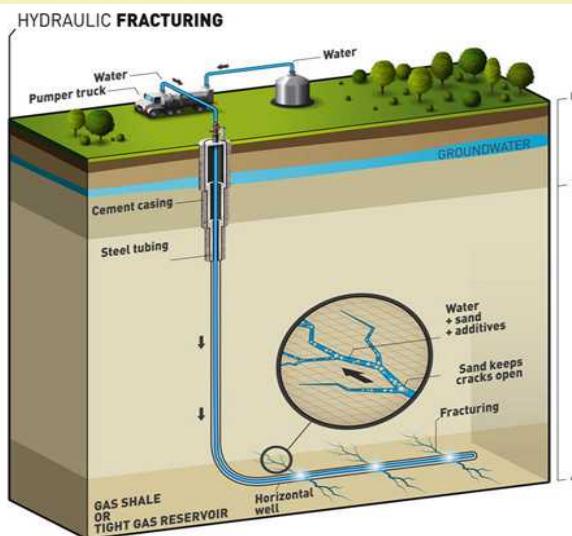
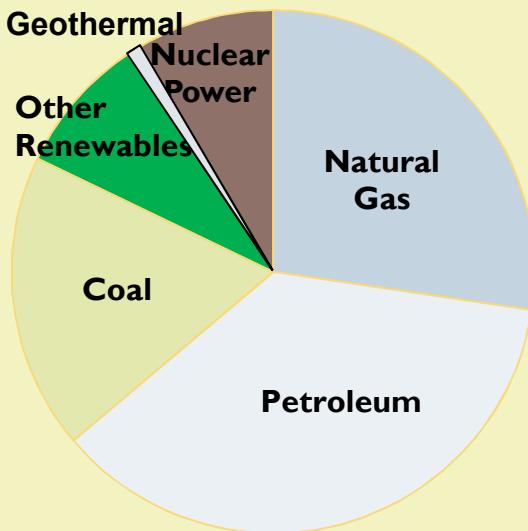
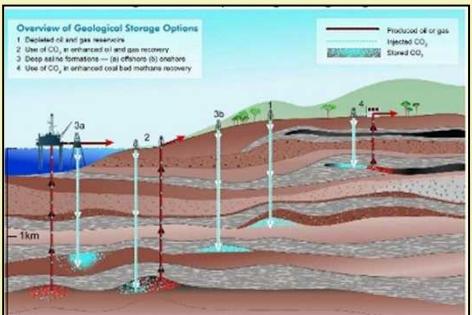


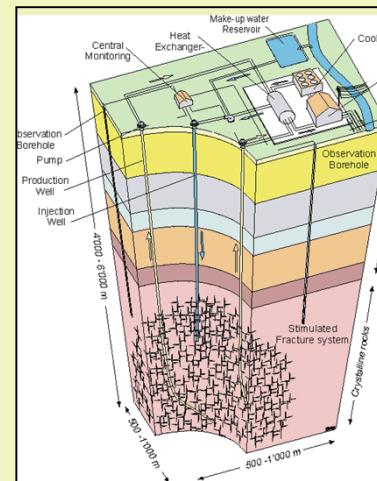
Subsurface Crosscut Initiative

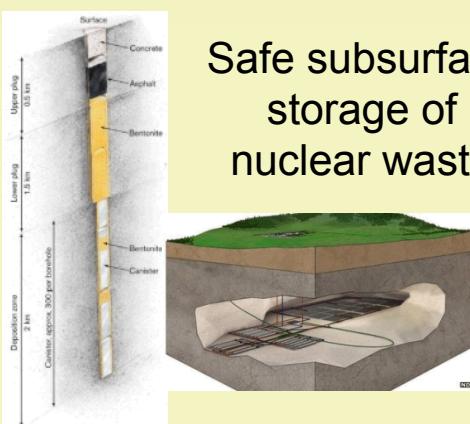


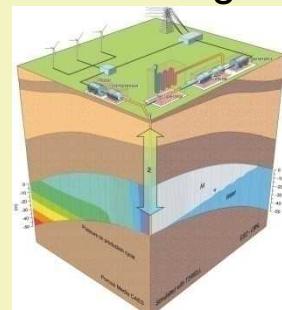
Adaptive Control of Subsurface Fractures and Fluid Flow

Mastery of the Subsurface needed for a Safe and Secure U.S. Energy Future: The Technical Challenge


Shale hydrocarbon production


Safe subsurface storage of CO₂


Enhanced geothermal energy

Safe subsurface storage of nuclear waste

Compressed Air Energy Storage

Subsurface Engineering: Common Subsurface Challenges

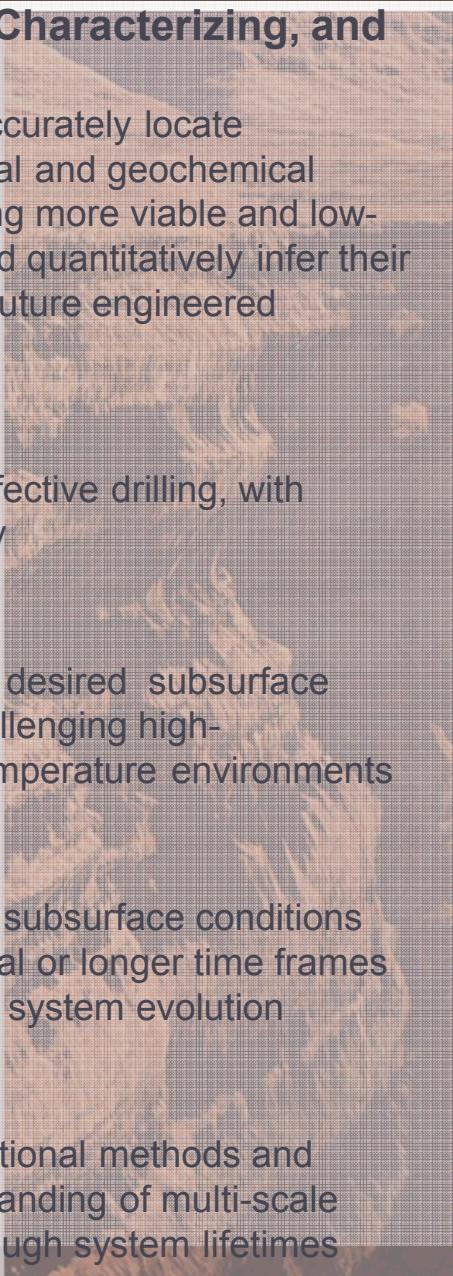
Discovering, Characterizing, and Predicting

