SAND2015- 3015PE

Sandia

Exceptional service in the national interest @ National
Laboratories

4@ Can many-task models make
‘ P data movement and fault- 4
NP tolerance easier to express? "\;\

D

i)
KEEP

CALM

U Hemanth Kolla, Keita Teranishi, Gary Templet, Craig

DHARMA Ulmer, Ken Franko, Greg Sjaardema, John Floren
ON

Jeremiah Wilke, Janine Bennett, Nicole Slattengren, \ /

F

4/27/2015

. DEPARTMENT OF V. YA J =
NERGY #VIS&

rity Admiristra

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Architecture trends pose serious) i,
challenges for how we program apps

Overarching abstract machine
model of an exascale node

(Low Capacity, High Bandwidth)

Challenges

" |ncreases in concurrency 3D Stacked (High Capacity,
Low Bandwidth)

= Dynamic app workloads

= Deep memory hierarchies

= Increased fail-stop errors

= Performance heterogeneity
= Accelerators
= Thermal throttling
= General system noise
= Responses to transient

Integrated NIC
for Off-Chip
Communication

failures 0 COMPUTER

Image courtesy of WWW.cal_design.org ARCHITECTURE

LABORATORY

4/27/2015 2

Jeremiah Wilke DHARMA and many-task models

Extant models (MPI+X) may not e
address all the algorithm and
architecture challenges

Cha"enges = Complexity of application code

B Increases in concurrency increases with proposed solutions

Dynamic app workloads

Deep memory hierarchies
Increased fail-stop errors = Requires new execution models
enabled by more expressive
programming models

Bl Performance heterogeneity
= Accelerators
= Thermal throttling
= General system noise
|

Responses to transient EmphaSiS on dynamic, coarse-
failures grained parallelism, mostly
affecting distributed memory

3

Sandia
National

Asynchronous many-task (AMT) utilizes @t
task graph to expose parallelism

A

%
\Ef D
\ /

4/27/2015 4

Jeremiah Wilke DHARMA and many-task models

Contrast between declarative and
sequential, imperative coding styles

Output sequential() R

{
Output A = do_AQ); / T
Output B = do_B(A); B C
Output C = do_C(A); \ f
Output D = do_D(CA); . .
Output E = do_E(B,C);
Output F = do_F(D,E); \\ /’

F

return

}

4/27/2015 5

Contrast between declarative and
sequential, imperative coding styles

Sandia
|I1 National

Laboratories

Output declarative()

{
TaskDag dag; A

Task A; T
dag.add(A);

Task BCA), C(A), D(A); B C
dag.add(B,C,D);

Task E(B,QO); \ f
dag.add(E);

Task F(E);

E D
dag.add(F); /f
dag.run();
F

return dag.resultQ);

¥

4/27/2015 6

Jeremiah Wilke DHARMA and many-task models

Programming model AND execution
model both illustrated

Sandia
|I1 National

Laboratories

" Programming model: Do we code via procedure calls
with pointers and scalar types? Or do we code via
task declarations on logical handles?

= Execution model: Does the code run in a sequential,
step-by-step way? Event-driven?

Output sequential() A
{
Output A = do_AQ); ///’ T
Output B = do_B(A); B C
Output C = do_CCA); \\\ f
Output D = do_D(A);
Output E = do_E(B,C); E D
Output F = do_F(D,E);
return F; \\ /f
} F
4/27/2015 7

Jeremiah Wilke DHARMA and many-task models

DHARMA project and the software stack@® .

Applications are by far the
largest part of the stack

=555555$

4/27/2015 o
_ __

DHARMA project and the software stack) .

« DHARMA exists in space
between applications and
runtime

* Programming model and
execution model are
APl/abstractions within the
application and runtime
software space

4/27/2015

DHARMA project and the software stack@® .

How do you future-proof the
stack against changes in
hardware?

4/27/2015 10

DHARMA project and the software stack@® .

" Mapper) Can performance portability
libraries and compilers suffice

as shims to future-proof the
stack?

