within one or more application level
threads at a configurable interval. A signal handler then
samples a random distribution to determine if a configurable
amount of work will be conducted within the signal handler
thereby creating additional work for the CPU and block-
ing the application thread during execution of the handler.
For all of our experiments we set the probability to unity,
guaranteeing that work will be conducted at each interval.

5.1 Testing Methodology

For our experiments, we used the three versions of the S3D
application described in Section[d} a CPU only MPI version,
a mixed CPU/GPU MPI4+OpenACC version, and a Legion
version. The Legion version was tested in two configura-
tions: 1) All CPU, where S3D tasks were mapped to only
CPUs, and 2) CPU+GPU, where S3D tasks were mapped
to both CPUs and GPUs. Using the selfish detour utility,
noise is injected into each of the S3D versions. The same
set of noise signatures is tested across all S3D versions and
this noise is selectively targeted at one or more bound CPU
threads. The hybrid MPI4+OpenACC and Legion versions
differ significantly from the MPI only version of S3D in that
the former run a single process per node while the MPI only
version is optimally configured with a single process per core
on this system. This impacts our noise injection strategy as
a single signal handler for noise is generally configured for
each process. To accommodate this difference, for the MPI
only version, the noise interval is increased by the number
of processes per node and the interval timer used for each
process is offset by local process number x noise duration
resulting in a wave front of noise across the local processes.
In all versions noise injection is not coordinated between
nodes.

The noise signatures used for our experiments were based
on previous work [10, [11]. For the MPI version of S3D,
we explore the impact of injecting noise to a single process
per node vs. distributing noise across all MPI processes on
the node. For the MPI4+OpenACC version, noise is injected
into the single master process running on the host, affecting
all CPU threads within the OpenACC runtime. For both
Legion versions we explore the effects of noise injection on
different thread types:

e S3D Fortran Thread: All noise is injected on the

thread running the Fortran component of the appli-
cation. This thread is mainly busy at start-up and
tear-down, and idle for most of a run.

e App Thread 1: All noise is injected on the first CPU
processor thread allocated to application level tasks.
This thread is bound to a dedicated physical core.

e Realm Threads: All noise is injected on the low-level
Realm threads responsible for handling active mes-
sages, performing data movement, and offloading work
onto GPU processors. Realm threads are bound to
the set of physical cores not used by CPU processor
threads.

e Legion Threads: All noise is injected on the Legion
runtime threads responsible for performing the dy-
namic program analysis necessary to map and execute
a Legion program on a target machine. Legion threads
are bound to the same physical cores as Realm threads.

e Any Thread: Noise is injected on all threads.

The ability to control where noise is injected within the
Legion runtime provides the opportunity to assess not only
the ability of dynamic task scheduling to potentially absorb
noise but also the impact of system noise on distinct task
types in the runtime.

Each noise profile was injected using two different meth-
ods, unscaled and scaled. For the unscaled method, the noise
profile being injected on each node was distributed evenly
among the threads being targetted on that node, resulting in
the node as a whole experiencing one copy of the noise pro-
file. For the scaled noise injection method, the noise profile
was first scaled up by the number of CPU cores per node,
then distributed evenly among the threads being targetted
on each node. At a node level, the scaled method results in
a net noise amount equal to one copy of the noise profile per
core.

5.2 Noise Injection: Impact on S3D Variants

We first examine the impact of a noise duration of approx-
imately 2500usec occurring at a frequency of 10H z which
corresponds empirically to a loaded preemption of a process
by the operating system.

Figures illustrate the performance in terms of
walltime/timestep for the Legion CPU+GPU and
MPI4+OpenACC S3D versions for unscaled noise injection.
The Legion CPU+GPU version shows very little perfor-
mance impact, 1 — 2%, to this noise pattern irrespective of
the number of nodes. The MPI+OpenACC version incurs
a minimum of .75% performance degradation at 16 nodes
and maximum of 4.5% at 1024 nodes. Overall S3D absorbs
this noise signature well for both of these configurations
and does not appear to amplify noise as a function of scale
due to its use of a nearest neighbor stencil communication
pattern. The Legion All CPU and MPI only versions
showed similar insensitivity, but plots are not presented due
to space considerations.