Efficiently and accurately locate target geophysical and geochemical responses, finding more viable and low-risk resource, and quantitatively infer their evolution under future engineered conditions

Accessing

Safe and cost-effective drilling, with reservoir integrity

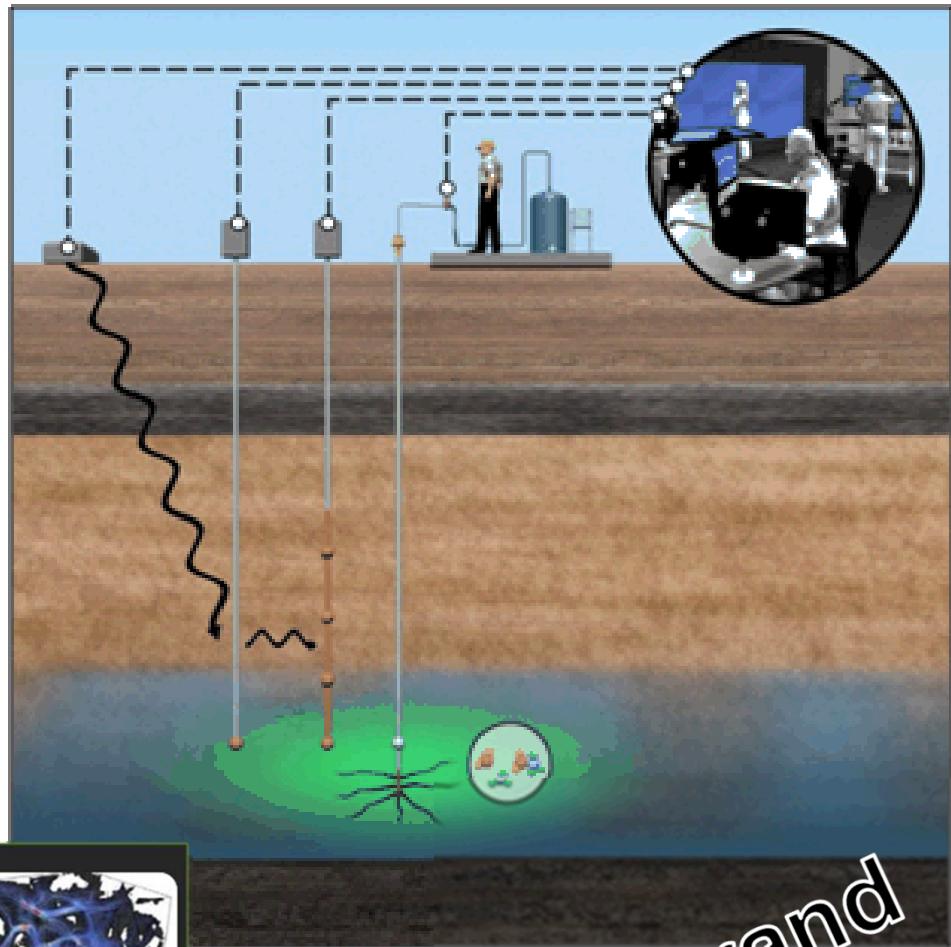
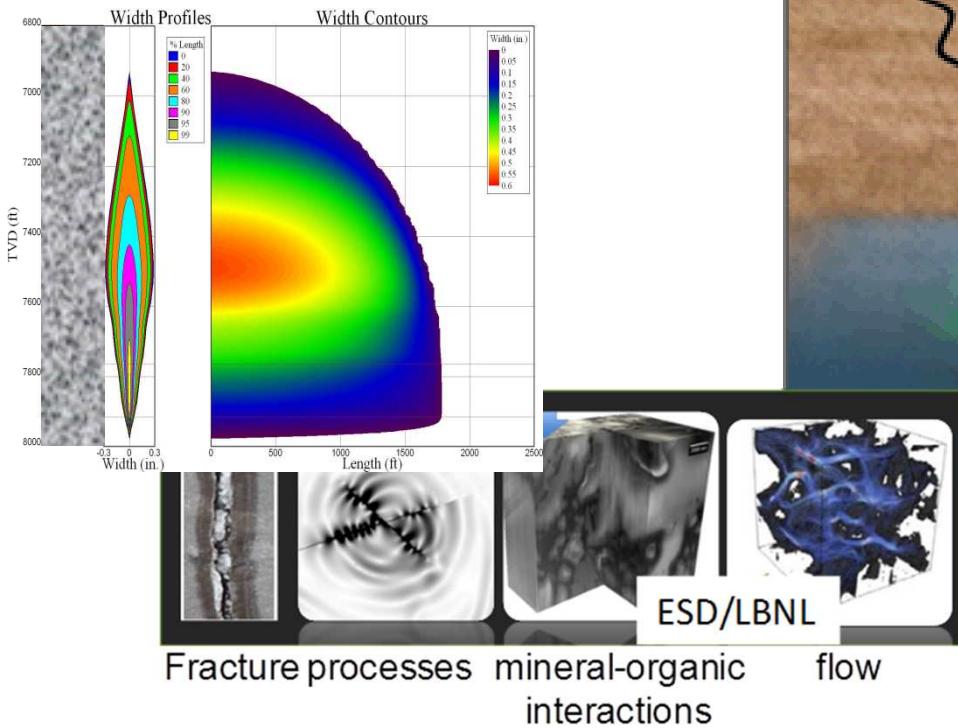
Engineering


Create/construct desired subsurface conditions in challenging high-pressure/high-temperature environments

Sustaining

Maintain optimal subsurface conditions over multi-decadal or longer time frames through complex system evolution

Monitoring



Improve observational methods and advance understanding of multi-scale complexities through system lifetimes

The Big Idea: Adaptive Control of Subsurface Fractures and Fluid Flow

Range of RD³
Challenges:

Fundamental Science to
Engineering Application

A Grand
Challenge

Subsurface Control for a Safe and Effective Energy Future

- ▶ President's Climate Action Plan
 - ▶ Meet GHG emission reduction targets through safe storage of CO₂ and increased low-carbon power generation
- ▶ Safety
 - ▶ Reduce risks associated with operating in the subsurface
- ▶ Energy Security
 - ▶ Increased recovery factors from tight formations can vastly increase the length of US energy security

Inaction Exposes Significant Risks

Energy Security

Environmental Security

Economic Security

Clear Alignment with Industry and Stakeholder Priorities

- Nanotechnology
- Photonics
- ***Interfacial Chemistry***
- ***Complex Fracture Modeling in Real-time***
- Spectroscopy at the Bit
- Green Chemistry

- ***Subsurface Sensing and Imaging***
- ***Physics-Based Signal Processing and Image Understanding***

- Recognizing the signal within the natural variability
- ***Identifying feedback between natural and perturbed systems***
- Quantifying consequences, impacts, and effects
- ***Effectively communicating uncertainty and relative risk***

- ***Higher Resolution Subsurface Imaging***
- Challenges in Reusing Produced Water
- ***In-Situ Molecular Manipulation***
- Increasing Hydrocarbon Recovery Factors
- ***Carbon Capture and Sequestration***

THE NATIONAL ACADEMIES *Advisers to the Nation on Science, Engineering, and Medicine*

Grand Challenges for Earth Resources Engineering

- ***Make the earth transparent***
- ***Understand engineering control of coupled subsurface processes***
- ***Minimize environmental footprint***
- ***Protect people***

Subsurface Crosscut Research Framework

Adaptive Control of Subsurface Fractures and Fluid

Flow

Wellbore Integrity

Improved well construction materials and techniques

Autonomous completions for well integrity modeling

New diagnostics for wellbore integrity

Remediation tools and technologies

Fit-for-purpose drilling and completion tools (e.g. anticipative drilling, centralizers, monitoring)

HT/HP well construction & completion technologies

Subsurface Stress & Induced Seismicity

Measurement of stress and induced seismicity

Manipulation of stress and induced seismicity

Relating stress manipulation and induced seismicity to permeability

Applied risk analysis of subsurface manipulation

Permeability Manipulation

Physicochemical fluid-rock interactions

Manipulating flowpaths

Characterizing fractures, dynamics, and flows

Novel stimulation methods

New Subsurface Signals

New sensing approaches

Integration of multi-scale, multi-type data

Adaptive control processes

Diagnostic signatures and critical thresholds

Energy Field Observatories

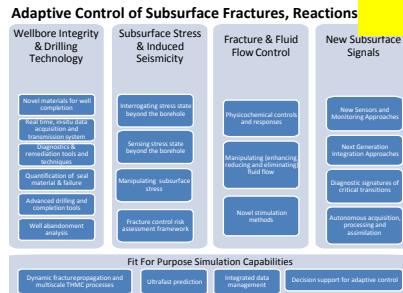
Fit For Purpose Simulation Capabilities

Subsurface Stress and Induced Seismicity

Quantify and reduce risk of induced seismicity through quantitative understanding and manipulation of subsurface stress and improve reservoir performance by an order of magnitude

Element	2-year goals	5-year goals	10-year goals
State of stress (measurement and manipulation)	Assess and improve stress measurement resolution and uncertainty methods, begin field deployment	Achieve stress tensor precision, orientation, and spatial resolution goals for borehole, interwell, and field scales	Use automated inversion for stress tensors (at different scales) to optimize adaptive control
Induced seismicity (measurement and manipulation)	Design and execute lab, numerical and field studies to measure and modify induced seismicity	Integrate passive and active seismic imaging to ID and locate faults capable of M4-5 with 95% confidence	Demonstrate forecast and management mechanisms to decrease likelihood of M2-3 event by 10x over a defined time period.
Relating stress manipulation and induced seismicity to permeability	Test fracture/permeability relationships using multi-physics models for available data sets	Characterize in-situ permeability tensor of a fault/fracture zone	Demonstrate 10x improvement in characterizing flow paths in a faulted environment
Applied risk analysis of subsurface manipulation	Apply induced seismicity risk assessment to a benchmark field site.	Demonstrate risk-informed control framework including field validation.	Demonstrate risk-driven adaptive controls on operational envelopes (injection rates, volumes, pressure, well locations).

SubTER Progress


National Labs

Big Ideas
Summit
March, 2014

DOE

SubTER Workshop
Subsurface Technology and Engineering R&D
March 14, 2014
SRA, International, 1801 K Street, Suite 460