4/27/2015 11
_ __

Coding directly to an execution model i
has short-term rewards but major risks

|t can be easier to code directly
to an execution model

* You cannot beat the
performance of a code tuned to
a specific execution model and
hardware

» Loss of flexibility, greater
commitment to smaller set of
technologies

4/27/2015 12

Optimistic assertions for current work

= Everything can pivot around
the programming model as
long it is sufficiently
expressive

= Programming models can
be “performance portable”

= An execution is only
performance portable to
similar runtimes/hardware

Mapper

4/27/2015 13

DHARMA is providing AMT capabilities
to enable ATDM apps on ATS-3

" |dentify requirements for
programming and execution model

= Focus on asynchronous many-task
parallelism for distributed memory

Mapper

= FY15 Activity #1: Analyze existing
AMT technologies and assess
technology gaps (S1.1M)

= FY15 Activity #2: Develop technical
roadmap for ATS-3 AMT
programming model (S0.3M)

4/27/2015 14

DHARMA addresses key CIS mission aregz s,
and touches many CIS research challenges

= Mission area: Vertically integrated scalable computing

= Enabling new scientific/engineering capabilities via
improved programming model broadly applicable

= Research challenge: Revolutionary approaches to the
stockpile

= Research challenge: Engineering of materials
= Research challenge: First to high yield fusion

= Research challenge: Data sciences

= |mproved workflows on emerging architectures will benefit greatly from
expressive programming model that enhances code coupling

4/27/2015 15

Jeremiah Wilke DHARMA and many-task models

Conclusions (preview))

= DHARMA is both computer science and economics.
We must balance reward of improved performance
against risk of investing in new/existing codes.

= An expressive programming model provides risk
mitigation by enabling many different
runtimes/libraries and execution models

= Programming/execution model relationship critical
to making sure major rewrite of applications
happens ONCE

4/27/2015 16

Jeremiah Wilke DHARMA and many-task models

DHARMA started as AMT-based fault- =,
tolerance research vehicle

Laboratories

= Dharma: the order which makes life possible
= Dhr: Sanskrit — to hold, maintain, keep

= QOriginally: Distributed Hash Array for Remote
Memory Access — research vehicle

= Now: Distributed asyncHronous, Adaptive, Resilient
Models for Applications — path to production
capabilities

4/27/2015 17
_ __

Jeremiah Wilke DHARMA and many-task models

DHARMA started as AMT-based fault- =,
tolerance research vehicle

Laboratories

= Dharma: the order which makes life possible
= Dhr: Sanskrit — to hold, maintain, keep

= QOriginally: Distributed Hash Array for Remote
Memory Access

= Now: Distributed asyncHronous, Adaptive, Resilient
Models for Applications

Noble truth of scalable computing:

All life is suffering. Our desire for more flops
is the source of all suffering.

4/27/2015 18

Jeremiah Wilke DHARMA and many-task models

DHARMA has progressed through three
phases of enlightenment

Sandia
m National
Laboratories

4/27/2015 19
_ __

Jeremiah Wilke DHARMA and many-task models

DHARMA has progressed through three

phases of enlightenment
= Ep.l: ANew Hope

= Optimism AMT models will revolutionize software and save the world

Sandia
r.h National
Laboratories

= Port mini-app to 3 exemplar AMT systems: Legion, Charm++, Uintah
= Engaging both app developers and runtime developers

4/27/2015 20
-

Jeremiah Wilke DHARMA and many-task models

Escalating features in many-task models
can improve performance — at a cost

Where it might help | Trade-off Features
prominently

Sandia
rl'| National

Laboratories

1) Data parallel Everywhere Shared/ghost sync Everywhere
2) Task-parallel on- Multiphysics Task ordering SMPs, Uintah
node Data coherency
3) Work stealing Dynamic work loads Cache problems Cilk, X10
on-node (mesh smoothing, Termination detection
feature analysis)

