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Outline

• Peridynamics background

• Linearized model

• Peridynamics and multiscale

• Concurrent hierarchical multiscale method

• Upscaling for multiscale material properties

• Constrained minimization

• Crack example

• Time-dependent form

• Implications for molecular dynamics
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Purpose of peridynamics*

• To unify the mechanics of continuous and discontinuous media within a single, consistent 
set of equations.

Continuous body Continuous body 
with a defect

Discrete particles

• Why do this?

• Avoid coupling dissimilar mathematical systems (A to C).

• Model complex fracture patterns.

• Communicate across length scales.

3

* Peri (near) + dyn (force)



Peridynamics basics:
Horizon and family
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General references
• SS, Journal of the Mechanics and Physics of Solids (2000)
• SS and R. Lehoucq, Advances in Applied Mechanics (2010)
• Madenci & Oterkus , Peridynamic Theory & Its Applications (2014)



Point of departure:
Strain energy at a point
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Continuum Discrete particles Discrete structures

Deformation

• Key assumption: the strain energy density at 𝐱 is determined by the 
deformation of its family.



Potential energy minimization yields the 
peridynamic equilibrium equation
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Peridynamic vs. local equations

Kinematics

Constitutive model

Linear momentum 

balance

Angular momentum 

balance

Peridynamic theory Standard theoryRelation

Elasticity

First law

7

• The structures of the theories are similar, but peridynamics uses nonlocal operators.
• Notation:                             State<bond>=vector



Linearized theory
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Bond breakage leads to autonomous 
crack growth

Broken bond

Crack path

• When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.



Examples of application of peridynamics
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• Single crack brittle energy balance
• 3-point bend test
• Dynamic fracture

• Crack growth velocity
• Trajectory
• Branching

• Impact into concrete and aluminum
• Residual velocity
• Penetration depth
• Crater size

• Fatigue
• S-N curves for aluminum and epoxy
• Paris law curves for aluminum

• Composite impact, damage, and fracture
• Delaminations (compare NDE)
• Residual strength in OHC, OHT
• Stress concentration profile in OHT
• Bird strike loading
• Lamina tensile fracture

EMU

Experiment



Bone: A composite material with many 
length scales
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Bone contains a heirarchy of structures at many 

length scales. Image: Wang and Gupta, Ann. Rev. 

Mat. Sci. 41 (2011) 41-73

Bone structure helps delay, deflect crack growth. Image:

Chan, Chan, and Nicolella, Bone 45 (2009) 427–434



Peridynamics as a multiscale method
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• The basic equations have a fundamental length scale (the horizon).
• Changing the horizon in a consistent way could provide a way to 

connect length scales.

Some previous work on multiscale peridynamics

• Derivation of peridynamic equations from statistical mechanics 
(Lehoucq & Sears, 2011).

• Higher order gradients to connect MD to peridynamic (Seleson, Parks, 
Gunzburger, & Lehoucq, 2005).

• Adaptive mesh refinement (Bobaru & Hu, 2011).
• Two-scale evolution equation for composites (Alali & Lipton, 2012).
• PFHMM method for atomistic-to-continuum coupling (Rahman, Foster, 

& Haque, 2014).



Scalable multiscale methods
 How to couple multiple physics across wide variations in length/time scales when 

many length scales are naturally present in the problem?

 Idea:

 Hierarchy of levels 𝑚 each with length scale 𝐿𝑚 = 𝐿02
𝑚

 𝐿0 is the smallest physically operative length scale.

 Each level is coupled to the adjacent levels by the same equations:
 𝑦𝑚 = 𝑓 𝑦𝑚−1, 𝑦𝑚, 𝑦𝑚+1

where 𝑓is independent of 𝑚.

 Avoids reinventing the wheel at each level.
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Concurrent multiscale method for 
defects

Crack process zone

The details of damage evolution are always 
modeled at level 0.

• Apply the best practical physics at the smallest length scale (near a crack tip).
• Scale up hierarchically to larger length scales.
• Each level is related to the one below it by the same equations.

• Any number of levels can be used.
• Adaptively follow the crack tip.
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Concurrent solution strategy

 The equation of motion is applied only within each level.