Crosscut framework
identified

White
Papers

May

FY14 Seed
projects
initiated

Lab Rep
Scoping

FY15 project
proposals

Town Hall

2015

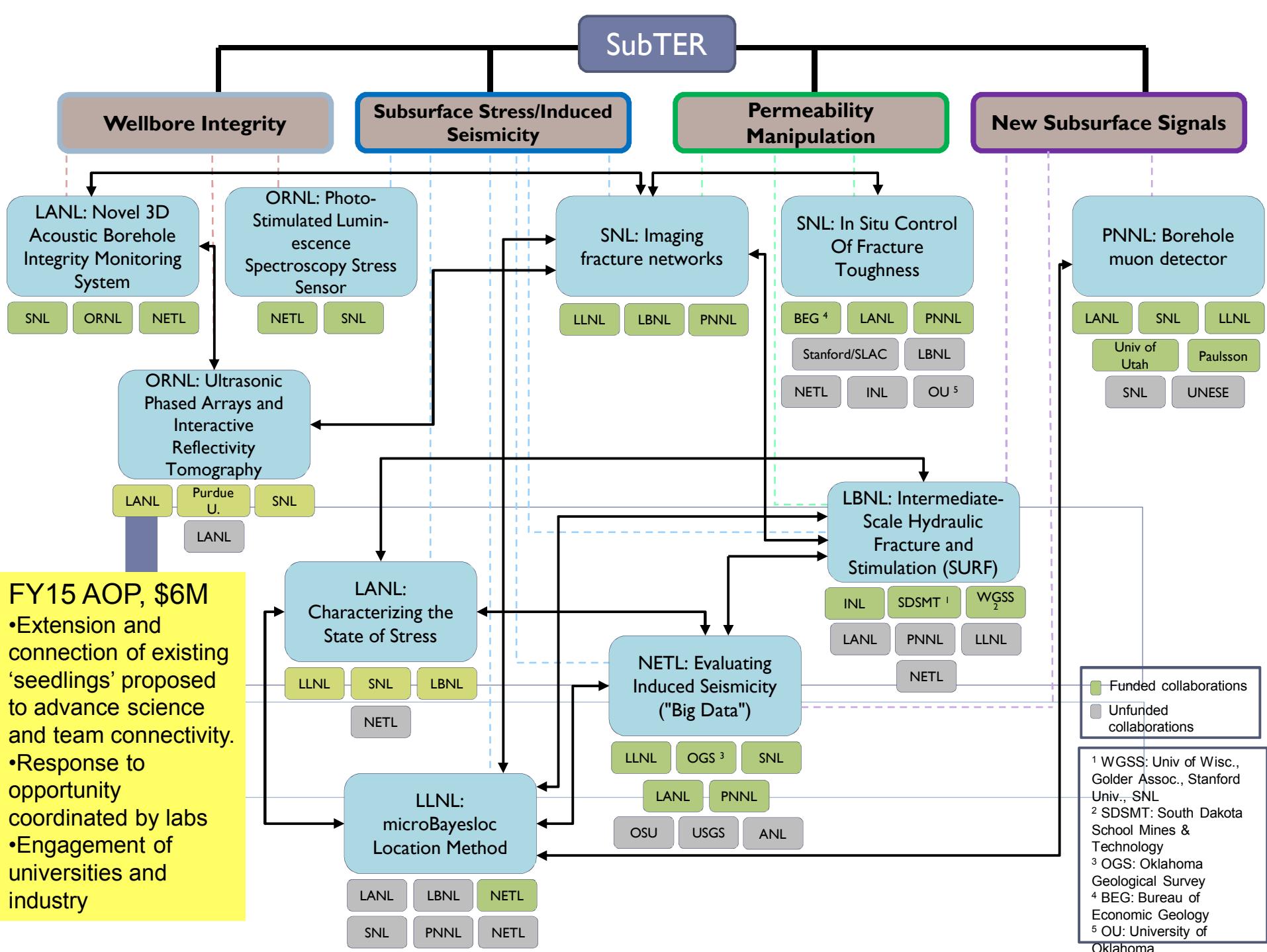
QTR

JASON
The MITRE Corporation
7515 Colshire Drive
McLean, Virginia 22102-7508
(703) 983-6997