Next we examine the impact of this same noise signature,
10H z — 2500usec, scaled by the number of cores per node.
In the Legion and MPI4+OpenACC versions this is accom-
plished by injecting the noise signature with frequency scaled
by 10H z X cores per node to the single application process
per node. In the MPI only version this is accomplished by
injecting the noise signature without frequency scaling to
every process in the “Distribute to All Processes” configura-
tion and the frequency scaled noise signature to the first MPI

1.2

— No Noise
~-x App Thread 1

1.1 Realm Threads
s S3D Fortran Thread
9 «-—= Legion Threads
= = s Any Thread
a
o 1.0¢
wn
1]
£
b}
£ 0.9t
=]
C
=]
[~4

0.8}

0.7 L : . ’ . ' ’ y

5 >3 57 55 56 57 o8 59 510

Node count

Figure 2: Legion CPU+GPU wversion with 10Hz-2500us-
unscaled noise signature (runtime per step)

2.0 ; ; ;i r r r r r
~— No Noise
1.91| =-~ Master Process N

=
Joc)

=
~

Runtime/timestep (sec)
= =
k‘ﬂ ()]

=
N

=
w

13 Y Y L
Node count
Figure 3: OpenACC wversion with 10Hz-2500us-unscaled
noise signature (runtime per step)

process on each node in the “Concentrate to Process 0” con-
figuration. As illustrated in Figure[d]the Legion CPU+GPU
version is marginally impacted by this noise signature with
the most significant impact (up to 6% degradation) occur-
ring when noise is injected to any thread or restricted to just
the low-level Realm threads. This is a result of noise im-
pacting communication and work scheduling threads in the
runtime limiting the efficient scheduling of tasks and com-
munication of data dependencies in the S3D stencil. The
Legion GPU+CPU version realizes little performance im-
pact, < 1%, when noise is injected into an application CPU
processor thread (“App Thread 1”) or the Fortran thread.
Figure [5] illustrates a similar performance impact in the Le-
gion CPU only version when noise is injected into the Le-
gion, Realm, or any thread with a performance degradation
of up to 16% compared to 5% or less when noise is injected
into the application threads. These results indicate that
Legion is better able to adapt to noise on the application
threads than noise on the Legion runtime’s communication
and utility threads. The MPI4+OpenACC version slowdown
is more pronounced, resulting in 16% — 26% degradation as
the noise impacts any communication or CPU level calcu-
lations within the process as illustrated in Figure [] The
MPT only version exhibits up to a 4% slowdown when noise

0.90

~— No Noise
~-x App Thread 1
~-+ Realm Threads /e

S 0.85}] S3D Fortran Thread Y7
9 ~-= Legion Threads ey
= = s Any Thread Py

9]

2

3

£ 0.80r 1
=

)

£

=]

5

x 0.75} 4

0.70

55 56 27 58 PLEE

Node count
Figure 4: Legion CPU + GPU version with 10Hz-2500us-
scaled noise signature (runtime per step)

27 2% 28

9.5 - - - T T T T T
— No Noise ,
9.0kl =-* App Thread 1
~-+ Realm Threads h
+ S3D Fortran Thread f
«-—< Legion Threads ;o
Any Thread ;

©
0
i
.

'G)
o

T
o

Runtime/timestep (sec)
~
L

Node count

Figure 5: Legion all CPU version with 10Hz-2500us-scaled
noise signature (runtime per step)

is distributed across all processes on a node. When noise is
concentrated on node local process 0, performance degrada-
tion from 4 — 16% was observed as illustrated in Figure m
This is a result of a single process per node significantly de-
grading local stencil computations. When contrasted with
the Legion CPU only version with noise injection directed
at a single computation task we begin to see the impact of
static mapping of tasks to cores when 2.5% net noise is in-
duced. Dynamic task scheduling as in the Legion CPU only
version alleviates some of the impact of this type of noise.

Next we consider a shorter duration noise signature
(250usec) with higher frequency (100Hz). S3D is in gen-
eral better able to contend with this noise signature when
compared to the 10Hz — 2500usec noise signature. In the
unscaled noise signature case we see very little performance
impact, from 1—3% as illustrated in Figures[§land[9] Legion
CPU only and MPI only exhibit similar results.

When noise is scaled by core count the performance im-
pact is more pronounced. The Legion CPU+GPU version
exhibits up to an 8% slowdown with this noise signature
with the largest slowdown at 256 nodes and noise injected
to either Realm or Legion level threads again demonstrat-
ing that the performance degradation of communication and
scheduling threads is the most impacting to application per-

— No Noise
~ -+ Master Process

Runtime/timestep (sec)
= = N N
o ®» o i

{

I
>

1.2 ;
2 23

2‘4 2‘5 2‘6 2‘7 2‘8 2‘9 2io

Node count
Figure 6: OpenACC version with 10Hz-2500us-scaled noise
stgnature (runtime per step)

7.0 ; ; ; ; r r
~— No Noise
6.5r| ~ -« Distributed to All Processes .
~-+ Concentrated to Process 0 i

A oo
U o un o

»
o

Runtime/timestep (sec)

