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Purpose of peridynamics* ) .

e To unify the mechanics of continuous and discontinuous media within a single, consistent
set of equations.

Continuous body
with a defect

Discrete particles

Continuous body
e Why do this?
e Avoid coupling dissimilar mathematical systems (A to C).

e Model complex fracture patterns.
e Communicate across length scales.

* Peri (near) + dyn (force)




Peridynamics basics: )
Horizon and family

e Any point x interacts directly with other points within a distance ¢ called the “horizon.”

e The material within a distance 0 of x is called the “family” of x, H.

@ B
0 = horizo

Hy = family of x

General references
SS, Journal of the Mechanics and Physics of Solids (2000)
SS and R. Lehoucq, Advances in Applied Mechanics (2010)
Madenci & Oterkus , Peridynamic Theory & Its Applications (2014)




Point of departure: ) i
Strain energy at a point

Continuum Discrete particles Discrete structures

Family of x

Deformation

e

* Key assumption: the strain energy density at X is determined by the
deformation of its family.




Potential energy minimization yields the .
peridynamic equilibrium equation

Laboratories

e Potential energy:
<I>:/(W—b-y) dVy
B

where W is the strain energy density, y is the deformation map, b is the
applied external force density, and B is the body.

e Euler-Lagrange equation is the equilibrium equation:

/ f(q,x) dVq+b(x) =0
Hx

for all x. f is the pairwise bond force density .




Peridynamic vs. local equations
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The structures of the theories are similar, but peridynamics uses nonlocal operators.

* Notation: State<bond>=vector
Relation Peridynamic theory Standard theory
Kinematics Y(q - x) = y(q) - y(x) F(x) = 2(x)
X

Linear momentum
balance

) = [ (8a30) — t(x.)) aVa -+ b(x)

Constitutive model

A

T=T(Y)

t(q,x) = T(q —x),

Angular momentum
balance

/Hz<q—><>><1<q—x> dVy = 0

Elasticity

T = Wy (Fréchet derivative)

o = Wy (tensor gradient)

First law

e=0c - F+q+r

T() - Y(&) dVe




Linearized theory ) 5.

e For small displacements (possibly superposed on a large deformation):

pu(x,t) = /% C(x,q)(u(q,t) —u(x,t)) dVq + b(x,1)

where C is the tensor-valued micromodulus field.
Equation is formally the same as in Kunin’s nonlocal theory.
Can still have bond breakage.

Most of the following discussion uses the linearized theory.

Will see how to get C by multiscale methods.




Bond breakage leads to autonomous
crack growth
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Broken bond

Crack path

* When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.



Examples of application of peridynamics .

* Single crack brittle energy balance
* 3-point bend test
e Dynamic fracture
e Crack growth velocity
* Trajectory
* Branching
* Impactinto concrete and aluminum
* Residual velocity
* Penetration depth
* Cratersize
* Fatigue
* S-N curves for aluminum and epoxy
e Paris law curves for aluminum

 Composite impact, damage, and fracture Experiment
* Delaminations (compare NDE) HEEENEEEEREEE
« Residual strength in OHC, OHT T

» Stress concentration profile in OHT
* Bird strike loading
* Lamina tensile fracture




Bone: A composite material with many ()&=,
length scales

Millimeter

Micrometer

RS RERR
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Nanometer

Bone structure helps delay, deflect crack growth. Image:
Chan, Chan, and Nicolella, Bone 45 (2009) 427-434

Bone contains a heirarchy of structures at many
length scales. Image: Wang and Gupta, Ann. Rev.
Mat. Sci. 41 (2011) 41-73
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Peridynamics as a multiscale method

* The basic equations have a fundamental length scale (the horizon).
* Changing the horizon in a consistent way could provide a way to
connect length scales.

Some previous work on multiscale peridynamics

* Derivation of peridynamic equations from statistical mechanics
(Lehoucq & Sears, 2011).

* Higher order gradients to connect MD to peridynamic (Seleson, Parks,
Gunzburger, & Lehoucq, 2005).

e Adaptive mesh refinement (Bobaru & Hu, 2011).

* Two-scale evolution equation for composites (Alali & Lipton, 2012).

e PFHMM method for atomistic-to-continuum coupling (Rahman, Foster,
& Haque, 2014).