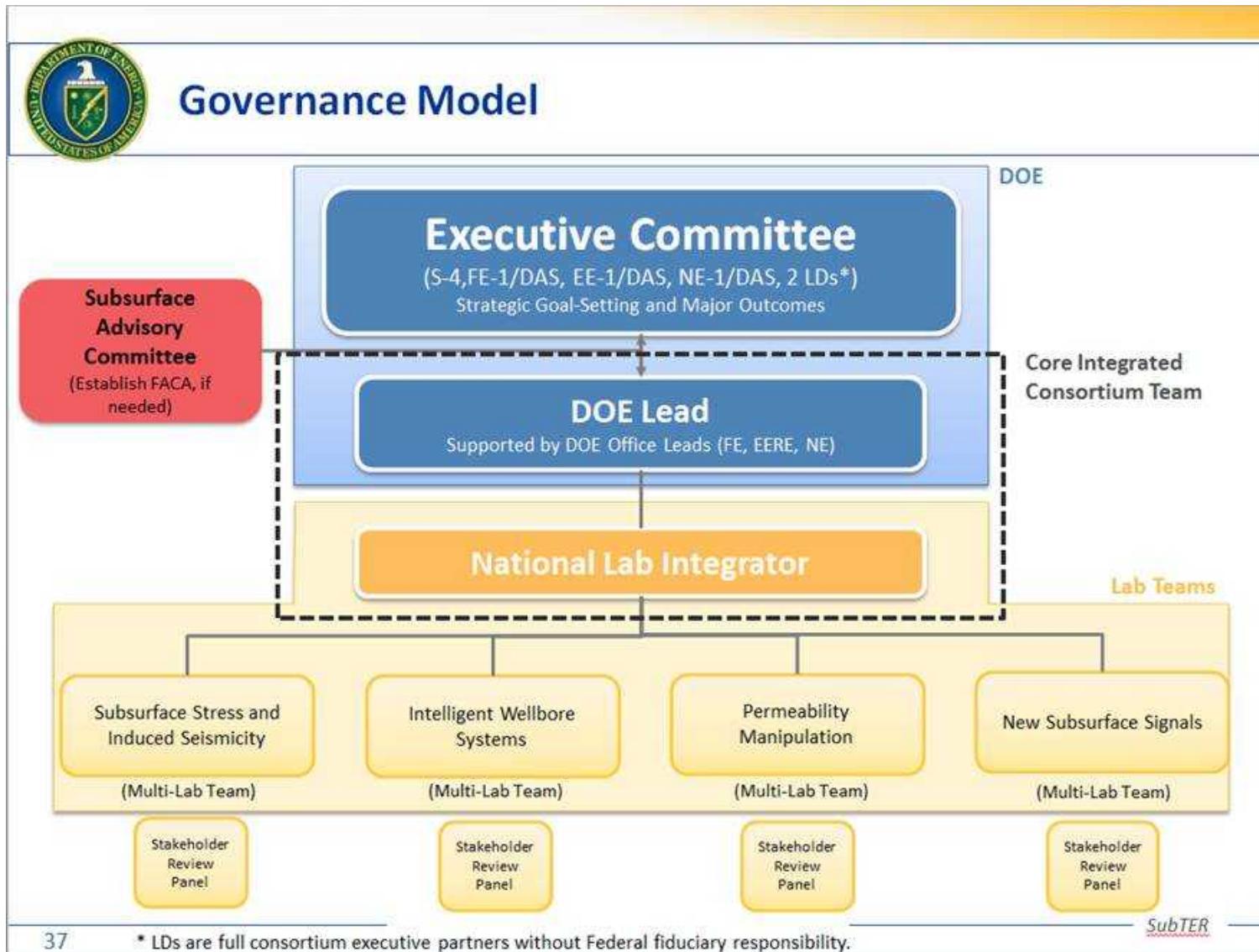
Subsurface
Briefings to
Staffers

Forge FOA released

FY2014 SubTER Crosscut Seedling Projects

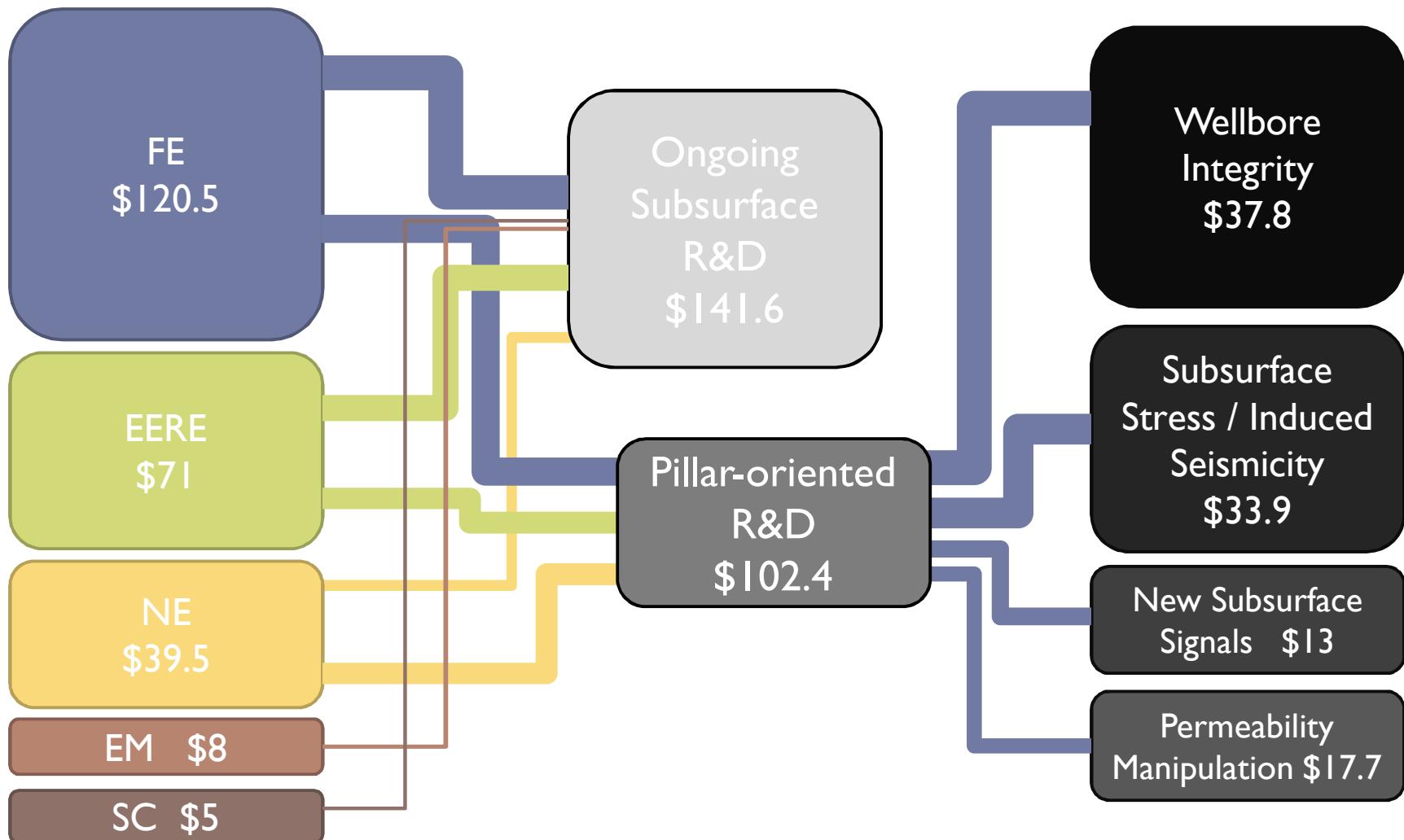

\$2M FY14 funding towards SubTER lab projects from EERE and FE:

- **Wellbore** – LANL: 3D acoustic borehole integrity monitoring system
- **Stress, Permeability** – LBNL: Field Laboratory in a Deep Mine for the Investigation of Induced Seismicity and Fracture Flow
- **Stress** – LANL: Evaluating the State of Stress Away from the Borehole
- **Stress** – ORNL: Luminescence spectroscopy stress sensor for in-situ stress measurement
- **Stress** – ORNL: Ultrasonic Phased Arrays and Interactive Reflectivity Tomography
- **Stress** – NETL: Big Data and Analytics for Induced Seismicity
- **New Signals** – PNNL: Borehole muon detector for 4D density tomography of subsurface reservoirs
- **New Signals:** - LLNL: microBayesloc location method
- **Stress, Permeability:** - SNL: Imaging Fracture Networks

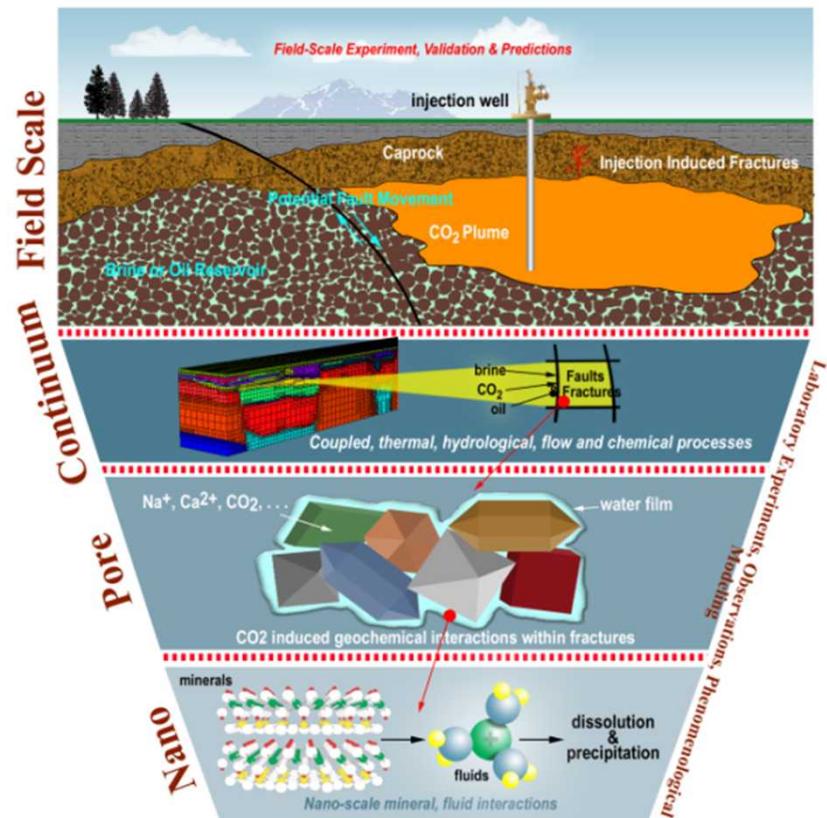

Seed funding to these projects will kick-start efforts in FY15, FY16 and beyond . . .