3 Y Y L
Node count

Figure 7: MPI only version with 10Hz-2500us-scaled noise

stgnature (runtime per step)

formance for S3D. Application performance is minimally ef-
fected across all scales when noise is only injected in ap-
plication level tasks. More pronounced is the performance
impact of OS noise on the Legion CPU only version of S3D.
Figure illustrates the impact this noise signature on the
Legion CPU only version. Of note is the significant differ-
ence in performance degradation when noise is injected in
communication and scheduling threads, up to 12.8%, com-
pared to a maximum of 6% when noise is isolated to ap-
plication computation tasks. Perhaps more significant is
the inverse relationship between these scenarios in terms of
performance degradation as a function of scale. Figure
provides a more detailed view of this phenomena. S3D per-
formance is degraded by 6% from 16 to 256 nodes and
then drops to 0% as scale increases to 512 and 1024 nodes.
Conversely, S3D exhibits very little performance degrada-
tion when noise is isolated to communication and schedul-
ing threads at smaller node counts but then increases sig-
nificantly as scale increases, indicating that at larger node
counts Legion’s dynamic scheduling of application level tasks
can effectively mitigate noise even as scale increases but that
communication and task scheduling threads are more sus-
ceptible to OS noise in this application.

In all of these cases, the performance impact of directing

~— No Noise
1.05}| - App Thread 1 2
~--+ Realm Threads i
S 1.00t| - S3D Fortran Thread]
g ~--= Legion Threads !
= 0.95/|® ° Any Thread i
2
3
£ 0.90+ 1
=
)
€ 0.85f 1
=]
C
& 0.80}]
0.75¢ 1
0.70

55 56 27 58 PLEE

Node count
Figure 8: Legion all GPU wversion with 100Hz-250us-
unscaled noise signature (runtime per step)

27 2% 28

1.8 - - - T T T T T
— No Noise
Master Process

1.7}

1.6¢

1.5¢

1.4¢

Runtime/timestep (sec)

1.3t

12 n L n L n L n n
5 >3 7 6 7
Node count

Figure 9: OpenACC wversion with 100Hz-250us-unscaled
noise signature (runtime per step)

noise to the “S3D Fortran Core” is significantly lower than
the impact of noise on the Realm or Legion threads. Recall
that all of these threads are sharing the same set of physical
cores (i.e. the ones not assigned to run application tasks), so
noise events handled by any of these threads have identical
impacts on the availability of execution resources, poten-
tially displacing communication and scheduling work being
performed by the runtime. The difference is in which run-
time operations are interrupted (because they are assigned
to the thread that is handling the noise event). The Fortran
thread has no work assigned to it during the bulk of the
S3D execution, while the Legion and Realm threads have
scheduling and communication operations whose delay im-
pacts overall performance more, especially at scale.

The MPI4+OpenACC versions exhibits moderate perfor-
mance degradation under this noise signature, between
4 — 7.5% as illustrated in Figure The MPI only ver-
sion exhibits a 4 — 7% degradation when noise is injected in
node local process 0 and a minimal degradation of 1% when
noise is spread across all processes on the node. Compared
with the longer duration, lower frequency noise signature
(10H z —2500usec) the statically mapped version of S3D are
significantly less impacted by this noise signature. This is
in contrast to the Legion variant of S3D whose performance

©
[

— No Noise
~ App Thread 1 S
~-+ Realm Threads ’p
S3D Fortran Thread 1
«-- Legion Threads /i
Any Thread v

©
o
¥
!

o
]

«©
o
a

Runtime/timestep (sec)
~
19,

2‘4 2‘5 2‘6 2‘7 2‘8 2‘9 2io
Node count

5 ;
2 23

Figure 10: Legion all cpu version with 100Hz-250us-scaled
noise signature (runtime per step)

14 : : : : : : : :
~— No Noise "
12+ = - App Thread 1 -
~-+ Realm Threads ,r
10| = S3D Fortran Thread / .
«-= Legion Threads VA
— gl|* ¢ AnyThread ;o
3 VA
) ,
& 6 e
= o - Ay
© RN - / 7
< ~~’ / RS
o 4 P
e s - X
2 e e o
Of == P - <

=3 e Y Y L
Node count

Figure 11: Legion all cpu version with 100Hz-250us-scaled

noise signature (Percentage degradation)

degradation is similar across both noise signatures and with
respect to which threads are targeted with noise.

5.3 Mechanisms in Legion that Mitigate Noise

While our performance studies suggest that dynamic task
scheduling can alleviate some forms of OS noise a more thor-
ough analysis of the scheduling mechanisms that contribute
to this is in order. Legion provides two primary mechanisms
for dynamic task scheduling, task scheduling windows sim-
ilar to out-of-order instruction windows [30] and load bal-
ancing of tasks across processors. To evaluate the impact
of each of these mechanisms we begin with an experiment
at a fixed node count (64) with the same task window size
(1024) used in our previous experiments and comparing the
no-noise case with the scaled noise signatures with and with-
out load balancing. Table[[]summarizes these results. In this
experiment load balancing reduces the impact of OS noise
directed at an application level task from 20% to 5%. These
results indicates that load balancing of computational tasks
plays a significant role in reducing the impact of OS noise.