Scalable multiscale methods )

= How to couple multiple physics across wide variations in length/time scales when
many length scales are naturally present in the problem?

= |dea:
= Hierarchy of levels m each with length scale L,;, = Ly2™
= [y is the smallest physically operative length scale.
= Each level is coupled to the adjacent levels by the same equations:

Ym = f Vm-1, Ym» Ym+1)
where fis independent of m.

N

N\

Length scale L,,

—

s Multiscale level m

= Avoids reinventing the wheel at each level.



Concurrent multiscale method for ...
defects
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* Apply the best practical physics at the smallest length scale (near a crack tip).
e Scale up hierarchically to larger length scales.
* Each level is related to the one below it by the same equations.
* Any number of levels can be used.
e Adaptively follow the crack tip.

Crack process zone

The details of damage evolution are always
modeled at level 0.




Concurrent solution strategy ).

=  The equation of motion is applied only within each level.
= Higher levels provide boundary conditions on lower levels.

Lower levels provide coarsened material properties (including damage) to higher
levels.

A Level
m
Yy S
57¢ w00
iz o s
> ‘8¢ o

Schematic of communication between levels in a 2D body




Concurrent multiscale example: ) s
shear loading of a crack

Bond strain Damage process zone

16



Multiscale modeling reveals the ope

structure of brittle cracks

Laboratories
*  Material design requires understanding of how morphology at |  (fffjumiumi I -

multiple length scales affects strength.
* Thisis a key to material reliability.

Multiscale model of crack growth through a brittle
material with distributed defects

Metallic glass fracture (Hofmann
et al, Nature 2008)

17
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Upscaling of material properties

e Suppose we have an accurate model in level O.
 How can we obtain material properties in level 1?
e This is called “upscaling” or “coarse-graining”.
e Will next describe a method for doing this based on constrained

optimization.




What are the elastic moduli of a
heterogeneous material?
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* Thisis an imprecise question in the classical (local) theory.
* Only becomes meaningful in the limit of a very large volume.

* Try to find a peridynamic approach to upscaling that does not assume this.

> >
> >
> O
> O
> >
> O
> >
> DO
> ©:
Q:Q
> >




We will try to find the micromodulus for
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different multiscale levels

> >

>
>
>

__—
CDQ

O

CD:Q
> >

e Level 0:

o Cﬂ(q, :r){u['{qj — ’L-:D(:Ir)) dVy +b(z) =0
e Level 1:

g CYq.z)(u'(q) — u'(z)) dV, + b(z) = 0
e Level m:

| e @@ = um @) av, + bia) =0

e Upscaling: Find C! from C°, C? from C1, ....
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Level 1 DOFs

e Divide the region into K “cells" C}.

e [he mean level 0 displacement within each cell is the level 1 DOF:

N

u’(x)

Position

Cell k

Displacement




National

Level 1 DOF as a constraint h)

e Pretend all the —uk values are given.
e |n effect, this places a constraint on the u? function.
e Constrained potential energy functional:

b — /I%(Wﬂ(m) —u’(z)b(z)) dz — kZ: Ak (/ o(z)u’ (z) do — u,%_.)

Ch

where A{, Ao,..., A are Lagrange multipliers.




Force balance on cell & h) e,

e Resulting constrained equilibrium equation:
LO(z) 4 b(z) + Mp(x) =0

where k is whichever cell contains = and L is the level 0 internal force
operator:

@) = [ (Tlella =) - Thl(a - 0)) da

5.

e Observe that the constraint acts like a body force distributed over cell k.

e Integrate the equilibrium equation over cell k, recall [ o =1, set b= 0:

f L%z) dz + M. = 0.
/N

Interaction forces from other cells + constraint force = 0




Level 1 micromodulus rh) ot

e Set all u} =0 except for cell n: ul =< 1.
e Solve the constrained equilibrium equation for uD(m] and the Aq, Aa, ..., K.

e [he upscaled micromodulus is

.1 1,1 1
Chy = A6 — pii; = Y cij(uj —u;)
JjeH,

N

Displacement

<
Il
m
1
1
1
1
1
|
|
e
1
|
|
1
e | Ppmem————
1
1
1
1
1

|

o———T—e——o——0= >

Position




Example: Rod with a defect ) 5,

/ Weak spot

e Upscaling method preserves

the effect of a defect e .-"”’“f
embedded within a cell. ot Level 0

g Level 1

Displacement
[}
[¢3]

Position




Coarser level 1 L

* If the defect is not exactly at a cell boundary, the method still produces the

mean of the level 0 displacements within each cell.