FY 2015 Schedule

Activities	Nov-Dec 2014	Jan-Feb 2015	Mar-Apr 2015	May-Jun 2015	Jul-Aug 2015	Sep-Oct 2015	Nov 2015
Subsurface Crosscut Scoping Meeting <ul style="list-style-type: none">• 13 labs and DOE participated• Technical planning for program elements							
Labs support DOE on SubTER elements in QTR <ul style="list-style-type: none">• Substantive narrative for web appendix							
FY15 AOP Opportunity for Labs (\$6M, multi-lab projects)							
Interim Report on Program Elements							
Outreach: Professional Societies, universities, industry							
2nd Subsurface Crosscut Scoping Meeting							
Develop Technical Plan for FY16							
SubTER Community Workshop (Academia and Industry) <ul style="list-style-type: none">• Includes Published workshop report							
SubTER Launch (\$100M “new” in PBR)							



Proposed Organizational Structure


SubTER in FY2016

President's Budget Request (\$M)

Program Risks

- ▶ Financial
 - ▶ Need multi-office commitment
 - ▶ Need Congressional support for several programs
- ▶ Operational
 - ▶ Multi-office, multi-lab complexity
- ▶ Technical
 - ▶ Adaptive control is a 'moonshot'
 - ▶ Multi-scale heterogeneity
 - ▶ Cannot see the subsurface

Elements of Success

- ▶ Focused Technical Goal
 - ▶ True crosscut – supports needs of many Energy offices
- ▶ Strong Management Team
 - ▶ DOE and Lab Leads work well together
 - ▶ Frequent contact, common goal
 - ▶ Building the Lab Team
 - ▶ Frequent communication
 - ▶ In-person meetings with whole team
 - ▶ Seed Funding In FY 14 and FY15
 - ▶ Creates Momentum
- ▶ Outreach
 - ▶ Stakeholders
 - ▶ Partners

Adaptive Control of Subsurface Fractures and Fluid Flow

For More Information:
energy.gov/subsurface-tech-team

 Office of the Under Secretary for Science and Energy

Energy Department Subsurface Crosscut

Addressing Common Subsurface Challenges

The ability to master the subsurface continues to elude researchers and practitioners working on a variety of energy production and storage applications. The DOE is implementing a new collaborative model to tackle this “energy grand challenge” through a coordinated RD&D strategy. Common challenges faced by the participating offices include:

- 1. Discover, Characterize, and Predict**
 - accurately characterizing the subsurface using integrated geophysical and geochemical technologies
 - Quantitatively inferring subsurface evolution under current and future engineered conditions
 - Finding viable, low-risk resources
- 2. Access**
 - safe, cost-effective reservoir integrity
- 3. Engineer**
 - Creating/constructing desired subsurface conditions in challenging high-pressure/high-temperature environments
- 4. Sustain**
 - maintaining optimal subsurface conditions over multi-decadal or longer time frames through complex system evolution
- 5. Monitor**
 - improving observational methods to advance understanding of multi-scale complexities through system lifetimes

The SubTER technical team identifies and facilitates crosscutting RD&D and policy activities for DOE, to enable programs with common technical challenges to work together toward solutions. The SubTER crosscut reports to the Under Secretary for Science and Energy and leverages program budget priorities to better plan for investment and assistance. While each of the offices brings new activities to the table, the sector benefits as a whole from crosscutting solutions. Partnerships include Departmental programs and offices, labs, academia, and industry, as well as synergies across federal agencies.

Subsurface Technology and Engineering Research, Development, and Demonstration (SubTER) Crosscut

Subsurface energy sources satisfy over 80% of total U.S. energy needs. Finding and effectively exploiting these resources while mitigating impacts of their use constitute major technical and socio-political challenges. Still, the opportunities are vast. Next generation advances in subsurface technologies will enable increases in domestic natural gas supplies, as well as 100+ GWe of clean, renewable geothermal energy. The subsurface provides hundreds of years of safe storage capacity for carbon dioxide (CO₂), and opportunities for environmentally responsible management and disposal of hazardous materials and other energy waste streams. The subsurface can also serve as a reservoir for energy storage for power produced from intermittent generation sources. These opportunities have immediate connection to societal needs and administration priorities. Clean energy deployment and CO₂ storage are critical components of the President's Climate Action Plan, necessary to meet the 2050 greenhouse gas (GHG) emissions reduction target. Increasing domestic energy supply from greater hydrocarbon resource recovery, in a sustainable and environmentally sound manner, are also Administration goals that enhance national security and fuel economic growth.

Who's Involved?