In our next experiment we demonstrate the impact of task
scheduling windows by reducing the window size from 1024
to 2. As in the load balancing experiment we fix the num-
ber of nodes at 64 and examine the impact of our two noise

1.9

- - - /K /‘(
— No Noise AN
~ - Master Process 4 Nt

1.8 1
o
a

- 1.7¢ i
Q
2
0

£ 1.6} 1
=
[
1S

b= 1.5¢ 4
=]
4

1.4} 1

1 3 L " n " n n n n

3 53 2% 55 56 27 58 59 o0

Node count
Figure 12: OpenACC wversion with 100Hz-250us-scaled

Qe EIIWPCH GH IS R Fihtime /step with and with-

out load balancing

Noise signature With Toad Without
(scaled - App Thread 1) balancing load balancing
No noise 6.007 6.01
100Hz-250us 6.373 7.3
10Hz-2500us 6.337 7.27

signatures with load balancing enabled. Figures [[3] and [T4]
illustrate the impact of reducing the window size with noise
signatures of 100Hz — 250us and 10Hz — 2500us respec-
tively. As the window size decreases from 1024 to 256 the
impact of noise remains fairly constant indicating that Le-
gion is still able to identify sufficient work within the task
stream such that the induced noise continues to impact per-
formance. As the task window is reduced to 128 Legion is no
longer able to find sufficient work resulting in performance
degradation that begins to dominate any induced noise ef-
fects. Performance continues to degrade significantly as the
window size is decreased further. These results indicate

11

— No Noise
-~ App Thread 1

Runtime/timestep (sec)

27 5 25 2 PR 27 2

210 29 28 2 p
Window size

Figure 13: Legion all cpu version runtime/step with varying
window size and 100Hz-250us scaled noise signature

that dynamic load balancing coupled with the ability to find
sufficient parallelism through out-of-order task windowing to
schedule both play a significant role in mitigating node level
performance variability. To gain additional insight into how
these two mechanisms play a role in mitigating performance

11

— No Noise
-- AppThread 1

Runtime/timestep (sec)

510 s 8 57 2‘5 2‘5 57 >3 > 21
Window size

Figure 14: Legion all cpu version runtime/step with varying
window size and 10Hz-2500us scaled noise signature

variability we conclude our evaluation with a visual analy-
sis of task load balancing and task schedule windows within
Legion. The Legion runtime system provides a lightweight
profiling mechanism that collects a per processor time series
of task execution. A companion tool provides the ability to
visualize this information as illustrated in Figure Le-
gion/Realm CPUs are presented as a single row with indi-
vidual tasks executed on these cores presented as horizontal
bars of differing colors. Bar color is indicative of task type.
Hovering over a bar within a web browser provides detailed
information about the task including the task name, glob-
ally unique identifier, and execution duration. The top row
in each figure represents the runtime processor responsible
for analyzing data dependencies and scheduling task exe-
cution, lower rows represent Legion application processors
responsible for executing application tasks when scheduled.

Figure [T5] illustrates the impact on task execution of OS
noise directed at a single core (system core 2). In this ex-
ample the OS noise event causes significant prolongation of
a highly computationally intensive task within S3D (com-
puting chemical rates). This slowdown is apparent from the
significantly longer execution time of this task relative to
the same tasks on other legion processors. Concurrent with
this noise impacted task execution, the Legion runtime is
scheduling work several tasks ahead of the current execution
(top row) and scheduling these tasks on other processors.
This scheduling ahead of the application (based on window
size) allows Legion to target upcoming tasks on other less
loaded processors. The segment of time shown in the right
half of Figure illustrates the same application execution
later in the time series with the next wave of chemical rates
tasks being scheduled to processors other than core 2 where
noise is being injected. This analysis indicates that the com-
bination of task scheduling windows that look ahead of cur-
rent application task execution coupled with load balancing
significantly contribute to the Legion runtime’s ability to
absorb performance variability.

6. RELATED WORK

The impact of OS noise on HPC systems has been known
and studied for more than twenty years |31]. We summarize
a few of the major works in this section. Petrini et al [32]
once again raised the visibility of the impact of OS noise on
HPC application performance. This study investigated per-

formance issues from OS noise on a large-scale cluster built
from commodity hardware components, running a commod-
ity operating system, and running a cluster software environ-
ment designed for data center applications. While the find-
ings of this paper from an OS perspective were largely well
known, such as turning off unnecessary system daemons, the
paper brought to light several important new findings rele-
vant to OS noise. More specifically, the authors developed
a micro-benchmark specifically for measuring OS noise on
a parallel machine, such benchmarks were previously non-
existent, and they demonstrated the benefit of dedicating
hardware resources to handle system service tasks.

