
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Jeremiah Wilke, Janine Bennett, Nicole Slattengren,
Hemanth Kolla, Keita Teranishi, Gary Templet, Craig

Ulmer, Ken Franko, Greg Sjaardema, John Floren

4/27/2015

Can many-task models make
data movement and fault-

tolerance easier to express?

SAND2015-3015PE

Architecture trends pose serious
challenges for how we program apps

4/27/2015 2

Jeremiah Wilke DHARMA and many-task models

Challenges
 Increases in concurrency

 Dynamic app workloads

 Deep memory hierarchies

 Increased fail-stop errors

 Performance heterogeneity
 Accelerators
 Thermal throttling
 General system noise
 Responses to transient

failures
Image courtesy of www.cal-design.org

Overarching abstract machine
model of an exascale node

Extant models (MPI+X) may not
address all the algorithm and
architecture challenges

3

Challenges
 Increases in concurrency

 Dynamic app workloads

 Deep memory hierarchies

 Increased fail-stop errors

 Performance heterogeneity
 Accelerators
 Thermal throttling
 General system noise
 Responses to transient

failures

 Complexity of application code
increases with proposed solutions

 Complexity of application code
increases with proposed solutions

 Requires new execution models
enabled by more expressive
programming models

 Requires new execution models
enabled by more expressive
programming models

Emphasis on dynamic, coarse-
grained parallelism, mostly

affecting distributed memory

Asynchronous many-task (AMT) utilizes
task graph to expose parallelism

4/27/2015 4

Jeremiah Wilke DHARMA and many-task models

Contrast between declarative and
sequential, imperative coding styles

4/27/2015 5

Jeremiah Wilke DHARMA and many-task models

Contrast between declarative and
sequential, imperative coding styles

4/27/2015 6

Jeremiah Wilke DHARMA and many-task models

Programming model AND execution
model both illustrated

 Programming model: Do we code via procedure calls
with pointers and scalar types? Or do we code via
task declarations on logical handles?

 Execution model: Does the code run in a sequential,
step-by-step way? Event-driven?

4/27/2015 7

Jeremiah Wilke DHARMA and many-task models

DHARMA project and the software stack

4/27/2015 8

Jeremiah Wilke DHARMA and many-task models

Runtime

Applications

Prog. Model

Exec. Model

OS

Hardware

Applications are by far the
largest part of the stack

=$$$$$$$

DHARMA project and the software stack

4/27/2015 9

Jeremiah Wilke DHARMA and many-task models

Runtime

Applications

Prog. Model

Exec. Model

OS

Hardware

• DHARMA exists in space
between applications and
runtime

• Programming model and
execution model are
API/abstractions within the
application and runtime
software space

DHARMA project and the software stack

4/27/2015 10

Jeremiah Wilke DHARMA and many-task models

Runtime

Applications

Prog. Model

Exec. Model

OS

Hardware

How do you future-proof the
stack against changes in

hardware?

DHARMA project and the software stack

4/27/2015 11

Jeremiah Wilke DHARMA and many-task models

Runtime

Applications

Prog. Model

Exec. Model

OS

Hardware

Mapper Can performance portability
libraries and compilers suffice
as shims to future-proof the

stack?

Coding directly to an execution model
has short-term rewards but major risks

4/27/2015 12

Jeremiah Wilke DHARMA and many-task models

• It can be easier to code directly
to an execution model

• You cannot beat the
performance of a code tuned to
a specific execution model and
hardware

• Loss of flexibility, greater
commitment to smaller set of
technologies

Runtime

Applications

Exec. Model

OS

Hardware

Optimistic assertions for current work

4/27/2015 13

Jeremiah Wilke DHARMA and many-task models

 Everything can pivot around
the programming model as
long it is sufficiently
expressive

 Programming models can
be “performance portable”

 An execution is only
performance portable to
similar runtimes/hardware

Runtime

Applications

Prog. Model

Exec. Model

OS

Hardware

Mapper

Runtime

Applications

Prog. Model

Exec. Model

OS

Hardware

Mapper

DHARMA is providing AMT capabilities
to enable ATDM apps on ATS-3

 Identify requirements for
programming and execution model

 Focus on asynchronous many-task
parallelism for distributed memory

 FY15 Activity #1: Analyze existing
AMT technologies and assess
technology gaps ($1.1M)

 FY15 Activity #2: Develop technical
roadmap for ATS-3 AMT
programming model ($0.3M)

4/27/2015 14

Jeremiah Wilke DHARMA and many-task models

DHARMA addresses key CIS mission area
and touches many CIS research challenges
 Mission area: Vertically integrated scalable computing

 Enabling new scientific/engineering capabilities via
improved programming model broadly applicable

 Research challenge: Revolutionary approaches to the
stockpile

 Research challenge: Engineering of materials

 Research challenge: First to high yield fusion

 Research challenge: Data sciences
 Improved workflows on emerging architectures will benefit greatly from

expressive programming model that enhances code coupling

4/27/2015 15

Jeremiah Wilke DHARMA and many-task models

Conclusions (preview)

 DHARMA is both computer science and economics.
We must balance reward of improved performance
against risk of investing in new/existing codes.