Representing the geosciences, research, modeling, technology development, policy, and stakeholders, the participating program offices include:

- Fossil Energy-Oil and Gas
- Fossil Energy-CO₂ Storage
- EERE-Geothermal Technologies Office
- Nuclear Energy
- Environmental Management
- Office of Science
- ARPA-E
- Office of Electricity
- Energy Policy & Systems Analysis
- Congressional & Inter-governmental Affairs
- Energy Information Administration

Thank You

FY 2015 Schedule

Activities	Nov-Dec 2014	Jan-Feb 2015	Mar-Apr 2015	May-Jun 2015	Jul-Aug 2015	Sep-Oct 2015	Nov 2015
Subsurface Crosscut Scoping Meeting <ul style="list-style-type: none">• 13 labs and DOE participated• Technical planning for program elements							
Labs support DOE on SubTER elements in QTR <ul style="list-style-type: none">• Substantive narrative for web appendix							
FY15 AOP Opportunity for Labs (\$6M, multi-lab projects)							
Interim Report on Program Elements							
Outreach: Professional Societies, universities, industry							
2nd Subsurface Crosscut Scoping Meeting							
Develop Technical Plan for FY16							
SubTER Community Workshop (Academia and Industry) <ul style="list-style-type: none">• Includes Published workshop report							
SubTER Launch (\$100M “new” in PBR)							

Subsurface Stress and Induced Seismicity

Quantify and reduce risk of induced seismicity through quantitative understanding and manipulation of subsurface stress and improve reservoir performance by an order of magnitude

Element	2-year goals	5-year goals	10-year goals
State of stress (measurement and manipulation)	Assess and improve stress measurement resolution and uncertainty methods, begin field deployment	Achieve stress tensor precision, orientation, and spatial resolution goals for borehole, interwell, and field scales	Use automated inversion for stress tensors (at different scales) to optimize adaptive control
Induced seismicity (measurement and manipulation)	Design and execute lab, numerical and field studies to measure and modify induced seismicity	Integrate passive and active seismic imaging to ID and locate faults capable of M4-5 with 95% confidence	Demonstrate forecast and management mechanisms to decrease likelihood of M2-3 event by 10x over a defined time period.
Relating stress manipulation and induced seismicity to permeability	Test fracture/permeability relationships using multi-physics models for available data sets	Characterize in-situ permeability tensor of a fault/fracture zone	Demonstrate 10x improvement in characterizing flow paths in a faulted environment
Applied risk analysis of subsurface manipulation	Apply induced seismicity risk assessment to a benchmark field site.	Demonstrate risk-informed control framework including field validation.	Demonstrate risk-driven adaptive controls on operational envelopes (injection rates, volumes, pressure, well locations).

FY 2015 Schedule

Activities	Nov-Dec 2014	Jan-Feb 2015	Mar-Apr 2015	May-Jun 2015	Jul-Aug 2015	Sep-Oct 2015	Nov 2015
Subsurface Crosscut Scoping Meeting <ul style="list-style-type: none">• 13 labs and DOE participated• Technical planning for program elements							
Labs support DOE on SubTER elements in QTR <ul style="list-style-type: none">• Substantive narrative for web appendix							
FY15 AOP Opportunity for Labs (\$6M, multi-lab projects)							
Interim Report on Program Elements							
Outreach: Professional Societies, universities, industry							
2nd Subsurface Crosscut Scoping Meeting							
Develop Technical Plan for FY16							
SubTER Community Workshop (Academia and Industry) <ul style="list-style-type: none">• Includes Published workshop report							
SubTER Launch (\$100M “new” in PBR)							

SubTER in FY2016 President's Budget Request

	Wellbore Integrity	Subsurface Stress and Induced Seismicity	Permeability Manipulation	New Subsurface Signals	Ongoing Subsurface-Related R&D	TOTAL
Defense Environmental Cleanup, TOTAL	---	---	---	---	8,000	8,000
Headquarters Operations: Technology Development	---	---	---	---	2,000	2,000
Idaho National Laboratory	---	---	---	---	3,000	3,000
Richland/Hanford: Hanford Site	---	---	---	---	3,000	3,000
Energy Efficiency and Renewable Energy, TOTAL	---	10,000	8,000	8,000	45,000	71,000
Geothermal Technologies: Enhanced Geothermal Systems	---	5,000	---	---	34,000	39,000
Geothermal Technologies: Hydrothermal		5,000	8,000	8,000	11,000	32,000
Fossil Energy Research & Development, TOTAL	11,788	23,888	5,071	9,687	70,084	120,518
Carbon Storage: Advanced Storage R&D	5,000	7,384	---	5,000	---	17,384
Carbon Storage: Storage Infrastructure	---	---	---	---	60,084	60,084
Carbon Storage: Sub-Disciplinary Storage R&D	5,600	15,316	3,888	3,500	---	28,300
Crosscutting Research: Coal Utilization Science	1,188	1,188	1,187	1,187	---	4,750
Natural Gas Technologies: Environmentally Prudent Development	---	---	---	---	10,000	10,000
Nuclear Energy, TOTAL	26,000	---	---	---		26,000
Fuel Cycle R&D: Used Nuclear Fuel Disposition	26,000	---	---	---		26,000
Science, TOTAL	---	---	---	---	5,000	5,000
Basic Energy Sciences: Chemical Sciences, Geosciences, and Biosciences					5,000	5,000
Total, Subsurface Technology and Engineering	37,788	33,888	13,071	17,687	141,584	244,018

Adaptive Control of Subsurface Fractures and Flow

For More Information:
energy.gov/subsurface-tech-team

 Office of the Under Secretary for Science and Energy

Energy Department Subsurface Crosscut

Addressing Common Subsurface Challenges

The ability to master the subsurface continues to elude researchers and practitioners working on a variety of energy production and storage applications. The DOE is implementing a new collaborative model to tackle this “energy grand challenge” through a coordinated RD&D strategy. Common challenges faced by the participating offices include:

- 1. Discover, Characterize, and Predict**
 - accurately characterizing the subsurface using integrated geophysical and geochemical technologies
 - Quantitatively inferring subsurface evolution under current and future engineered conditions
 - Finding viable, low-risk resources
- 2. Access**
 - safe, cost-effective reservoir integrity
- 3. Engineer**
 - Creating/constructing desired subsurface conditions in challenging high-pressure/high-temperature environments
- 4. Sustain**
 - maintaining optimal subsurface conditions over multi-decadal or longer time frames through complex system evolution
- 5. Monitor**
 - improving observational methods to advance understanding of multi-scale complexities through system lifetimes

The SubTER technical team identifies and facilitates crosscutting RD&D and policy activities for DOE, to enable programs with common technical challenges to work together toward solutions. The SubTER crosscut reports to the Under Secretary for Science and Energy and leverages program budget priorities to better plan for investment and assistance. While each of the offices brings new activities to the table, the sector benefits as a whole from crosscutting solutions. Partnerships include Departmental programs and offices, labs, academia, and industry, as well as synergies across federal agencies.