Beckman et al. [33] investigated the effect of user-level
noise on an IBM BG/L system. This system runs a cus-
tom lightweight OS and demonstrates very little noise. This
system also contains a number of architectural features that
allow for collective operations to be performed in hardware
and therefore not sensitive to noise like their on-loaded coun-
terparts. This paper demonstrated that a properly config-
ured Linux kernel can have a noise signature similar to that
of a lightweight kernel.

Ferreira et al [10] examined the sensitivity of OS noise at
scale for three real-world HPC applications using a kernel-
level noise injection framework on a well balanced architec-
ture. This paper showed that the aggregate amount of noise
is not the most important feature but the interaction of how
noise is injected and the application communication charac-
teristics that have the greatest impact on noise. For exam-
ple, this work showed how the computation/communication
ratios, collective communication sizes, and other character-
istics of an application, relate to their ability to amplify
or absorb noise. The performance impact of platform fea-
tures such as system balance (a platforms ratio of FLOPS
to bytes) was investigated in [34]. Recently, Morari et al [§]
developed a technique to provide quantitative descriptive
analysis for each OS event that contributes to system inter-
ference on modern HPC systems. This work pinpointed the
pattern of how noise is being generated on real systems as
well as its sources.

Most closely related, Kale et al [35] investigated the im-
pact of a hybrid static+dynamic task granularity scheme
on mitigating OS noise. Using a simple MPI+pthreads 2-D
stencil microbenchmark, the authors demonstrate a number
of important results. First, they showed that for process-
ing elements which regularly experience a larger volume of
OS noise in comparison to others in the system, assigning
shorter duration tasks yields modest performance benefits.
Second, if noise is equally likely to occur on all processing
elements, knowing the structure (or signature) of the OS
noise events can aid in tuning task granularity to schedule
around these events. Lastly, the authors show that special
care must be taken in design of the tasking system to ensure
its overheads (for example, the dequeue times) are kept.

This present work is novel and distinct from each of these
previous studies as we focus on the noise absorption capabil-
ities of emergent dynamic runtimes for HPC, which are sug-
gested to aid in the push to exascale, using a key HPC work-
load. This is in contrast to these previous works which ex-
plore MPI-based environments. We also explore the impact
of noise on different task types in an adaptive runtime sys-
tem including communication, computation, and scheduling
tasks, differentiating the performance impact to the appli-
cation when noise is isolated to each of these distinct types,

m“h,im I

Utility processor M.,I | L ‘I

‘Mih..;h “ML. Al | . «L u.l l

alnﬂu.“ ”il .‘ M..I.J

Compute core 0 ml LEL W — NN Il EEE UL] ETTTTT] 5 WY T -
Compute core 1 | —] . 1 my 1 mE nmn] —
Compute core 2 [N 1 X L. 1am 1 mmn | nan minnme .
Compute core 3 0 O — 0 X i n - _'\un -
Compute core 4 - u Wi mn m o — O i numn N

Compute core 5 m - 11 - v 1111 i - N
Compute core 6 . - w0 —— | 0N n—ulll [| \ [ILL N W] | l\hu 1

Computation of chemical rates slowed by noise

injection on Core 2

Scheduler avoids compute core 2 in next wave of chemical rates
tasks preferring other compute cores based on load during
scheduling

Figure 15: Time series profile information of Legion tasks during noise induced task slowdown and scheduling of tasks to

avoid noise susceptible core (core 2).

which previous studies have not explored. Lastly, we in-
vestigate and isolate which policies and properties of the
dynamic runtime are most effective in mitigating noise (i.e.
load balancing vs out-of-order task execution).

6.1 Other dynamic task based runtimes

Recently, there has been a proliferation of dynamic run-
time systems for HPC. Many of these tasking systems have
arisen out of a need to target heterogeneous machines with
different kinds of processors. One of the first dynamic run-
time systems to be proposed was Charm+-+ . Charm++
provides a simple object programming model with fine
grained messages being exchanged between actors. The
Charm++ runtime automatically migrates objects and con-
text switches between actors in order to both balance load
and deal with variability in the performance of different pro-
cessors. More recently, explicit task based systems such as
the Open Community Runtime , Uintah , and Le-
gion have demonstrated that dynamic runtime systems
can provide both flexible and high performance program-
ming models based on tasks. While we only investigate the
effects of OS noise on Legion in this work, the dynamic na-
ture of these runtime systems suggests that they might all
possess an inherent tolerance to OS noise events.

