

Upscaling Material Properties and Damage in Peridynamics

Stewart Silling
Center for Computing Research
Sandia National Laboratories
Albuquerque, New Mexico

Conference on Recent Developments in Continuum Mechanics
and Partial Differential Equations
Lincoln, Nebraska

April 18, 2015

*Exceptional
service
in the
national
interest*

U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

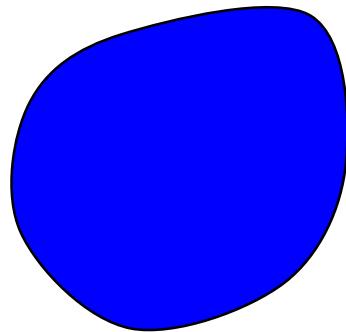
CENTER FOR
COMPUTING
RESEARCH

Outline

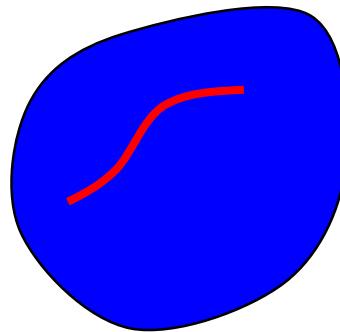
- Peridynamics background
 - Linearized model
- Peridynamics and multiscale
 - Concurrent hierarchical multiscale method
- Upscaling for multiscale material properties
 - Constrained minimization
 - Crack example
 - Time-dependent form
 - Implications for molecular dynamics

Purpose of peridynamics*

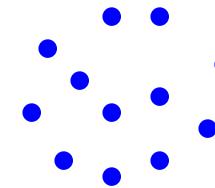
- To unify the mechanics of continuous and discontinuous media within a single, consistent set of equations.



Continuous body



Continuous body
with a defect



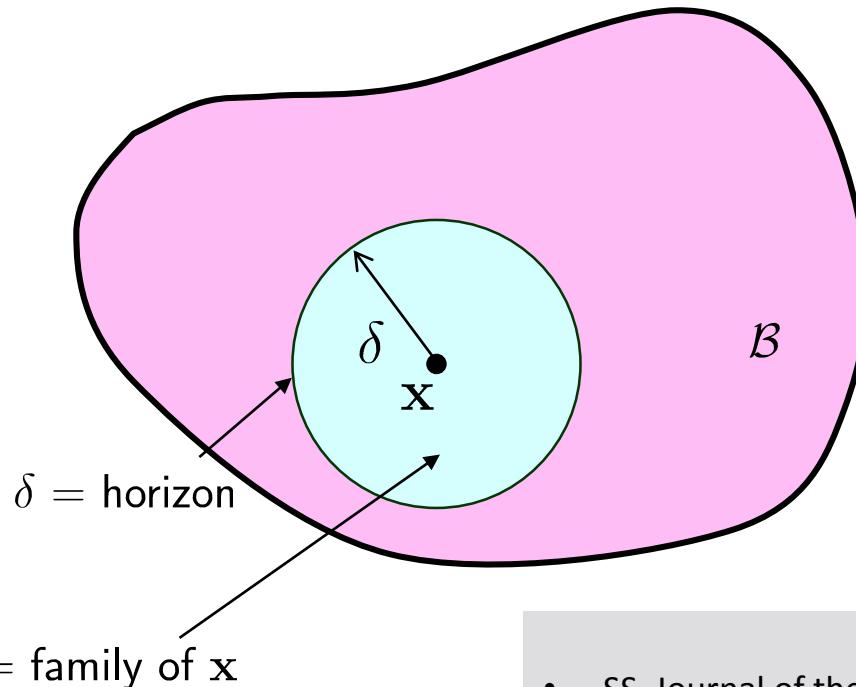
Discrete particles

- Why do this?
 - Avoid coupling dissimilar mathematical systems (A to C).
 - Model complex fracture patterns.
 - Communicate across length scales.

* Peri (near) + dyn (force)

Peridynamics basics: Horizon and family

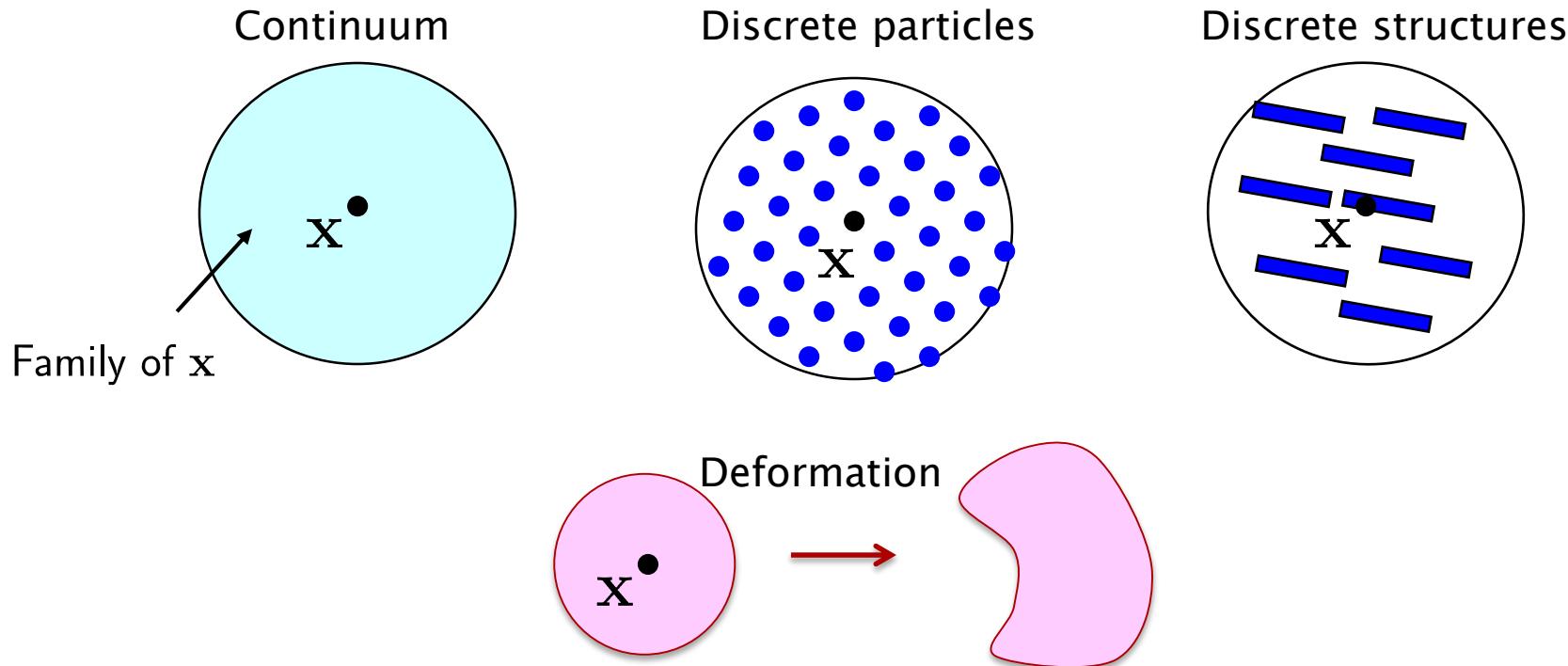
- Any point x interacts directly with other points within a distance δ called the “horizon.”
- The material within a distance δ of x is called the “family” of x , \mathcal{H}_x .



General references

- Silling, *Journal of the Mechanics and Physics of Solids* (2000)
- Silling and R. Lehoucq, *Advances in Applied Mechanics* (2010)
- Madenci & Oterkus, *Peridynamic Theory & Its Applications* (2014)

Point of departure: Strain energy at a point



- Key assumption: the strain energy density at x is determined by the deformation of its family.

Potential energy minimization yields the peridynamic equilibrium equation

- Potential energy:

$$\Phi = \int_{\mathcal{B}} (W - \mathbf{b} \cdot \mathbf{y}) \, dV_{\mathbf{x}}$$

where W is the strain energy density, \mathbf{y} is the deformation map, \mathbf{b} is the applied external force density, and \mathcal{B} is the body.

- Euler-Lagrange equation is the equilibrium equation:

$$\int_{\mathcal{H}_{\mathbf{x}}} \mathbf{f}(\mathbf{q}, \mathbf{x}) \, dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x}) = 0$$

for all \mathbf{x} . \mathbf{f} is the *pairwise bond force density*.