Level O

i Level 1
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i ¢ CG displacement agrees with mean of
level O within the cell.

Displacement

Position




Time-dependent response

e [ime-dependent bond force model for level 1:

flrn,x) = /I; Mt —7)(w(xg, 7) — W2y, 7)) dT

A (£)= cell k constraint force
€(t)= cell n displacement A

I\
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Coarse graining verification: = s

crack in a plate

 Example: Solve the same
problem in four different
levels using the
successively upscaled
material properties —
results are the same.

National
Laboratories

o,
6384 node evel 1: 4096 node

28



Defining damage from coarse-grained

material properties

* Define bonds to be damaged if their coarse-grained micromodulus is less than a
tolerance.

e This allows damage to be determined without deforming the MD grid.

Level 1 damage contours deduced from coarse-grained properties
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Coarse graining MD directly into )
peridynamics

* The level 0 physics can be anything: PD, standard continuum, MD, MC(?), DFT(?)

Level 0: MD showing MD time-averaged Level 1: Coarse grained
thermal oscillations displacements micromodulus

30
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Summary

e Concurrent multiscale:

* Adaptively follow crack tips.

* Apply the best practical physics in level O.

* Also multiscale in time because of time step increase for higher levels.
* Coarse-graining:

* Derives incremental elastic properties at higher levels.

* Does not rely on a representative volume element (RVE).

 Methods are “scalable:” can be applied any number of times to obtain any desired
increase in length scale.




\

Extra slides

Sandia
National
frame 32 Laboratories



1 Nt
Reconstruction ) foos
e [he constrained minimization problem is:

/ C™(z,q)(u™(q) —u™(2)) dg + b+ Axdr = 0, /B uP g =upgt

e [o get level m + 1 from level m:

[ o S |1 o P oy b

e |nvert the matrix:

L e ey =1 G )

e [R™] is the reconstruction matrix.
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Coarse graining a damage criterion 5.

e Can we model level 1 damage processes without modeling level 0 explicitly?
e Suppose the level 0 damage depends only on the bond displacements
U'l)(g — z) == u"(q) — u’(=).
e Recall
{u"} = [R"{u'}.
e Can use this to find a bond reconstruction state R" such that

U'[z] = R'[z] « U'[2]

where U'[z] is the level 1 displacement state at .

e \We can then compute level 0 bond damage without solving for the level 0
displacements.




Rescaling an elastic material model

e Start with a material model W which has some fixed horizon 9;.

e Define a mapping that takes a new, larger horizon 0 into the
original:

01

(BAY)) =rX (/).  r="<1

e Then set
Ws(Y) = Wi (E5(Y))

Scaled down deformation state

Deformation state
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Example: Dynamic fracture h .

e Dynamic fracture in maraging steel (Kalthoff & Winkler, 1988)
e Mode-Il loading at notch tips results in mode-I cracks at 70deg angle.
e 3D EMU model reproduces the crack angle.

Experiment
/

S. A. Silling, Dynamic fracture modeling with a meshfree peridynamic code, in Computational Fluid and Solid Mechanics 2003,
K.J. Bathe, ed., Elsevier, pp. 641-644.
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Discrete particles and PD states

e Consider a set of atoms that interact through an N—body po-

tential:

U(y17 y2,--- 7yN>7
Vi,...,yn = deformed positions, xi,...,Xy = reference posi-
tions.

e This can be represented exactly as a peridynamic body.

Y1

®Yy;3

Yo
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Discrete particles and PD states, ctd.

Define a peridynamic body by:

A

W(Y,x)=A(x—x0)U(Y(x1—X0), Y{Xo—Xq), ..., Y{Xy—Xp)),
p(x) = Z Alx —x;) M

X1
.Z/g%
Y1 Y (x1 — xo)
® Y3
yo®
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Discrete particles and PD states, ctd.

After evaluating the Frechet derivative T, find

p(X)y(x,t) = / f(x',x,t) dVy

implies

oU
Miy(Xi’t):_ayi’ ’L:l,,N
In other words, the PD equation of motion reduces to Newton's second
law.
/ Fz' — 8U/8yz
Yie

\ e

Yo
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