4) Global sync load Re-meshing Global synchronization MPI
balancing Poor initial distribution
5) Distributed memory Quantum chemistry Distributed coherency NWChem,
task parallel Charm++
6) Distributed work Particle-in-cell Global termination TASCEL,
stealing Molecular dynamics detection Charm++
7) Runtime DAG Many fields, tasks that Rigid data structures, Legion
derivation are difficult to manage runtime overhead

4/27/2015 21

Asynchronous many-task (AMT) utilizes e
task graph to expose parallelism
subject to order constraints

A

%
\Ef D
\ /

4/27/2015 22

Jeremiah Wilke DHARMA and many-task models

Sandia

Sequential schedule has no parallelism @&z,

--

Proc O
A
B C
E D
F
4/27/2015 23

Jeremiah Wilke DHARMA and many-task models

Task parallelism enables multiple
workers to lower schedule Iength

Sandia
|I1 National

Laboratories

-

Proc O
Proc 1 D
A
B C
E D
F
4/27/2015 24

Jeremiah Wilke DHARMA and many-task models

Data parallelism adds another
dimension of parallelism to exploit

-

Sandia
|I1 National

Laboratories

/f“\\(\
\\//

Jeremiah Wilke DHARMA and many-task models

Work stealing can dynamically change
schedule to improve performance

--

Proc0 A
Proc 1 C D

Sandia
|I1 National

Laboratories

A

]
\/‘
\/‘

4/27/2015 26

Jeremiah Wilke DHARMA and many-task models

Combing multiple strategies can
maximize parallelism

I I N 2

Sandia
|I1 National

Laboratories

ProcO0 AO
Proc1 A1 B D
4/27/2015 27

Jeremiah Wilke DHARMA and many-task models

DHARMA has progressed through three

ohases of enlightenment
= Ep.l: ANew Hope

= Optimism AMT models will revolutionize software and save the world

Sandia
|I1 National

Laboratories

= Port mini-app to 3 exemplar AMT systems: Legion, Charm++, Uintah
= Engaging both app developers and runtime developers

= Ep. Il: The MPIre Strikes Back
= Deeper understanding of AMT models — pitfalls and being fair to MPI

4/27/2015 28
-

Jeremiah Wilke DHARMA and many-task models

Rube-Goldberg principle of
supercomputing benchmarks

Sandia
r.h National
Laboratories

Results
atalals

4/27/2015 . 29

Jeremiah Wilke DHARMA and many-task models

Rube-Goldberg principle of i,
supercomputing benchmarks

Results
atalals

4/27/2015 30

Jeremiah Wilke DHARMA and many-task models

DHARMA is taking a measured approach (.
looking towards best long-term solution

 The AMT technical roadmap addresses:
(1)Performance portability
(2)Programmability/expressiveness
(3)Interoperability (both code and organization)
« 4-5 year roadmap for building programming model solution
« Major overhaul of code base should only happen ONCE!

* Not just about performance of existing AMT systems on
current platforms!

4/27/2015

31

Jeremiah Wilke

DHARMA and many-task models

Sandia faces spectrum of choices/risks s
in developing technical roadmap

Laboratories

Sandia builds system Sandia relies
from scratch and takes completely on external
ownership academic partners

Lots of control, Less control,
but lots of extra but less
investment investment
4/27/2015 32

Jeremiah Wilke DHARMA and many-task models

DHARMA has progressed through three

ohases of enlightenment
= Ep.l: ANew Hope

= Optimism AMT models will revolutionize software and save the world

Sandia
|l1 National

Laboratories

= Port mini-app to 3 exemplar AMT systems: Legion, Charm++, Uintah
= Engaging both app developers and runtime developers

= Ep. Il: The MPIre Strikes Back
= Deeper understanding of AMT models — pitfalls and being fair to MPI

= Ep. lll: Return of the Linda

= Draft programming model spec based on Sandia’s application workload
= Expressiveness is major theme of coordination languages like Linda