Peridynamic vs. local equations

- The structures of the theories are similar, but peridynamics uses nonlocal operators.
 - Notation: State<bond>=vector

Relation	<i>Peridynamic theory</i>	<i>Standard theory</i>
Kinematics	$\underline{\mathbf{Y}}\langle \mathbf{q} - \mathbf{x} \rangle = \mathbf{y}(\mathbf{q}) - \mathbf{y}(\mathbf{x})$	$\mathbf{F}(\mathbf{x}) = \frac{\partial \mathbf{y}}{\partial \mathbf{x}}(\mathbf{x})$
Linear momentum balance	$\rho \ddot{\mathbf{y}}(\mathbf{x}) = \int_{\mathcal{H}} \left(\mathbf{t}(\mathbf{q}, \mathbf{x}) - \mathbf{t}(\mathbf{x}, \mathbf{q}) \right) dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x})$	$\rho \ddot{\mathbf{y}}(\mathbf{x}) = \nabla \cdot \boldsymbol{\sigma}(\mathbf{x}) + \mathbf{b}(\mathbf{x})$
Constitutive model	$\mathbf{t}(\mathbf{q}, \mathbf{x}) = \underline{\mathbf{T}}\langle \mathbf{q} - \mathbf{x} \rangle, \quad \underline{\mathbf{T}} = \hat{\mathbf{T}}(\underline{\mathbf{Y}})$	$\boldsymbol{\sigma} = \hat{\boldsymbol{\sigma}}(\mathbf{F})$
Angular momentum balance	$\int_{\mathcal{H}} \underline{\mathbf{Y}}\langle \mathbf{q} - \mathbf{x} \rangle \times \underline{\mathbf{T}}\langle \mathbf{q} - \mathbf{x} \rangle dV_{\mathbf{q}} = \mathbf{0}$	$\boldsymbol{\sigma} = \boldsymbol{\sigma}^T$
Elasticity	$\underline{\mathbf{T}} = W_{\underline{\mathbf{Y}}} \text{ (Fréchet derivative)}$	$\boldsymbol{\sigma} = W_{\mathbf{F}} \text{ (tensor gradient)}$
First law	$\dot{\varepsilon} = \underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} + q + r$	$\dot{\varepsilon} = \boldsymbol{\sigma} \cdot \dot{\mathbf{F}} + q + r$

$$\underline{\mathbf{T}} \bullet \dot{\underline{\mathbf{Y}}} := \int_{\mathcal{H}} \underline{\mathbf{T}}\langle \xi \rangle \cdot \dot{\underline{\mathbf{Y}}}\langle \xi \rangle dV_{\xi}$$

Linearized theory

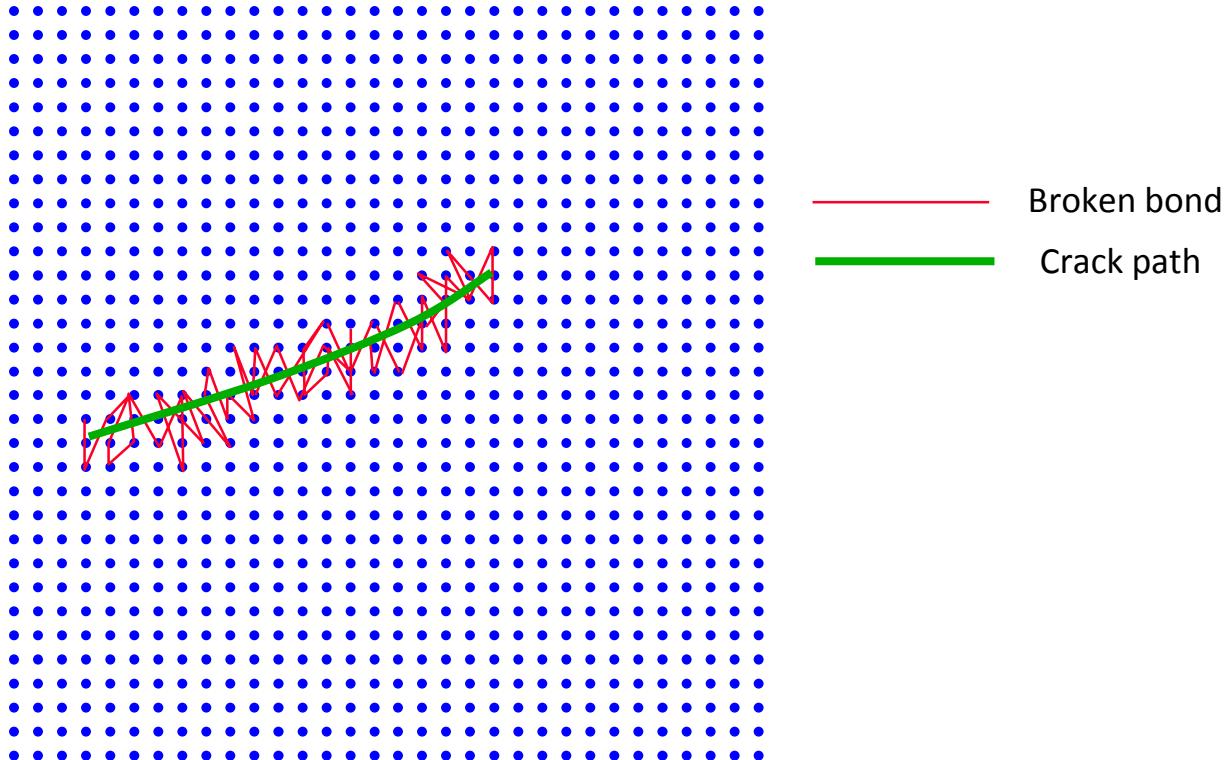
- For small displacements (possibly superposed on a large deformation):

$$\rho \ddot{\mathbf{u}}(\mathbf{x}, t) = \int_{\mathcal{H}} \mathbf{C}(\mathbf{x}, \mathbf{q})(\mathbf{u}(\mathbf{q}, t) - \mathbf{u}(\mathbf{x}, t)) dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x}, t)$$

where \mathbf{C} is the tensor-valued *micromodulus* field.

- Equation is formally the same as in Kunin's nonlocal theory.
- Can still have bond breakage.
- Most of the following discussion uses the linearized theory.
- Will see how to get \mathbf{C} by multiscale methods.

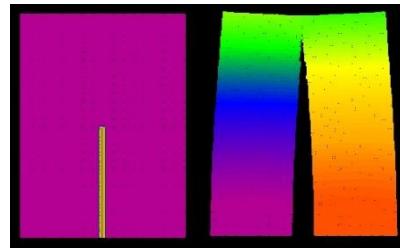
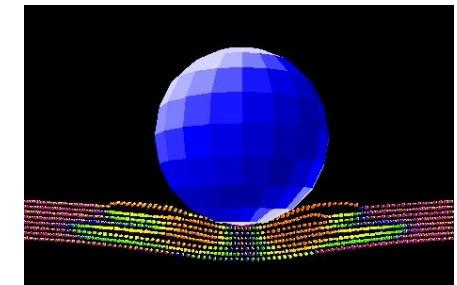
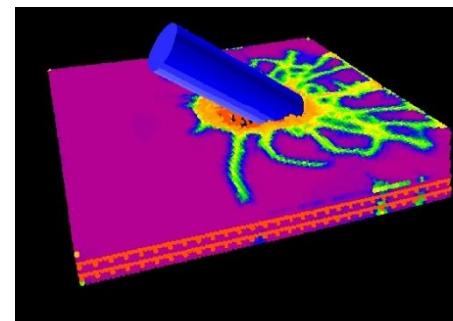
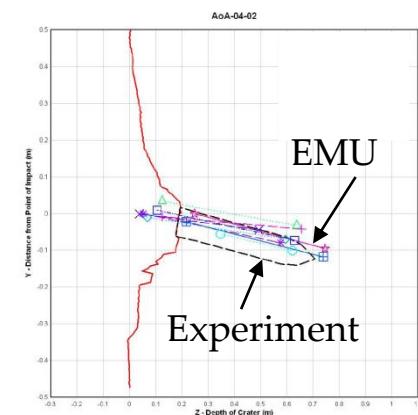
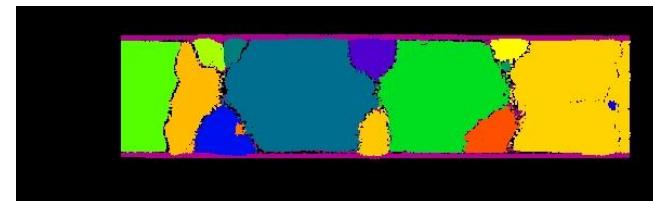
Bond breakage leads to autonomous crack growth



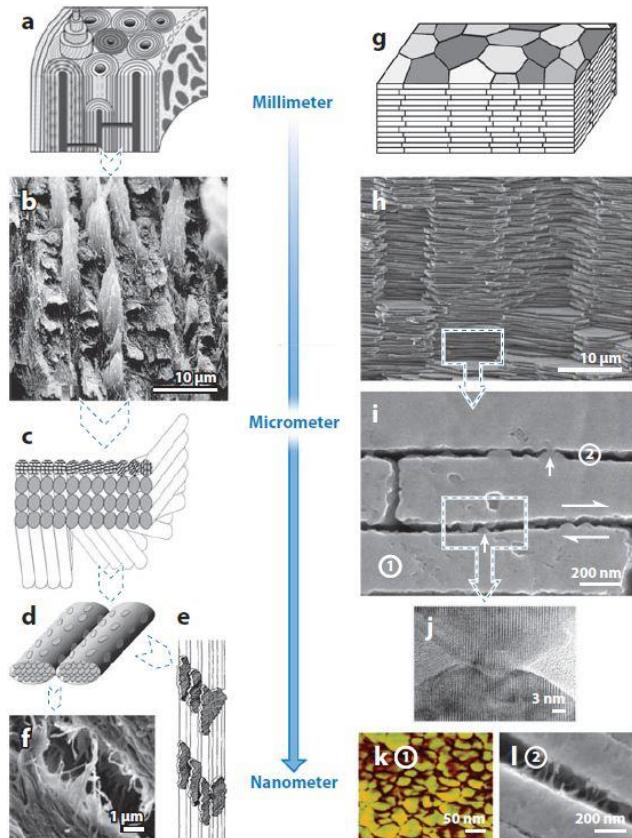
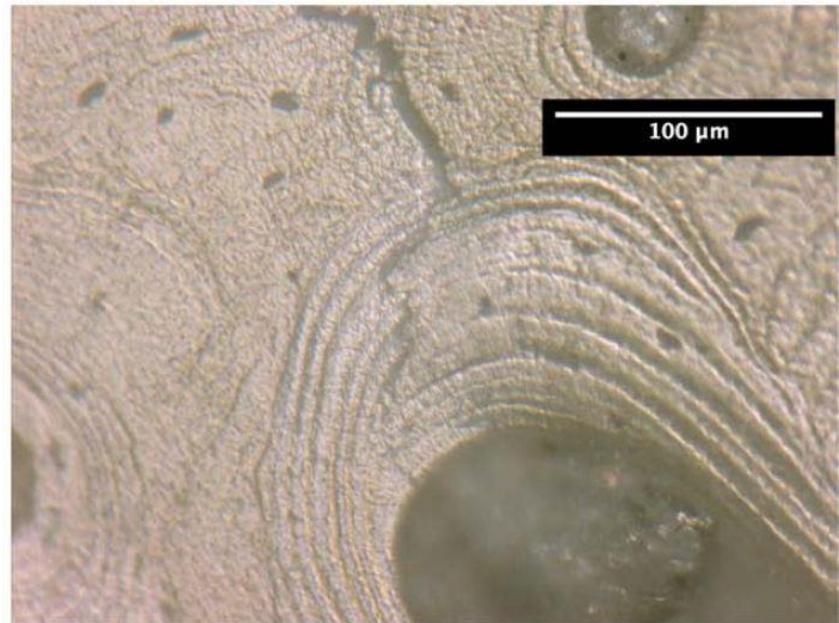
- When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.