7. CONCLUSIONS

This paper has presented the first study of the impact
of OS noise in dynamic runtime environments. Previous
works have focused on the impact of static runtime envi-
ronments (MPI) and have not explored the impact of OS
noise on different application level tasks such as computa-
tion, communication, and task scheduling. Our results show
that dynamic runtime environments such as Legion can ab-
sorb OS noise when load balancing and out-of-order task
scheduling mechanisms are employed. We show that when
noise is injected into a single core with a 10H 2z 2500us sig-
nature the MPI4+OpenACC version of S3D realizes up to
a 25% slowdown while the Legion CPU+GPU version real-
izes at most a 2% slowdown. We further demonstrate that
adaptive load balancing can reduce overall impact of noise
in the Legion CPU only version from 20% slowdown to 6%
when sufficient work is scheduled in advance by the runtime.
This result indicates that on node load balancing and out-
of-order execution strategies are important mechanisms in
dealing with performance variability.

Our results also demonstrate that application perfor-
mance is significantly impacted by where noise is injected
and what threads of execution are interrupted or displaced

by OS noise. Previous work has demonstrated that how
noise is generated (noise signature) is often more important
than the net noise on a system. Our work demonstrates
that OS noise that impacts communication and scheduling
threads in a dynamic runtime environment reduces applica-
tion performance up to 12% and grows as a function of node
scale. Conversely, under the same noise signature targeted
instead to application tasks results in at most a 6% perfor-
mance degradation at 16 nodes and decreases to 0% at 1024
nodes. This is more pronounced in our experimentation as
the number of cores dedicated to the runtime is 1/8th of
those dedicated to application level tasks. This places addi-
tional constraints on the runtime system when attempting
to mitigate this form of noise. Future systems such as Intel’s
Knights Landing will contain significantly more processing
cores than today’s systems. In these systems, runtimes such
as Legion will likely be able to consume more processing
cores with similar overheads presenting new opportunities
to mitigate the impact of OS noise within communication
and scheduling threads.

The observed differences in the noise sensitivity of the
different Legion threads show that, in dynamic runtime en-
vironments, having the OS run a background operation on
a separate thread can be significantly better than “hijack-
ing” a user-level thread. The former consumes execution re-
sources, but still allows the runtime to load-balance across
the remaining resources, while the latter also delays specific
application or runtime operations that have been assigned
to that user-level thread.

8. REFERENCES

[1] L. V. Kale and S. Krishnan, CHARM++: a portable
concurrent object oriented system based on C++.
ACM, 1993, vol. 28, no. 10.

[2] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken,
“Legion: Expressing locality and independence with
logical regions,” in Proceedings of the International
Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12. Los
Alamitos, CA, USA: IEEE Computer Society Press,
2012, pp. 66:1-66:11. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2388996.2389086

[3] S. Treichler, M. Bauer, and A. Aiken, “Language
support for dynamic, hierarchical data partitioning,”
in Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented
Programming Systems Languages E#38; Applications,
ser. OOPSLA ’13. New York, NY, USA: ACM, 2013,

http://dl.acm.org/citation.cfm?id=2388996.2389086

[10]

[11]

[12]

[14]

pp. 495-514. [Online]. Available:
http://doi.acm.org/10.1145/2509136.2509545

M. Bauer, S. Treichler, E. Slaughter, and A. Aiken,
“Structure slicing: Extending logical regions with
fields,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage
and Analysis, ser. SC ’14. Los Alamitos, CA, USA:
IEEE Computer Society Press, 2014 — to appear.

S. Treichler, M. Bauer, and A. Aiken, “Realm: An
event-based low-level runtime for distributed memory
architectures,” in Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation,
ser. PACT ’14. New York, NY, USA: ACM, 2014,
pp. 263-276. [Online]. Available:
http://doi.acm.org/10.1145/2628071.2628084

K. Yelick, D. Bonachea, W. yu Chen, P. Colella,

K. Datta, J. Duell, S. L. Graham, P. Hargrove,

P. Hilfinger, P. Husbands, C. Tancu, A. Kamil,

R. Nishtala, J. Su, M. Welcome, and T. Wen,
“Productivity and performance using partitioned
global address space languages,” 2007.

D. Koufaty and D. T. Marr, “Hyperthreading
technology in the netburst microarchitecture,” IEEE
Micro, vol. 23, no. 2, pp. 5665, Mar. 2003. [Online].
Available:
http://dx.doi.org/10.1109/MM.2003.1196115

A. Morari, R. Gioiosa, R. Wisniewski, F. Cazorla, and
M. Valero, “A quantitative analysis of os noise,” in
Parallel Distributed Processing Symposium (IPDPS),
2011 IEEE International, May 2011, pp. 852—-863.

D. Tsafrir, Y. Etsion, D. G. Feitelson, and

S. Kirkpatrick, “System noise, os clock ticks, and
fine-grained parallel applications,” in ACM
International Conference on Supercomputing,
Cambridge, Massachusetts, June 2005.