Subsurface Technology and Engineering Research, Development, and Demonstration (SubTER) Crosscut

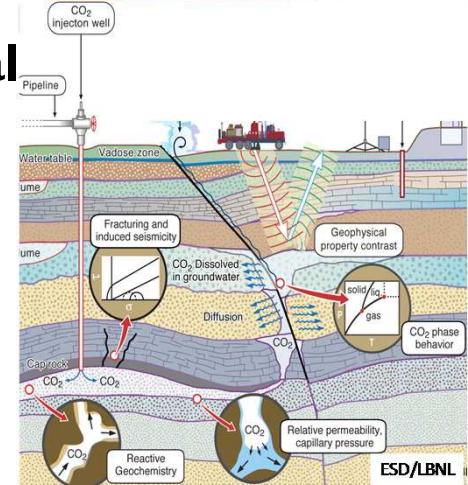
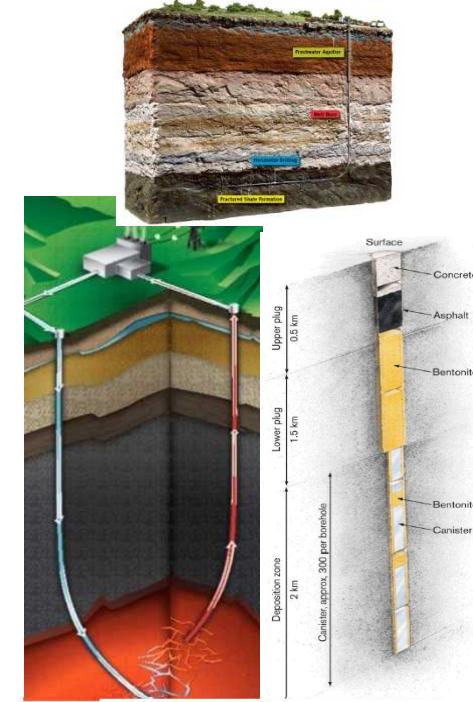
Subsurface energy sources satisfy over 80% of total U.S. energy needs. Finding and effectively exploiting these resources while mitigating impacts of their use constitute major technical and socio-political challenges. Still, the opportunities are vast. Next generation advances in subsurface technologies will enable increases in domestic natural gas supplies, as well as 100+ GWe of clean, renewable geothermal energy. The subsurface provides hundreds of years of safe storage capacity for carbon dioxide (CO₂), and opportunities for environmentally responsible management and disposal of hazardous materials and other energy waste streams. The subsurface can also serve as a reservoir for energy storage for power produced from intermittent generation sources. These opportunities have immediate connection to societal needs and administration priorities. Clean energy deployment and CO₂ storage are critical components of the President's Climate Action Plan, necessary to meet the 2050 greenhouse gas (GHG) emissions reduction target. Increasing domestic energy supply from greater hydrocarbon resource recovery, in a sustainable and environmentally sound manner, are also Administration goals that enhance national security and fuel economic growth.

Who's Involved?

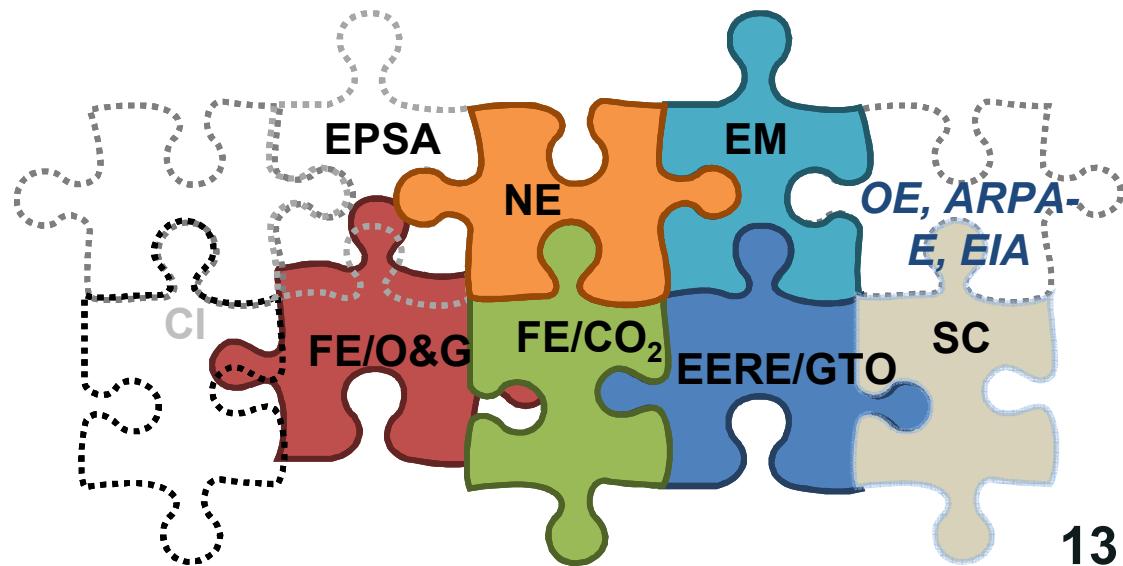
Representing the geosciences, research, modeling, technology development, policy, and stakeholders, the participating program offices include:

- Fossil Energy-Oil and Gas
- Fossil Energy-CO₂ Storage
- EERE-Geothermal Technologies Office
- Nuclear Energy
- Environmental Management
- Office of Science
- ARPA-E
- Office of Electricity
- Energy Policy & Systems Analysis
- Congressional & Inter-governmental Affairs
- Energy Information Administration

Preliminary 10-year Metrics



Double hydrocarbon production from tight reservoirs while decreasing environmental impact

- Increase longevity of US energy security
- Cut in Half:
 - The number of wells drilled
 - the emissions associated with extraction and truck use
 - Water use for tight reservoir production


Achieve order-of-magnitude increase in U. S. electrical production from geothermal reservoirs

Establish practical feasibility of **deep borehole disposal** for specialty nuclear wastes

Double confidence level in safe subsurface storage of CO₂

The Crosscut Team and the Big Idea come Together

13 National Laboratories

Getting Started

- FY14 SubTER Kickstart:
 \$2M investment in 9 seedling projects
- FY15:
 - ~\$6M opportunity to propose high priority, integrated and collaborative multi-lab projects that build on seedlings
- FY16:
 - President's Budget Request includes \$244M for SubTER
 - ~\$100M new funds