Examples of application of peridynamics

- Single crack brittle energy balance
- 3-point bend test
- Dynamic fracture
 - Crack growth velocity
 - Trajectory
 - Branching
- Impact into concrete and aluminum
 - Residual velocity
 - Penetration depth
 - Crater size
- Fatigue
 - S-N curves for aluminum and epoxy
 - Paris law curves for aluminum
- Composite impact, damage, and fracture
 - Delaminations (compare NDE)
 - Residual strength in OHC, OHT
 - Stress concentration profile in OHT
 - Bird strike loading
 - Lamina tensile fracture



Bone: A composite material with many length scales



Bone structure helps delay, deflect crack growth. Image: Chan, Chan, and Nicolella, *Bone* 45 (2009) 427–434

Bone contains a hierarchy of structures at many length scales. Image: Wang and Gupta, *Ann. Rev. Mat. Sci.* 41 (2011) 41-73

Peridynamics as a multiscale method

- The basic equations have a fundamental length scale (the horizon).
- Changing the horizon in a consistent way could provide a way to connect length scales.

Some previous work on multiscale peridynamics

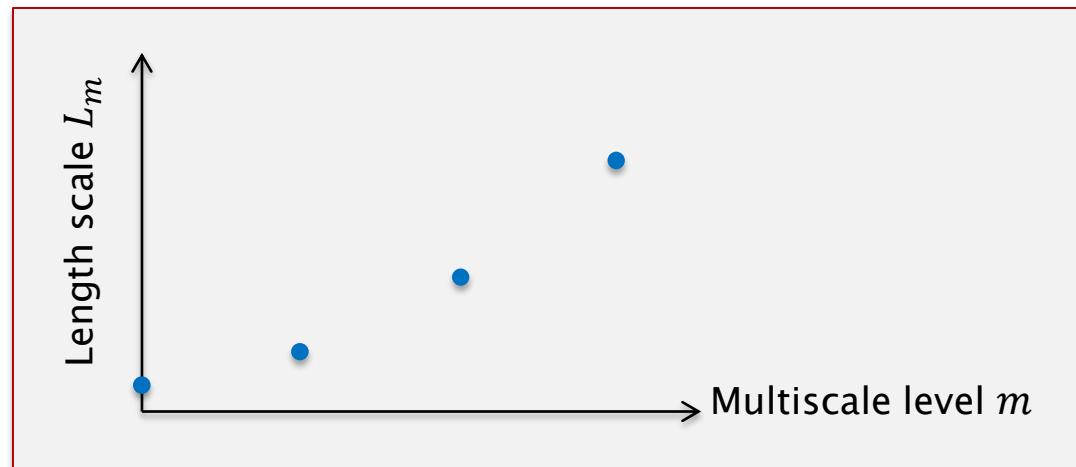
- Derivation of peridynamic equations from statistical mechanics (Lehoucq & Sears, 2011).
- Higher order gradients to connect MD to peridynamic (Seleson, Parks, Gunzburger, & Lehoucq, 2005).
- Adaptive mesh refinement (Bobaru & Hu, 2011).
- Two-scale evolution equation for composites (Alali & Lipton, 2012).
- PFHMM method for atomistic-to-continuum coupling (Rahman, Foster, & Haque, 2014).

Scalable multiscale methods

- How to couple multiple physics across wide variations in length/time scales when many length scales are naturally present in the problem?
- Idea:
 - Hierarchy of levels m each with length scale $L_m = L_0 2^m$
 - L_0 is the smallest physically operative length scale.
 - Each level is coupled to the adjacent levels by the same equations:

$$\dot{y}_m = f(y_{m-1}, y_m, y_{m+1})$$

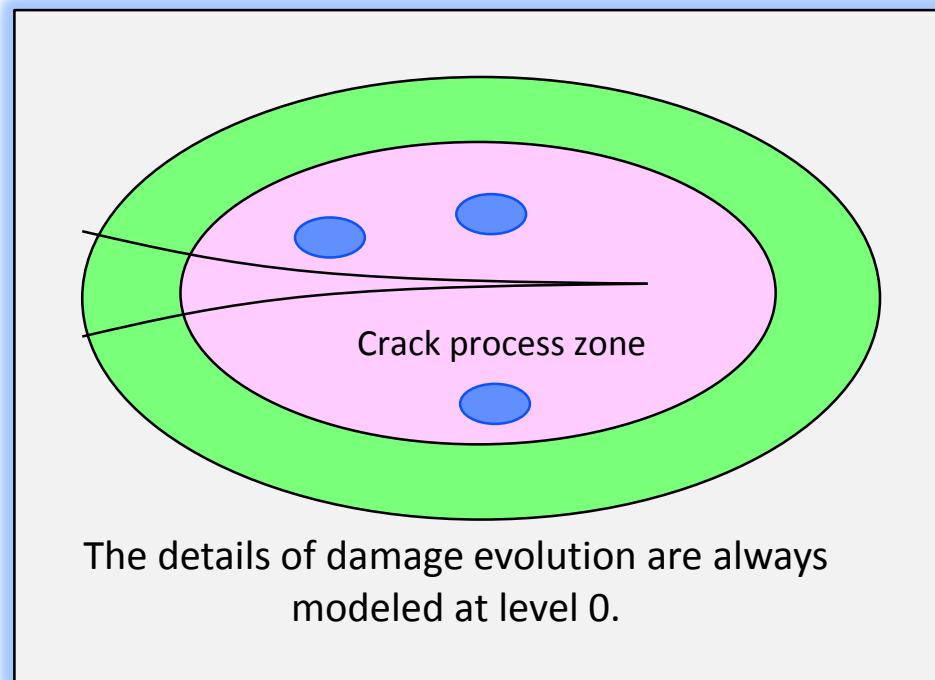
where f is independent of m .



- Avoids reinventing the wheel at each level.

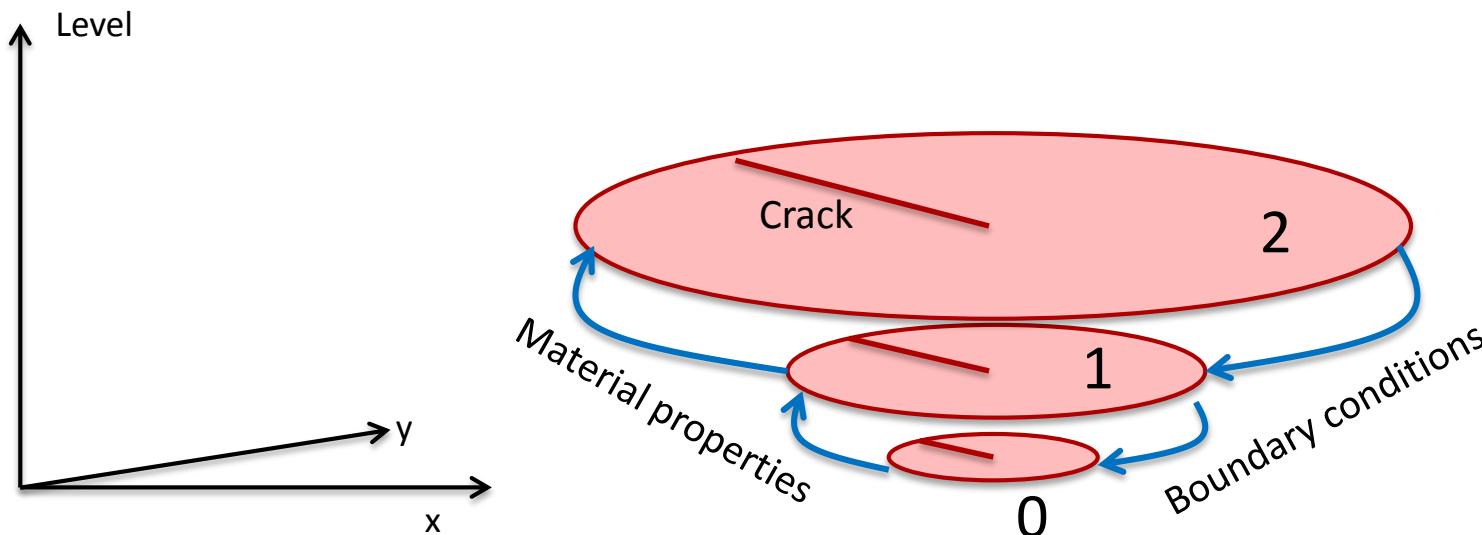
Concurrent multiscale method for defects

- Apply the best practical physics at the smallest length scale (near a crack tip).
- Scale up hierarchically to larger length scales.
- Each level is related to the one below it by the same equations.
 - Any number of levels can be used.
- Adaptively follow the crack tip.