= Linda concepts have informed active AMT projects like concurrent
collections

4/27/2015 33

Jeremiah Wilke DHARMA and many-task models

C++ : Assembly :: AMT : MPI

i

int a = @, movl -16(%rbp), %eax
nt N = 108, | | cmpl =12(%rbp), %eax
for l:lr'ﬁ_: ldx=@; idx < N; ++idx){ jge LBBO_4
a += 1dx; .loc 170
} movl -16(%rbp), %eax
1 movl -8(%rbp), %ecx
int main(){ addl %eax, %ecx
int a = @: movl %ecx, -8(%rbp)
int N = 100; -loc 160
reduce(int idx=0: idx < N; ++idx){ movl -16(%rbp), %eax
a += idx; addl $1, %eax
1 movl %eax, -16(%rbp)
1 jmp LBB@_1

Variable names are logical iden-tifiers
Assembly is physical implementation

(prescribes execution)
4/27/2015

Sandia
National _
Laboratories

34

Jeremiah Wilke DHARMA and many-task models

Sandia

C++ : Assembly :: AMT : MPI LU

doublex ghost = ... Physical pointers passed to
doublex shared = 7 runtime. Execution explicitly
MPI_Isend(ghost); defined.
MPI_Irecv(shared);
MPI Waitall();
compute_stencil();

Data movement is described,
but can be mapped to
doublex regd = ... multiple different executions
int rightNode = rt->rank() + 1;

rt->put("RO it1", reg®); /\

rt->subset("R® itl", "ghost", reg@, ...);

doublex shared;
rt->get("R1 iter 1", Key-value store semantics are

SUBSET, "ghost", low-hanging fruit to add
SOURCE, rightNode, expressiveness to with minimal
&shared); . .

Intrusiveness

4/27/2015 35

Jeremiah Wilke DHARMA and many-task models

Flexible key-
value store
facilitates
development
of many
Interacting
components

4/27/2015 36

y y
A 4
v v

Strong
connection to

other Sandia
272015 I(okkos projects N

Logical declaration of program) i
simplifies failure recovery (if no
pessimistic message logging)

int mpi_main()

int dharma_main(){ { int rc;
/* add many other tasks */ rc = MPI_IRecv(AD);
for (-'Lnt -i_=@; 1 < N; ++'i.){ if (rc == PARTNER_FAILED){
r‘t-:-add_task{smalb(i);) //do something - but what?
} rc = MPI_Irecv(BO);
rt->add_task<ddot>() if (rc == PARTNER_FAILED){

- man 1 - 7
->}nput("A" ,0)) //do something - but what
->input("B",0); rc = MPI_Wait(A@_request);

rt->run(); if (rc == PARTNER_FAILED){
} : //do something - but what?

rc = MPI_Wait(B@_request);
if (rc == PARTNER_FAILED){
//do something - but what?

4/27/2015 } - .. i 38

I ———————
Jeremiah Wilke DHARMA and many-task models

Key-value store overheads negligible) i
relative to memory registration or
eager copy

Bl DHARMA Put Protocol

A4 DHARMA Pre-registered Put
OO DHARMA Put Hardware ACK
F=K MPI (cold cache)
Q—<¢ MPI (hot cache)

Throughput

Latency

0.08

0.07

0.06 60
£ 005 g 5.0
c:; 0.04 5 40
8 £
= 0.03 & 3.0
3 3
0.02 = 2.0
H
0.01 1.0
0.00 0.0
10° 10* 10° 10° 10* 10°
Message Size (B) Message Size (B)
Cray XC30
Point-to-point exchanges
4/27/2015 39

Jeremiah Wilke DHARMA and many-task models

Conclusions rih) s

= DHARMA is both computer science and economics.
We must balance reward of improved performance
against risk of shifting new/existing codes.

= An expressive programming model provides risk
mitigation by enabling many different
runtimes/libraries and execution models —
performance portability

= Programming/execution model relationship critical
to making sure major rewrite of applications
happens ONCE

= The community doesn’t yet have all the answers,
27005 PUT We are asking the right questions. 20

Jeremiah Wilke DHARMA and many-task models