K. B. Ferreira, R. Brightwell, and P. G. Bridges,
“Characterizing application sensitivity to OS
interference using kernel-level noise injection,” in
Proceedings of the 2008 ACM/IEEE Conference on
Supercomputing (Supercomputing’08), November 2008.
K. B. Ferreira, P. Widener, S. Levy, D. Arnold, and
T. Hoefler, “Understanding the effects of
communication and coordination on checkpointing at
scale,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage
and Analysis, ser. SC '14. Piscataway, NJ, USA:
IEEE Press, 2014, pp. 883-894. [Online]. Available:
http://dx.doi.org/10.1109/SC.2014.77

B. Rountree, D. Ahn, B. de Supinski, D. Lowenthal,
and M. Schulz, “Beyond DVFS: A first look at
performance under a hardware-enforced power
bound,” in IEEE 26th International Parallel and
Distributed Processing Symposium Workshops PhD
Forum (IPDPSW), May 2012.

A. Bhatele, K. Mohror, S. H. Langer, and K. E.
Isaacs, “There goes the neighborhood: Performance
degradation due to nearby jobs,” in Proceedings of the
International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC
’13. New York, NY, USA: ACM, 2013, pp.
41:1-41:12. [Online]. Available:
http://doi.acm.org/10.1145/2503210.2503247

J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield,

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

(25]

T. Kordenbrock, K. Schwan, and M. Wolf, “Managing
variability in the IO performance of petascale storage
systems,” in Proceedings of the International
Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC 10, Nov
2010.

S. Valcke, “The oasis3 coupler: a european climate
modelling community software,” Geoscientific Model
Development, vol. 6, no. 2, pp. 373-388, 2013.

J. Ahrens, S. Jourdain, P. O’Leary, J. Patchett, D. H.
Rogers, and M. Petersen, “An image-based approach
to extreme scale in situ visualization and analysis,” in
Proceedings of the International Conference for High
Performance Computing, Networking, Storage and
Analysis. TEEE Press, 2014, pp. 424-434.

J. Ouyang, B. Kocoloski, J. Lange, and K. Pedretti,
“Achieving performance isolation with lightweight
co-kernels,” in Proceedings of the 24th International
Symposium on High Performance Distributed
Computing, ser. HPDC ’15, Jun 2015.

“TRINITY - Los Alamos National Laboratory,”
http://www.lanl.gov/projects/trinity/. [Online].
Available: http://www.lanl.gov/projects/trinity/
“AURORA - Argonne Leadership Computing
Facility,” http: //aurora.alcf.anl.govl [Online].
Available: http://aurora.alcf.anl.gov

“SUMMIT - Oak Ridge Leadership Computing
Facility,” https://www.olcf.ornl.gov /summit /.
[Online]. Available:
https://www.olcf.ornl.gov/summit/

J. H. Chen, A. Choudhary, B. d. Supinski,

M. DeVries, E. R. Hawkes, S. Klasky, W. K. Liao,

K. L. Ma, J. Mellor-Crummey, N. Podhorszki,

R. Sankaran, S. Shende, and C. S. Yoo, “Terascale
direct numerical simulations of turbulent combustion
using S3D,” Computational Science € Discovery,

vol. 2, p. 015001, 2009.

R. Sankaran, J. Angel, and W. M. Brown, “Genetic
algorithm based task reordering to improve the
performance of batch scheduled massively parallel
scientific applications,” Concurrency and
Computation: Practice and Experience, Mar. 2015.
[Online]. Available: http://onlinelibrary.wiley.com/
doi/10.1002/cpe.3457 /abstract

W.-k. Liao, A. Ching, K. Coloma, A. Nisar,

A. Choudhary, J. Chen, R. Sankaran, and S. Klasky,
“Using MPI file caching to improve parallel write
performance for large-scale scientific applications,” in
Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing, 2007. SC ’07, Nov. 2007, pp. 1-11.
J. Levesque, R. Sankaran, and R. Grout, “Hybridizing
S3D into an Exascale application using OpenACC: An
approach for moving to multi-petaflops and beyond,”
in International Conference for High Performance
Computing, Networking, Storage and Analysis (SC12),
Nov. 2012, pp. 1-11.

T. Hoefler, T. Schneider, and A. Lumsdaine,
“LogGOPSim - Simulating Large-Scale Applications in
the LogGOPS Model,” in Proceedings of the 19th
ACM International Symposium on High Performance
Distributed Computing. ACM, Jun. 2010, pp.
597-604.

http://doi.acm.org/10.1145/2509136.2509545
http://doi.acm.org/10.1145/2628071.2628084
http://dx.doi.org/10.1109/MM.2003.1196115
http://dx.doi.org/10.1109/SC.2014.77
http://doi.acm.org/10.1145/2503210.2503247
http://www.lanl.gov/projects/trinity/
http://www.lanl.gov/projects/trinity/
http://aurora.alcf.anl.gov
http://aurora.alcf.anl.gov
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/summit/
http://onlinelibrary.wiley.com/doi/10.1002/cpe.3457/abstract
http://onlinelibrary.wiley.com/doi/10.1002/cpe.3457/abstract

[26]

29

[30]

[31]

[32]

S. Levy, B. Topp, K. B. Ferreira, D. Arnold,

T. Hoefler, and P. Widener, “Using simulation to
evaluate the performance of resilience strategies at
scale,” in High Performance Computing, Networking,
Storage and Analysis (SCC), 2013 SC Companion:.
IEEE, 2013.