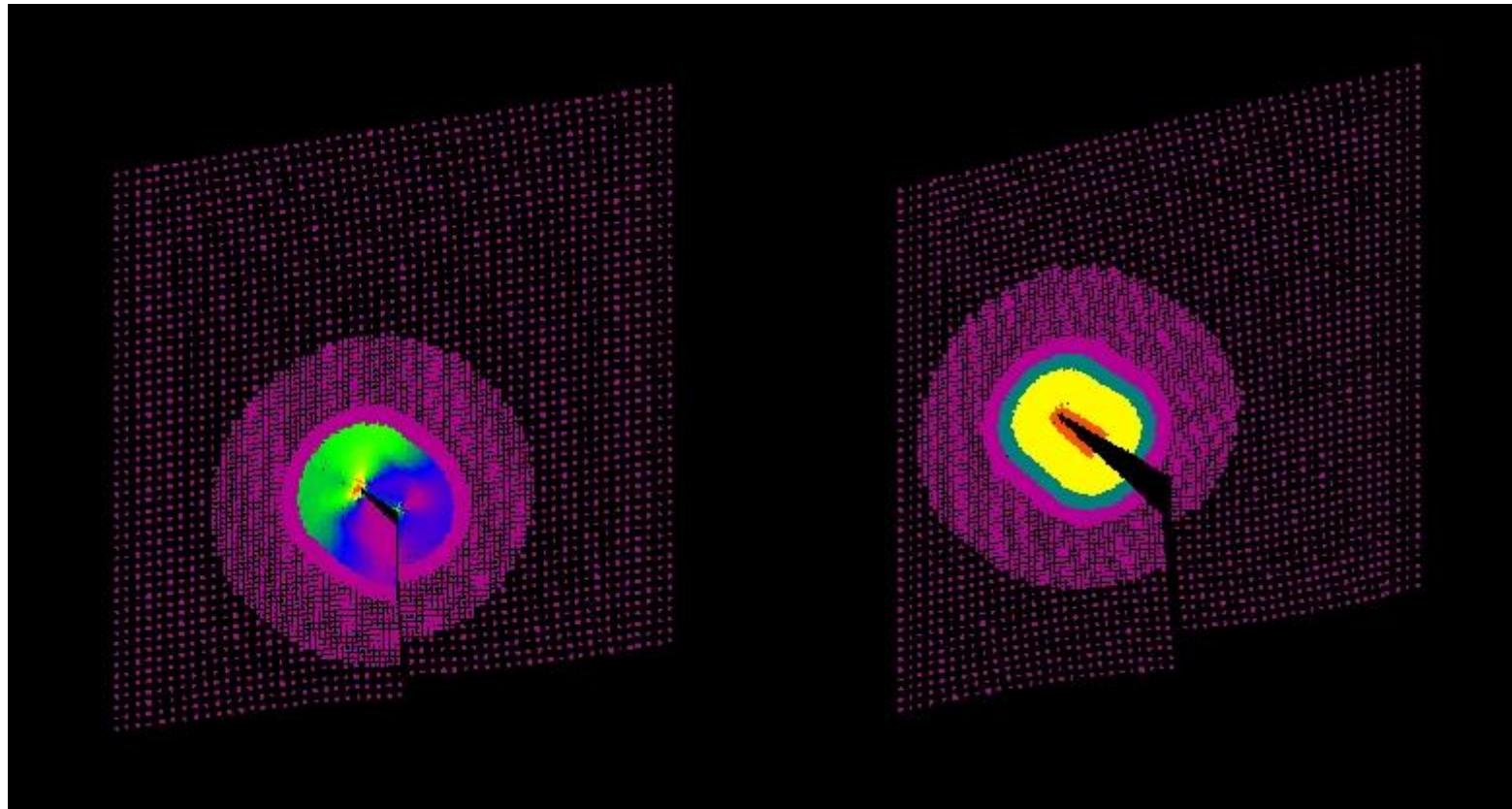
Concurrent solution strategy

- The equation of motion is applied only within each level.
- Higher levels provide boundary conditions on lower levels.
- Lower levels provide coarsened material properties (including damage) to higher levels.



Schematic of communication between levels in a 2D body

Concurrent multiscale example: shear loading of a crack



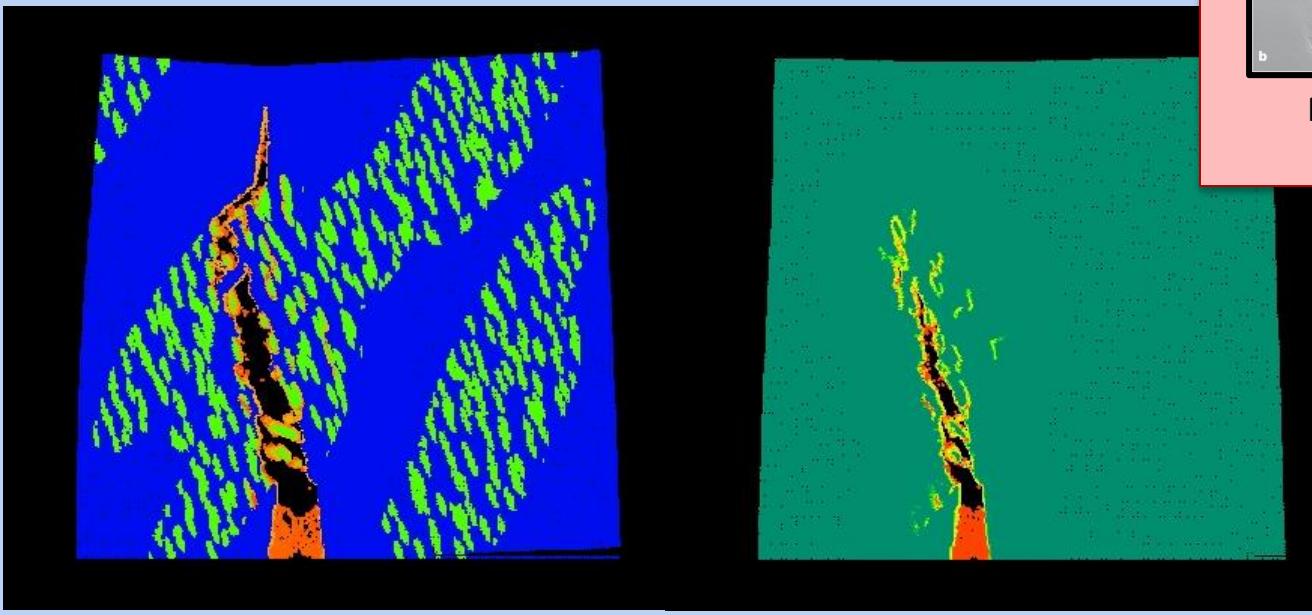
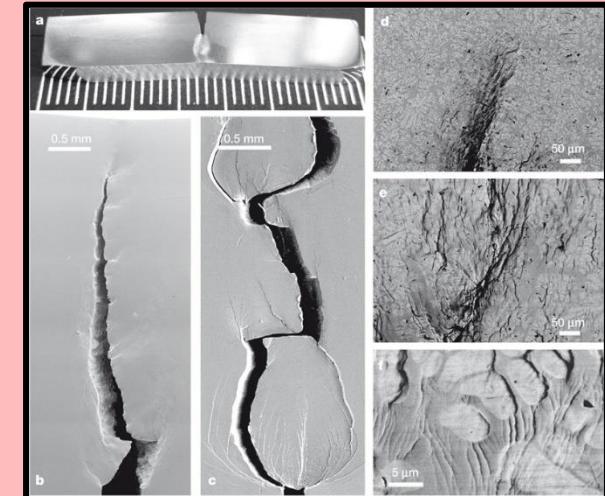
Bond strain

Damage process zone

Multiscale modeling reveals the structure of brittle cracks

- Material design requires understanding of how morphology at multiple length scales affects strength.
- This is a key to material reliability.

Multiscale model of crack growth through a brittle material with distributed defects



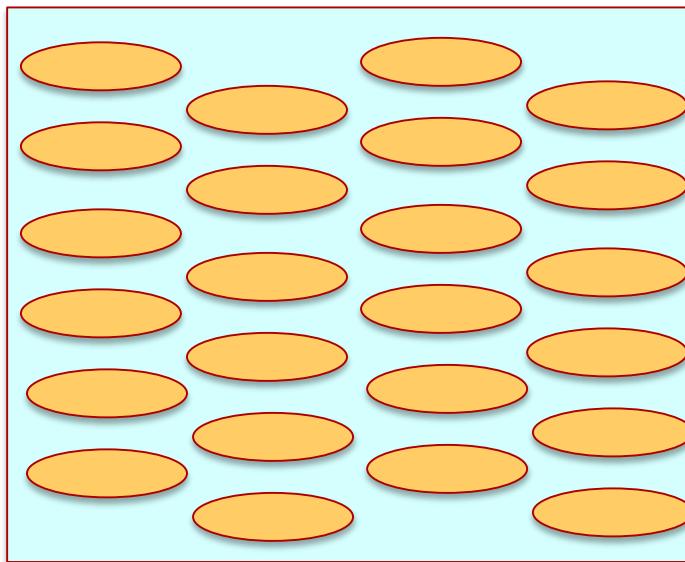
Metallic glass fracture (Hofmann et al, Nature 2008)

Upscaling of material properties

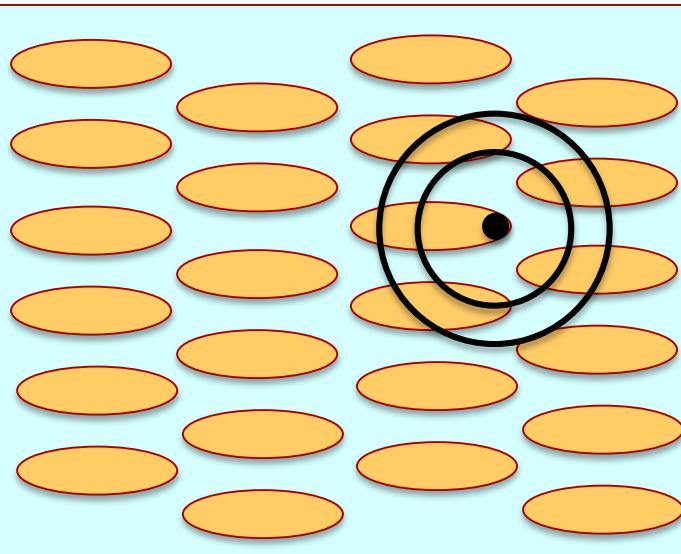
- Suppose we have an accurate model in level 0.
 - How can we obtain material properties in level 1?
 - This is called “upscaling” or “coarse-graining”.
 - Will next describe a method for doing this based on constrained optimization.