 Higher levels provide boundary conditions on lower levels.

 Lower levels provide coarsened material properties (including damage) to higher 
levels.

Level

x

y

Crack

Schematic of communication between levels in a 2D body

2

1

0
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Concurrent multiscale example:
shear loading of a crack
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Bond strain Damage process zone



Multiscale model of crack growth through a brittle 
material with distributed  defects

Multiscale modeling reveals the 
structure of brittle cracks
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• Material design requires understanding of how morphology at 
multiple length scales affects strength.

• This is a key to material reliability.

Metallic glass fracture (Hofmann 
et al, Nature 2008)



Upscaling of material properties
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• Suppose we have an accurate model in level 0.
• How can we obtain material properties in level 1?
• This is called “upscaling” or “coarse-graining”.
• Will next describe a method for doing this based on constrained 

optimization. 



What are the elastic moduli of a 
heterogeneous material?
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• This is an imprecise question in the classical (local) theory.
• Only becomes meaningful in the limit of a very large volume.
• Try to find a peridynamic approach to upscaling that does not assume this. 



We will try to find the micromodulus for 
different multiscale levels
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Level 1 DOFs
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Displacement

PositionCell 𝑘

𝑢𝑘
1

𝑢0 𝑥



Level 1 DOF as a constraint
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Force balance on cell k
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Interaction forces from other cells + constraint force = 0



Level 1 micromodulus
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Displacement

Position

𝑢𝑛 = 𝜖

Cell 𝑘

Constraint force 𝜆𝑘

Cell 𝑛



Example: Rod with a defect
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Level 0

Level 1

Position

D
is

p
la

ce
m

en
t

Weak spot

• Upscaling method preserves 
the effect of a defect 
embedded within a cell.



Coarser level 1
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Level 0

Level 1

Position
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• If the defect is not exactly at a cell boundary, the method still produces the 
mean of the level 0 displacements within each cell.

CG displacement agrees with mean of 
level 0 within the cell.



Time-dependent response
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𝜆𝑘(𝑡)= cell 𝑘 constraint force

𝑡

𝜖(𝑡)= cell 𝑛 displacement 

𝑡



Coarse graining verification: 
crack in a plate
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• Example: Solve the same 
problem in four different 
levels using the 
successively upscaled
material properties –
results are the same.

Level 0: 16384 nodes Level 1: 4096 nodes

Level 2: 1024 nodes Level 3: 256 nodes



Defining damage from coarse-grained 
material properties
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• Define bonds to be damaged if their coarse-grained micromodulus is less than a 
tolerance.

• This allows damage to be determined without deforming the MD grid.

Level 1 damage contours deduced from coarse-grained properties



Coarse graining MD directly into 
peridynamics
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Level 0: MD showing 
thermal oscillations

MD time-averaged 
displacements

Level 1: Coarse grained 
micromodulus

• The level 0 physics can be anything: PD, standard continuum, MD, MC(?), DFT(?)



Summary

31

• Concurrent multiscale:
• Adaptively follow crack tips.
• Apply the best practical physics in level 0.
• Also multiscale in time because of time step increase for higher levels.

• Coarse-graining:
• Derives incremental elastic properties at higher levels.
• Does not rely on a representative volume element (RVE).

• Methods are “scalable:” can be applied any number of times to obtain any desired 
increase in length scale. 
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Extra slides 



Reconstruction
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Coarse graining a damage criterion
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Rescaling an elastic material model



Example: Dynamic fracture

• Dynamic fracture in maraging steel (Kalthoff & Winkler, 1988)
• Mode-II loading at notch tips results in mode-I cracks at 70deg angle.
• 3D EMU model reproduces the crack angle.

EMU*

Experiment

S. A. Silling, Dynamic fracture modeling with a meshfree peridynamic code, in Computational Fluid and Solid Mechanics 2003, 
K.J. Bathe, ed., Elsevier, pp. 641-644.



frame 37

Discrete particles and PD states
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Discrete particles and PD states, ctd.



frame 39

Discrete particles and PD states, ctd.