 An expressive programming model provides risk
mitigation by enabling many different
runtimes/libraries and execution models

 Programming/execution model relationship critical
to making sure major rewrite of applications
happens ONCE

4/27/2015 16

Jeremiah Wilke DHARMA and many-task models

DHARMA started as AMT-based fault-
tolerance research vehicle

 Dharma: the order which makes life possible

 Dhr: Sanskrit – to hold, maintain, keep

 Originally: Distributed Hash Array for Remote
Memory Access – research vehicle

 Now: Distributed asyncHronous, Adaptive, Resilient
Models for Applications – path to production
capabilities

4/27/2015 17

Jeremiah Wilke DHARMA and many-task models

DHARMA started as AMT-based fault-
tolerance research vehicle

 Dharma: the order which makes life possible

 Dhr: Sanskrit – to hold, maintain, keep

 Originally: Distributed Hash Array for Remote
Memory Access

 Now: Distributed asyncHronous, Adaptive, Resilient
Models for Applications

4/27/2015 18

Jeremiah Wilke DHARMA and many-task models

Noble truth of scalable computing:

All life is suffering. Our desire for more flops
is the source of all suffering.

DHARMA has progressed through three
phases of enlightenment

4/27/2015 19

Jeremiah Wilke DHARMA and many-task models

DHARMA has progressed through three
phases of enlightenment

 Ep. I: A New Hope
 Optimism AMT models will revolutionize software and save the world

 Port mini-app to 3 exemplar AMT systems: Legion, Charm++, Uintah

 Engaging both app developers and runtime developers

4/27/2015 20

Jeremiah Wilke DHARMA and many-task models

Escalating features in many-task models
can improve performance – at a cost

4/27/2015 21

Jeremiah Wilke DHARMA and many-task models

Feature Where it might help Trade-off Features
prominently

1) Data parallel Everywhere Shared/ghost sync Everywhere

2) Task-parallel on-
node

Multiphysics Task ordering
Data coherency

SMPs, Uintah

3) Work stealing
on-node

Dynamic work loads
(mesh smoothing,
feature analysis)

Cache problems
Termination detection

Cilk, X10

4) Global sync load
balancing

Re-meshing
Poor initial distribution

Global synchronization MPI

5) Distributed memory
task parallel

Quantum chemistry Distributed coherency NWChem,
Charm++

6) Distributed work
stealing

Particle-in-cell
Molecular dynamics

Global termination
detection

TASCEL,
Charm++

7) Runtime DAG
derivation

Many fields, tasks that
are difficult to manage

Rigid data structures,
runtime overhead

Legion

Asynchronous many-task (AMT) utilizes
task graph to expose parallelism
subject to order constraints

4/27/2015 22

Jeremiah Wilke DHARMA and many-task models

Sequential schedule has no parallelism

4/27/2015 23

Jeremiah Wilke DHARMA and many-task models

T=0 T=1 T=2 T=3 T=4 T=5 Time

Proc 0 A B C D E F 6

Task parallelism enables multiple
workers to lower schedule length

4/27/2015 24

Jeremiah Wilke DHARMA and many-task models

T=0 T=1 T=2 T=3 T=4 Total

Proc 0 A B C E F 5

Proc 1 D

Data parallelism adds another
dimension of parallelism to exploit

4/27/2015 25

Jeremiah Wilke DHARMA and many-task models

T=0 T=0.5 T=1.5 T=2.0 T=2.5 T=3.5 Total

Proc 0 A0 B C0 C1 E F 4.5

Proc 1 A1 D

Work stealing can dynamically change
schedule to improve performance

4/27/2015 26

Jeremiah Wilke DHARMA and many-task models

T=0 T=1 T=2 T=3 Total

Proc 0 A B E F 4

Proc 1 C D

Combing multiple strategies can
maximize parallelism

4/27/2015 27

Jeremiah Wilke DHARMA and many-task models

T=0 T=0.5 T=1.0 T=1.5 T=2.5 Total

Proc 0 A0 C0 C1 E F 3.5

Proc 1 A1 B D

DHARMA has progressed through three
phases of enlightenment

 Ep. I: A New Hope
 Optimism AMT models will revolutionize software and save the world

 Port mini-app to 3 exemplar AMT systems: Legion, Charm++, Uintah

 Engaging both app developers and runtime developers

 Ep. II: The MPIre Strikes Back
 Deeper understanding of AMT models – pitfalls and being fair to MPI

4/27/2015 28

Jeremiah Wilke DHARMA and many-task models

MPI

Rube-Goldberg principle of
supercomputing benchmarks

4/27/2015 29

Jeremiah Wilke DHARMA and many-task models

MPI
AMT

Input

Results
????