What are the elastic moduli of a heterogeneous material?

- This is an imprecise question in the classical (local) theory.
- Only becomes meaningful in the limit of a very large volume.
- Try to find a peridynamic approach to upscaling that does not assume this.



We will try to find the micromodulus for different multiscale levels



- Level 0:

$$\int_{\mathcal{H}^0} C^0(q, x)(u^0(q) - u^0(x)) dV_q + b(x) = 0$$

- Level 1:

$$\int_{\mathcal{H}^1} C^1(q, x)(u^1(q) - u^1(x)) dV_q + b(x) = 0$$

- Level m:

$$\int_{\mathcal{H}^m} C^m(q, x)(u^m(q) - u^m(x)) dV_q + b(x) = 0$$

- Upscaling: Find C^1 from C^0 , C^2 from C^1 ,

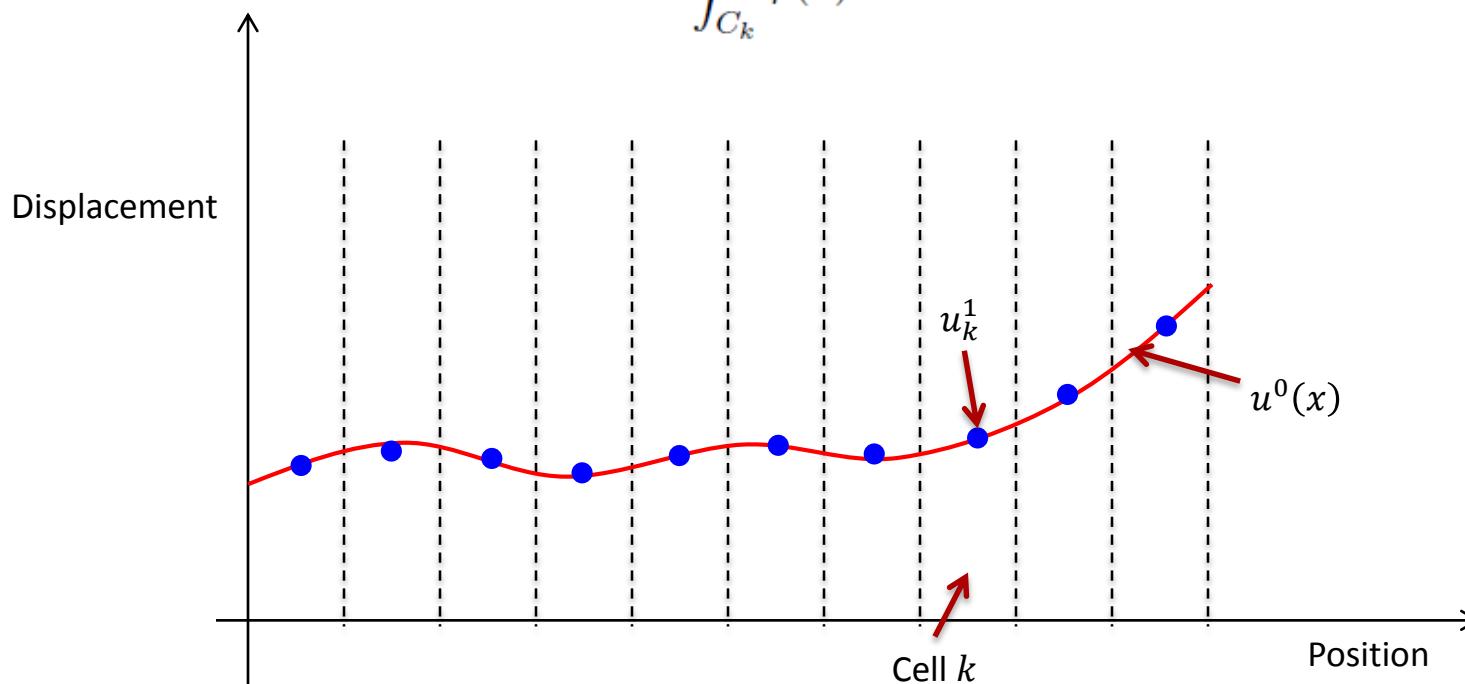
Level 1 DOFs

- Divide the region into K “cells” C_k .
- The mean level 0 displacement within each cell is the level 1 DOF:

$$u_k^1 = \int_{C_k} \varphi(x) u^0(x) \, dx$$

where

$$\int_{C_k} \varphi(x) = 1.$$



Level 1 DOF as a constraint

- Pretend all the u_k^1 values are given.
- In effect, this places a constraint on the u^0 function.
- Constrained potential energy functional:

$$\Phi = \int_{\mathcal{B}} (W^0(x) - u^0(x)b(x)) \, dx - \sum_{k=1}^K \lambda_k \left(\int_{C_k} \varphi(x)u^0(x) \, dx - u_k^1 \right)$$

where $\lambda_1, \lambda_2, \dots, \lambda_K$ are Lagrange multipliers.

Force balance on cell k

- Resulting constrained equilibrium equation:

$$L^0(x) + b(x) + \lambda_k \varphi(x) = 0$$

where k is whichever cell contains x and L^0 is the level 0 internal force operator:

$$L^0(x) = \int_{\mathcal{H}_x} \left(\underline{T}[x] \langle q - x \rangle - \underline{T}[q] \langle x - q \rangle \right) dq.$$

- Observe that the constraint acts like a body force distributed over cell k .
- Integrate the equilibrium equation over cell k , recall $\int \varphi = 1$, set $b \equiv 0$:

$$\int_{C_k} L^0(x) dx + \lambda_k = 0.$$

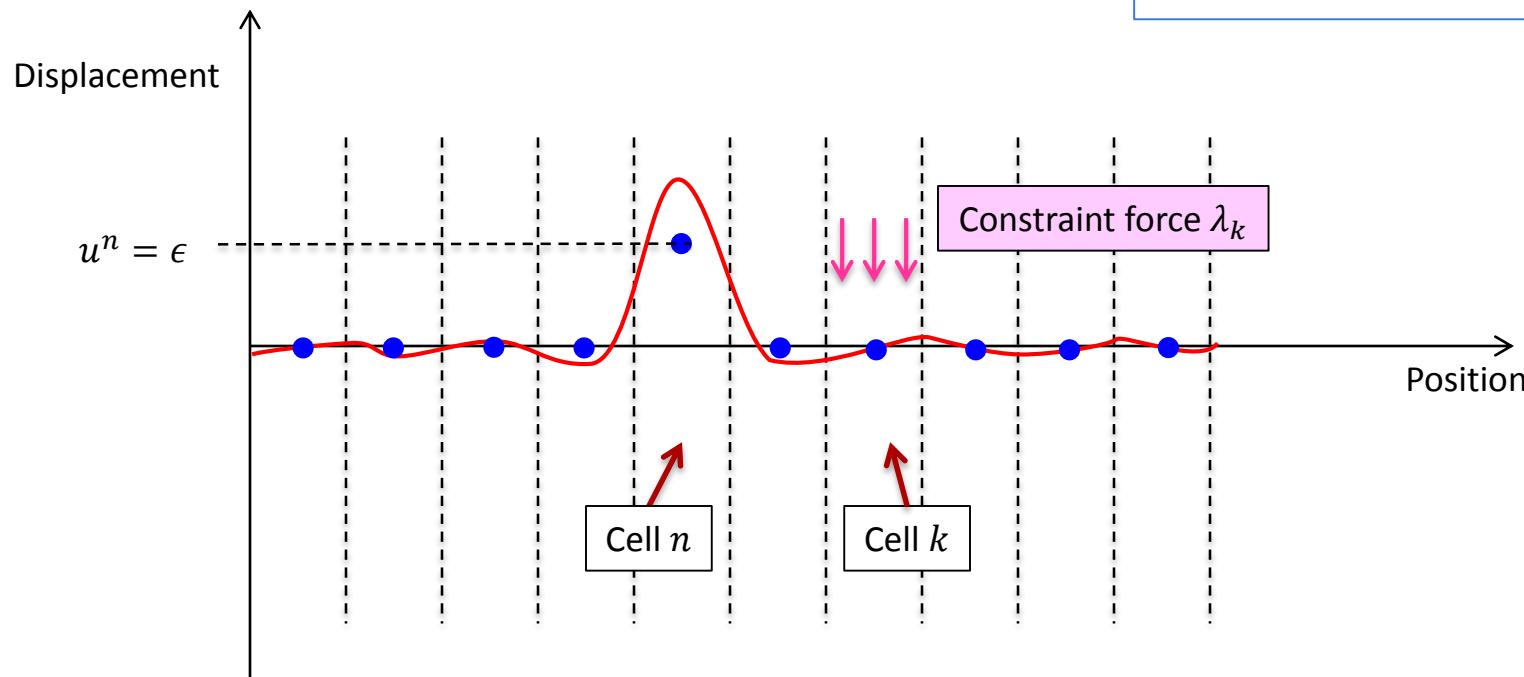
Interaction forces from other cells + constraint force = 0