D. Culler, R. Karp, D. Patterson, A. Sahay, K. E.
Schauser, E. Santos, R. Subramonian, and T. von
Eicken, “Logp: towards a realistic model of parallel
computation,” SIGPLAN Not., vol. 28, no. 7, pp.
1-12; Jul. 1993.

S. Levy, B. Topp, K. B. Ferreira, D. Arnold,

P. Widener, and T. Hoefler, “Using simulation to
evaluate the performance of resilience strategies and
process failures,” Sandia National Laboratories,
Technical Report SAND2014-0688, 2014.

“Selfish Detour Noise Injection Utility,” http://www.
mcs.anl.gov /research /projects/zeptoos/downloads/.
[Online]. Available: http://www.mcs.anl.gov/
research /projects/zeptoos/downloads/

P. K. Dubey, G. B. Adams, and M. Flynn, “Instruction
window size trade-offs and characterization of program
parallelism,” Computers, IEEE Transactions on,

vol. 43, no. 4, pp. 431-442, 1994.

R. Zajcew, P. Roy, D. Black, C. Peak, P. Guedes,

B. Kemp, J. LoVerso, M. Leibensperger, M. Barnett,
F. Rabii, and D. Netterwala, “An OSF/1 UNIX for
Massively Parallel Multicomputers,” in Proceedings of
the 1993 Winter USENIX Technical Conference,
January 1993, pp. 449-468.

F. Petrini, D. Kerbyson, and S. Pakin, “The case of
the missing supercomputer performance: Achieving

33]

34]

35]

(36]

37]

optimal performance on the 8,192 processors of ASCI
Q,” in Proceedings of the International Conference on
High-Performance Computing and Networking,
Phoenix, AZ, 2003.

P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan, “The
influence of operating systems on the performance of
collective operations at extreme scale,” in I[EEE
Conference on Cluster Computing, September 2006.
K. B. Ferreira, P. G. Bridges, R. Brightwell, and K. T.
Pedretti, “The impact of system design parameters on
application noise sensitivity,” Cluster Computing,

vol. 16, no. 1, pp. 117-129, Mar. 2013. [Online].
Available:
http://dx.doi.org/10.1007/s10586-011-0178-3

V. Kale, A. Bhatele, and W. D. Gropp, “Weighted
locality-sensitive scheduling for mitigating noise on
multi-core clusters,” in Proceedings of the 2011 18th
International Conference on High Performance
Computing, ser. HIPC "11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 1-10. [Online].
Available:
http://dx.doi.org/10.1109/HiPC.2011.6152722

“Open Community Runtime,” https://xstackwiki.
modelado.org/images/1,/13/Ocr-v0.9-spec.pdf,
September 2014. [Online]. Available:
https://xstackwiki.modelado.org/images/1/13/
Ocr-v0.9-spec.pdf

Q. Meng, A. Humphrey, and M. Berzins, “The uintah
framework: a unified heterogeneous task scheduling
and runtime system,” in High Performance
Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion:, Nov 2012, pp. 2441-2448.

http://www.mcs.anl.gov/research/projects/zeptoos/downloads/
http://www.mcs.anl.gov/research/projects/zeptoos/downloads/
http://www.mcs.anl.gov/research/projects/zeptoos/downloads/
http://www.mcs.anl.gov/research/projects/zeptoos/downloads/
http://dx.doi.org/10.1007/s10586-011-0178-3
http://dx.doi.org/10.1109/HiPC.2011.6152722
https://xstackwiki.modelado.org/images/1/13/Ocr-v0.9-spec.pdf
https://xstackwiki.modelado.org/images/1/13/Ocr-v0.9-spec.pdf
https://xstackwiki.modelado.org/images/1/13/Ocr-v0.9-spec.pdf
https://xstackwiki.modelado.org/images/1/13/Ocr-v0.9-spec.pdf

	Introduction
	The Legion runtime system
	Realm

	Sources of variability
	Application
	Overview of S3D
	S3D - MPI only
	S3D - MPI+OpenACC
	MPI+Legion Version of S3D

	Evaluation
	Testing Methodology
	Noise Injection: Impact on S3D Variants
	Mechanisms in Legion that Mitigate Noise

	Related work
	Other dynamic task based runtimes

	Conclusions
	References