Rube-Goldberg principle of
supercomputing benchmarks

4/27/2015 30

Jeremiah Wilke DHARMA and many-task models

Charm++ Legion
Input

Results
????

4/27/2015 31

Jeremiah Wilke DHARMA and many-task models

DHARMA is taking a measured approach
looking towards best long-term solution

• The AMT technical roadmap addresses:
①Performance portability
②Programmability/expressiveness
③Interoperability (both code and organization)

• 4-5 year roadmap for building programming model solution
• Major overhaul of code base should only happen ONCE!
• Not just about performance of existing AMT systems on

current platforms!

4/27/2015 32

Jeremiah Wilke DHARMA and many-task models

Sandia faces spectrum of choices/risks
in developing technical roadmap

Sandia builds system
from scratch and takes

ownership

Sandia relies
completely on external

academic partners

Lots of control,
but lots of extra

investment

Less control,
but less

investment

DHARMA has progressed through three
phases of enlightenment

 Ep. I: A New Hope
 Optimism AMT models will revolutionize software and save the world

 Port mini-app to 3 exemplar AMT systems: Legion, Charm++, Uintah

 Engaging both app developers and runtime developers

 Ep. II: The MPIre Strikes Back
 Deeper understanding of AMT models – pitfalls and being fair to MPI

 Ep. III: Return of the Linda
 Draft programming model spec based on Sandia’s application workload

 Expressiveness is major theme of coordination languages like Linda

 Linda concepts have informed active AMT projects like concurrent
collections

4/27/2015 33

Jeremiah Wilke DHARMA and many-task models

MPI

C++ : Assembly :: AMT : MPI

4/27/2015 34

Jeremiah Wilke DHARMA and many-task models

Variable names are logical identifiers
Assembly is physical implementation
(prescribes execution)

C++ : Assembly :: AMT : MPI

4/27/2015 35

Jeremiah Wilke DHARMA and many-task models

Physical pointers passed to
runtime. Execution explicitly

defined.

Data movement is described,
but can be mapped to
multiple different executions

Key-value store semantics are
low-hanging fruit to add

expressiveness to with minimal
intrusiveness

Flexible key-
value store
facilitates
development
of many
interacting
components

4/27/2015 36

Jeremiah Wilke DHARMA and many-task models

Object-oriented
asynchronous
transport layer

Metadata
Distributed Hash

Table (DHT)

DAG API
“Declarative”

Distributed
Scheduler

Data-flow
Key-value Store

(KVS)

Put/Get API
“Sequential”

Qthreads
Scheduler

Local
Scheduler

Collectives +
Hearbeat
Monitor

?

Strong
connection to
other Sandia
projects

4/27/2015 37

Jeremiah Wilke DHARMA and many-task models

Object-oriented
asynchronous
transport layer

Metadata
Distributed Hash

Table (DHT)

DAG API
“Declarative”

Distributed
Scheduler

Data-flow
Key-value Store

(KVS)

Put/Get API
“Sequential”

Qthreads
Scheduler

Local
Scheduler

Collectives +
Hearbeat
Monitor

?

Kokkos

Kelpie

Logical declaration of program
simplifies failure recovery (if no
pessimistic message logging)

4/27/2015 38

Jeremiah Wilke DHARMA and many-task models

Key-value store overheads negligible
relative to memory registration or

eager copy

4/27/2015 39

Jeremiah Wilke DHARMA and many-task models

Cray XC30
Point-to-point exchanges

Conclusions

 DHARMA is both computer science and economics.
We must balance reward of improved performance
against risk of shifting new/existing codes.

 An expressive programming model provides risk
mitigation by enabling many different
runtimes/libraries and execution models –
performance portability

 Programming/execution model relationship critical
to making sure major rewrite of applications
happens ONCE

 The community doesn’t yet have all the answers,
but we are asking the right questions.4/27/2015 40

Jeremiah Wilke DHARMA and many-task models