Level 1 micromodulus

- Set all $u_k^1 = 0$ except for cell n : $u_n^1 = \epsilon \ll 1$.
- Solve the constrained equilibrium equation for $u^0(x)$ and the $\lambda_1, \lambda_2, \dots, \lambda_K$.
- The upscaled micromodulus is

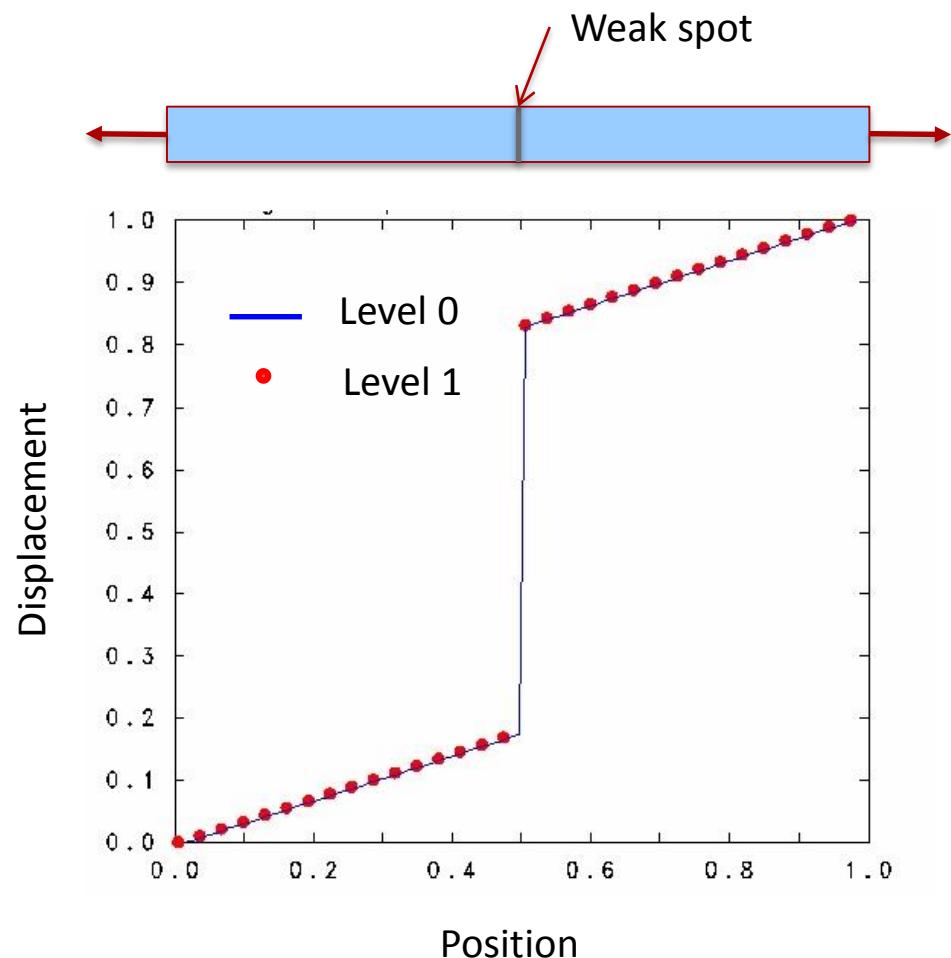
$$c_{kn}^1 = \lambda_k / \epsilon.$$

$$\rho \ddot{u}_i^1 = \sum_{j \in H_i} c_{ij}^1 (u_j^1 - u_i^1)$$



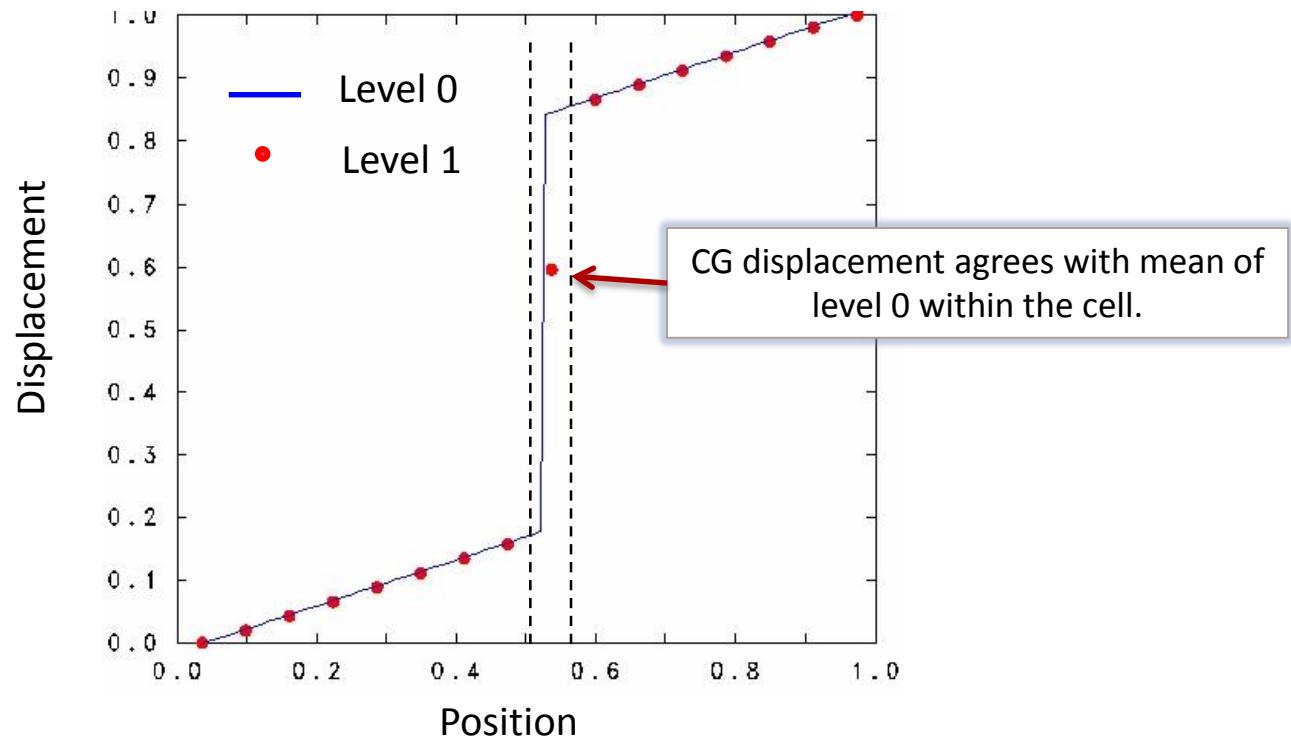
Example: Rod with a defect

- Upscaling method preserves the effect of a defect embedded within a cell.



Coarser level 1

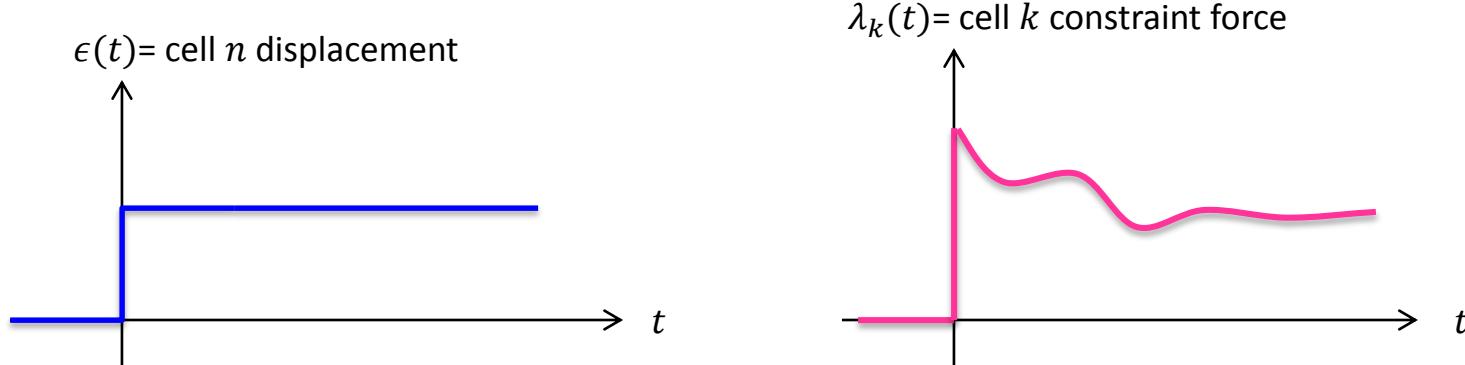
- If the defect is not exactly at a cell boundary, the method still produces the mean of the level 0 displacements within each cell.



Time-dependent response

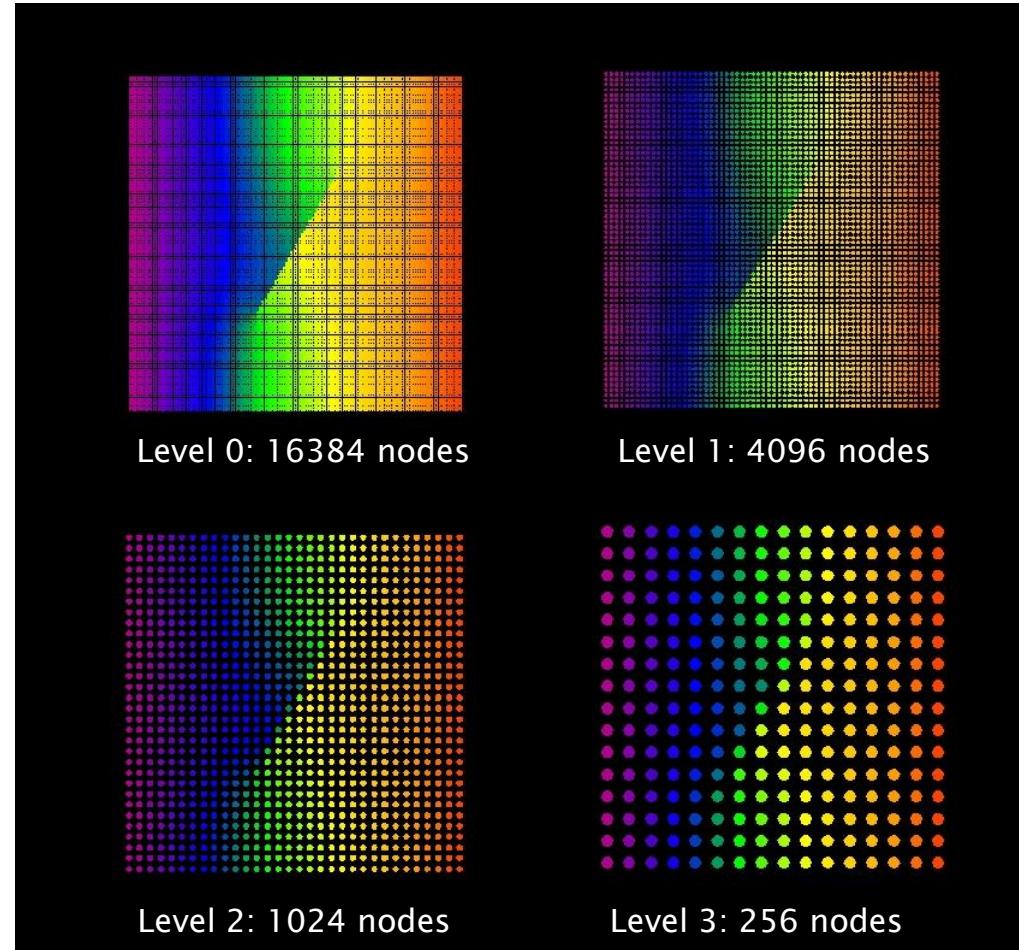
- Time-dependent bond force model for level 1:

$$f(x_n, x_k) = \int_0^t \lambda_k(t - \tau)(\dot{u}(x_k, \tau) - \dot{u}(x_n, \tau)) d\tau$$



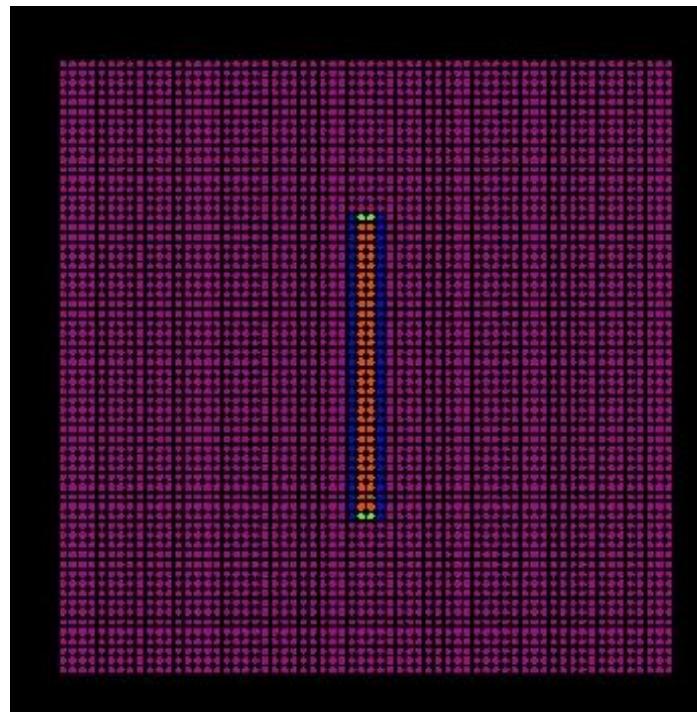
Coarse graining verification: crack in a plate

- Example: Solve the same problem in four different levels using the successively upscaled material properties – results are the same.



Defining damage from coarse-grained material properties

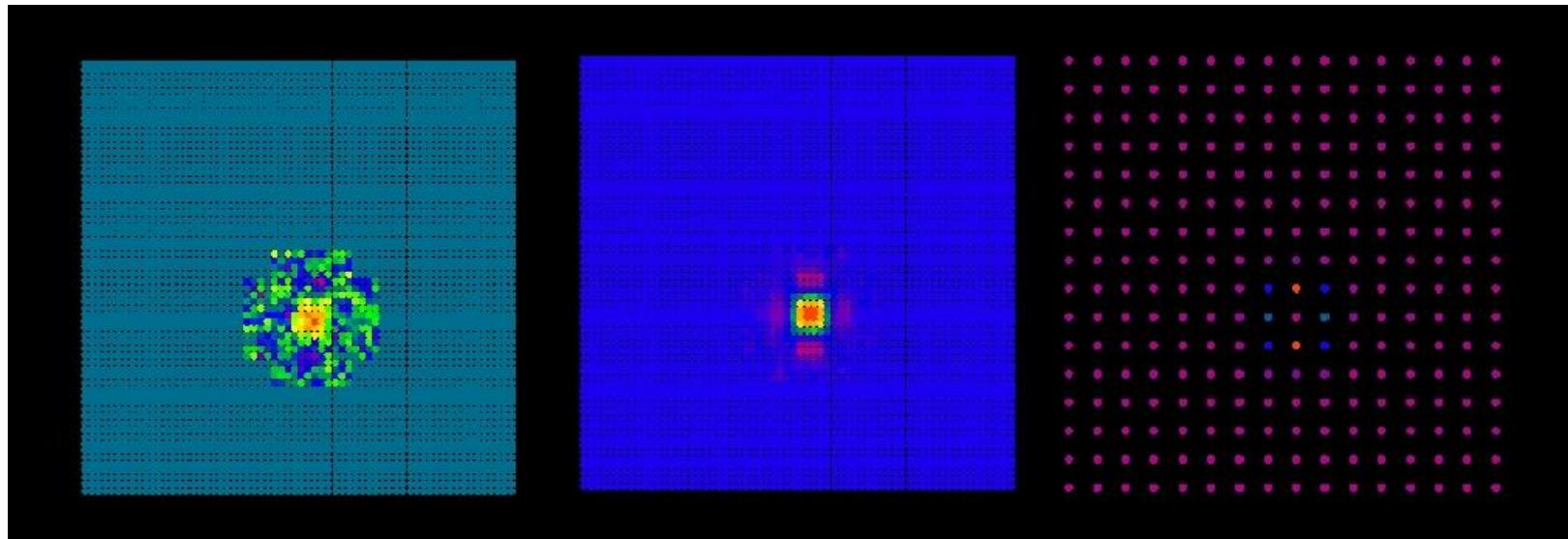
- Define bonds to be damaged if their coarse-grained micromodulus is less than a tolerance.
- This allows damage to be determined without deforming the MD grid.



Level 1 damage contours deduced from coarse-grained properties

Coarse graining MD directly into peridynamics

- The level 0 physics can be anything: PD, standard continuum, MD, MC(?), DFT(?)



Level 0: MD showing thermal oscillations

MD time-averaged displacements

Level 1: Coarse grained micromodulus

Summary

- Concurrent multiscale:
 - Adaptively follow crack tips.
 - Apply the best practical physics in level 0.
 - Also multiscale in time because of time step increase for higher levels.
- Coarse-graining:
 - Derives incremental elastic properties at higher levels.
 - Does not rely on a representative volume element (RVE).
- Methods are “scalable:” can be applied any number of times to obtain any desired increase in length scale.

Extra slides

Reconstruction

- The constrained minimization problem is:

$$\int_{\mathcal{H}_x} C^m(x, q)(u^m(q) - u^m(x)) \, dq + b + \lambda_k \phi_k = 0, \quad \int_{\mathcal{B}_k} u^m \phi = u_k^{m+1}$$

- To get level $m + 1$ from level m :

$$\begin{bmatrix} [C^m] & [\phi^m] \\ [\phi^m]^T & [0] \end{bmatrix} \begin{Bmatrix} \{u^m\} \\ \{\lambda^m\} \end{Bmatrix} = \begin{Bmatrix} \{0\} \\ \{u^{m+1}\} \end{Bmatrix}.$$

- Invert the matrix:

$$\begin{bmatrix} [\dots] & [R^m] \\ [R^m]^T & [\dots] \end{bmatrix} \begin{Bmatrix} \{0\} \\ \{u^{m+1}\} \end{Bmatrix} = \begin{Bmatrix} \{u^m\} \\ \{\lambda^m\} \end{Bmatrix}.$$

- $[R^m]$ is the *reconstruction matrix*.

Coarse graining a damage criterion

- Can we model level 1 damage processes without modeling level 0 explicitly?
- Suppose the level 0 damage depends only on the bond displacements

$$\underline{U}^0[x]\langle q - x \rangle := u^0(q) - u^0(x).$$

- Recall

$$\{u^0\} = [R^0]\{u^1\}.$$

- Can use this to find a *bond reconstruction state* \underline{R}^0 such that

$$\underline{U}^0[x] = \underline{R}^0[x] \bullet \underline{U}^1[x]$$

where $\underline{U}^1[x]$ is the level 1 displacement state at x .

- We can then compute level 0 bond damage without solving for the level 0 displacements.

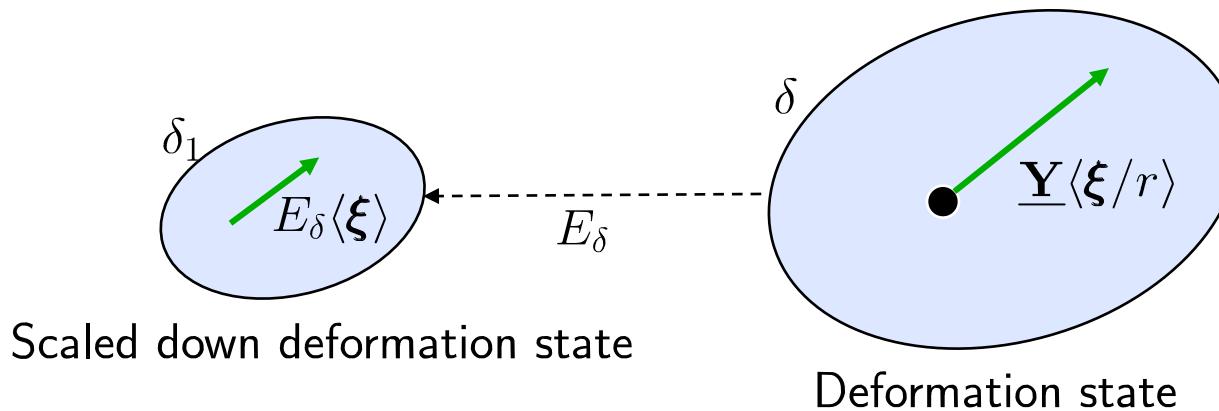
Rescaling an elastic material model

- Start with a material model W_1 which has some fixed horizon δ_1 .
- Define a mapping that takes a new, larger horizon δ into the original:

$$(E_\delta(\underline{\mathbf{Y}}))\langle\xi\rangle = r\underline{\mathbf{Y}}\langle\xi/r\rangle, \quad r = \frac{\delta_1}{\delta} \leq 1$$

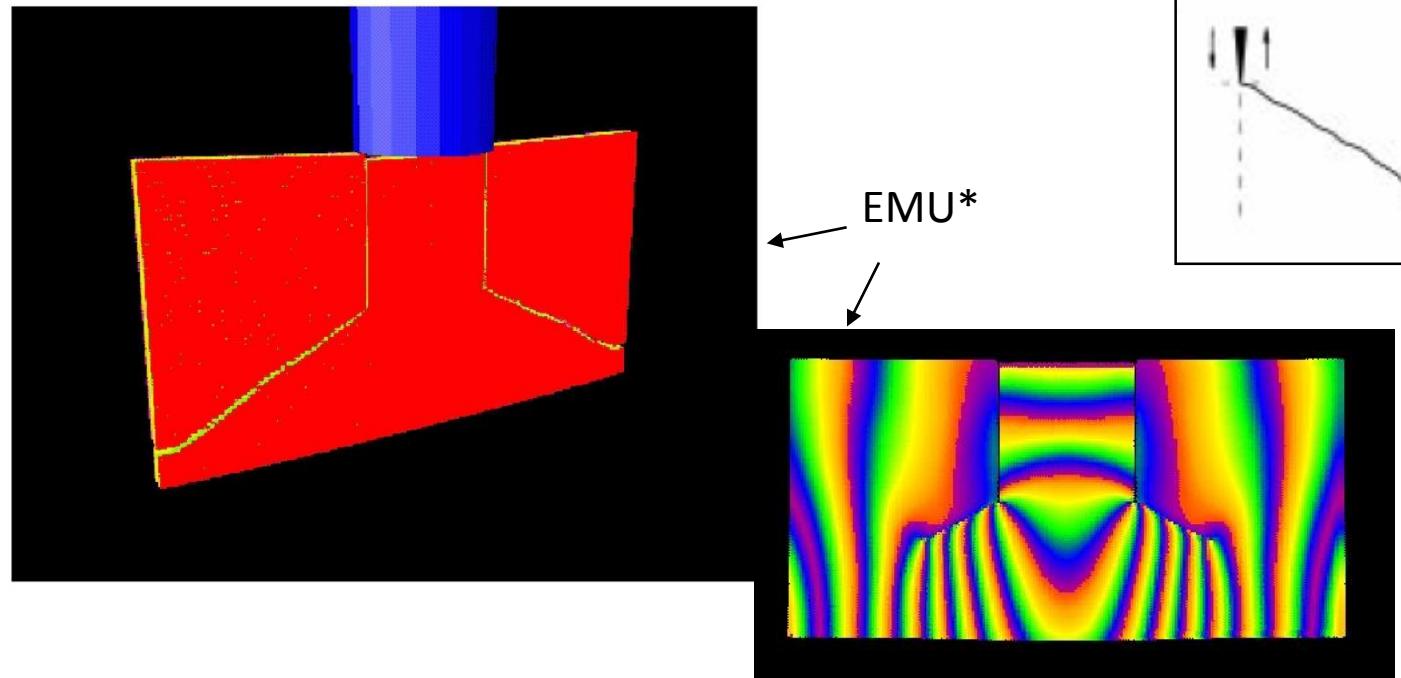
- Then set

$$W_\delta(\underline{\mathbf{Y}}) = W_1(E_\delta(\underline{\mathbf{Y}}))$$



Example: Dynamic fracture

- Dynamic fracture in maraging steel (Kalthoff & Winkler, 1988)
- Mode-II loading at notch tips results in mode-I cracks at 70deg angle.
- 3D EMU model reproduces the crack angle.



S. A. Silling, Dynamic fracture modeling with a meshfree peridynamic code, in *Computational Fluid and Solid Mechanics 2003*, K.J. Bathe, ed., Elsevier, pp. 641-644.

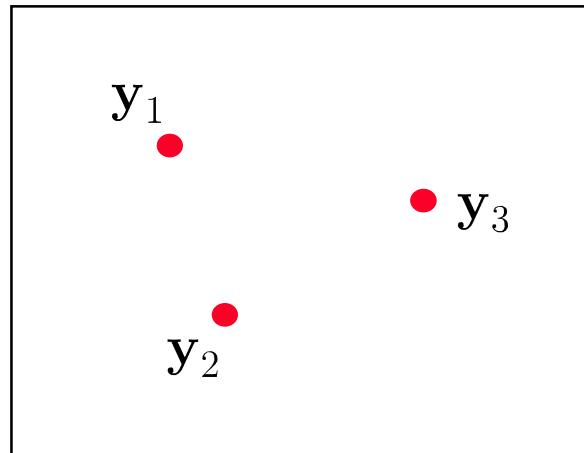
Discrete particles and PD states

- Consider a set of atoms that interact through an N –body potential:

$$U(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_N),$$

$\mathbf{y}_1, \dots, \mathbf{y}_N$ = deformed positions, $\mathbf{x}_1, \dots, \mathbf{x}_N$ = reference positions.

- This can be represented exactly as a peridynamic body.

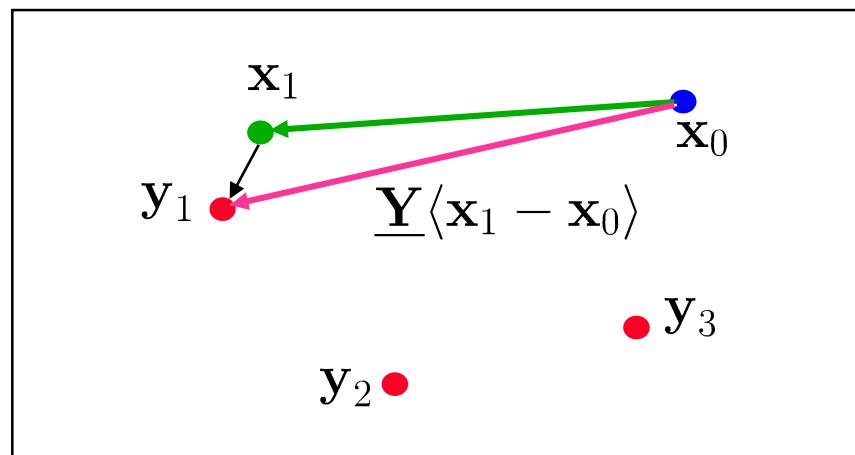


Discrete particles and PD states, ctd.

Define a peridynamic body by:

$$\hat{W}(\underline{\mathbf{Y}}, \mathbf{x}) = \Delta(\mathbf{x} - \mathbf{x}_0)U(\underline{\mathbf{Y}}\langle\mathbf{x}_1 - \mathbf{x}_0\rangle, \underline{\mathbf{Y}}\langle\mathbf{x}_2 - \mathbf{x}_0\rangle, \dots, \underline{\mathbf{Y}}\langle\mathbf{x}_N - \mathbf{x}_0\rangle),$$

$$\rho(\mathbf{x}) = \sum_i \Delta(\mathbf{x} - \mathbf{x}_i)M_i$$



Discrete particles and PD states, ctd.

After evaluating the Frechet derivative $\underline{\mathbf{T}}$, find

$$\rho(\mathbf{x})\ddot{\mathbf{y}}(\mathbf{x}, t) = \int \mathbf{f}(\mathbf{x}', \mathbf{x}, t) dV_{\mathbf{x}'}$$

implies

$$M_i \ddot{\mathbf{y}}(\mathbf{x}_i, t) = -\frac{\partial U}{\partial \mathbf{y}_i}, \quad i = 1, \dots, N$$

In other words, the PD equation of motion reduces to Newton's second law.

