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Motivation for spectrum adjustment

= High energy resolution measurement of a neutron energy spectrum is
extremely difficult

= Monte Carlo neutron transport codes are typically used to calculate them
= MCNP
= Serpent
= SCALE
= Statistical errors can be made vanishingly small, but modelling errors are
often impossible to eliminate

= Higher accuracy in the spectrum leads to higher accuracy of radiation
damage parameters

"= Fe DPA " Fluence > E,
= SiKerma " Fluence< E,
=  GaAs damage = 325(n,p)3?P reaction rate



What is spectrum adjustment?

The adjustment of a spectrum produced
by a transport code so that it is more
consistent with experimental data

What experimental data?

= Neutron activation analysis

= Bonner sphere detector response

= Other integral quantities
Complication: there are typically around
50 integral quantities and hundreds of
energy groups

= Eachintegral quantity is an equation:

I = / ocddE ~ Z o;0; AE;
i |

= The flux in each energy group is a variable
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How has this been done in the past?

= There are a plethora of codes to chose from, each with its
own method:

SAND-II: iterative perturbation method

STAY’SL: least squares fitting

LSL-M2: logarithmic least squares fitting

MAXED: maximum entropy optimization

FORIST: constrained least squares fitting

FLYSPEC: differentiation of the recoil proton energy distribution
GRAVEL: modified SAND-II iterative method

And many, many more ...

= With so many options, we made the only rational decision

We wrote our own!
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So if there are so many codes, why ) i
introduce another?

= Spikes in the trial spectrum are Rl v
evidence of cross section B
resonances, but new spikes
after adjustment have no valid 7
explanation
= Post-adjustment smoothingmay =
remove peaks that are actually |
there i B B B
= As the resolution of the trial Bl B B BL BB
spectrum increases, so does the s
variance in the adjusted S s
spectrum
= These characteristics are not |
unique to LSL-M2
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The goal:

= To create an adjustment method that preserves trial spectrum features
without introducing new features

= |n addition, the proposed method should produce a spectrum which
predicts the observed data reasonably well, and at least as well as the
adjusted spectra of other codes

= The integrity of the method should be as independent of input trial
spectrum resolution as possible




The genetic algorithm

= Whatisit?
= An optimization method
= Designed to mimic natural selection

= Excellent for optimization problems of low
complexity (where a single metric can easily
define the quality of the solution)

= Travelling salesman problem
= Number partitioning problem
= Antenna design

=  Why did we choose it?

= |ntroduced to it in physics undergrad

= |t’s application to engineering has not been
thoroughly explored
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How does it work?

Problem Abstraction Ry Setting the Initial Population

E—

Assign each specimen a fitness

!

!

Repeat for a user
defined number of
generations

Repeat until number
of children equals
number of parents
from previous

\ l / generation
Occasionally mutate the children

/ Select parents for mating \

Mate the parents to form children




Abstraction

= Step 1: select the number of gene
sites N, to be used

=  Step 2: seek the energy domain of
the problem (from trial spectrum)

= Step 3: select N points equidistant
in log-space covering energy
domain
= These will be referred to as the GENE
SITES
= Step 4: each site is assigned a real
number (typically close to 1)

= These numbers will be referred to as
the GENES

Neutron Lethargy Flux per MW
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Setting the population

= For each specimen:

= For each gene site:
= Pull a random Gaussian distributed
number (4 =0, o = 0.07)
= Additto 1. The result is the value of
the gene
= Perform a polynomial least squares
regression through the gene values
= This polynomial will be referred to as
the SHIFT FUNCTION
=  Multiply the flux in each energy group
of the trial spectrum with the value of
the shift function at the groups
midpoint energy

= Repeat this process until the initial
population is of the desired size

Neutron Lethargy Flux per MW

3.0 x10" —

2.5x10%2 1

2.0 X102 |

15x102}

1.0x102 L

5.0 x10M |-

0.0 x10% Lz [ I R [ [
10° 10° 107 10 10°

Sandia
National _
Laboratories

10 107 102 107 10° 10*
Energy (MeV)




Sandia
r.h National
Laboratories

Assigning fitness values

= Remember the original goal: we want a spectrum that is consistent with
experiment

= Specifically, we want the activities calculated using the adjusted spectrum and dosimetry
cross sections to match well with the measured activities

= The fitness function should be large when the difference between
calculation and experiment is small

m ’ { O'J’zC)jAE]} — g
=1
. S
=1

T
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Parent selection

= Proportional selection
= Specimens with high fitness values have a high probability of being selected for mating
= Likewise, those with lower fitness values have a low probability of being selected

=  Specifically:

S
B =3 {ifi— Fin}
=1

Pj _ fj —fmz'n

Py
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Mating

Parent 2 Genotype
= Crossover: given 2 parents, it will produce !

Crossover

2 children |
= Obviously, other methods exist and we tried ———
B8 |

Parent | Genotype

many of them. Child 2 Genotype
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Mutation
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=  Gene-wise mutation:

As each child receives each of it’s genes from
it’s parents, each gene has a set probability
of being selected for mating

Gene Mutation in this case is simply adding

another random Gaussian distributed

number (i =0, o =0.02) to the inherited

gene value o

=  Why do we need mutation?

It is common for genetic algorithms to
converge upon a solution with a high fitness,
but not the absolute highest fitness possible

Mutation ensures that the entire solution
space is being explored
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Results: effect of polynomial order

4t order
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Results: convergence speed
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Results: PLG final adjustment

LSL Genetic Algorithm
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Results: Resolution dependence
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Foil identification LSL Genetic Measured LSL % diff Genetic % diff
al27a#-ml3x-bahl 3.736E-13 3.768E-13 3.774E-13 1.008% 0.171%
aul97g#-dil3-bahl 2.439E-07 2.386E-07 2.404E-07 1.467% 0.756%
aul97g#-dil3-cdhl 1.803E-07 1.777E-07 1.788E-07 0.841% 0.630%
co59g#-mil2-bahl 2.797E-08 2.720E-08 2.724€E-08 2.694% 0.140%
co59g#-mil2-cdhl 5.391E-09 5.591E-09 5.329E-09 1.165% 4.918%
co59p#-mil2-cdhl 8.216E-13 8.014E-13 8.157E-13 0.723% 1.753%
c0592#-mil2-cdhl 1.128E-13 1.112E-13 1.117E-13 0.985% 0.425%
cub3a#-mil5-bahl 3.014E-13 2.933E-13 3.596E-13 16.182% 18.426%
cub3g#-mil5-bahl 3.310E-09 3.220E-09 3.305E-09 0.162% 2.577%
cub3g#-mil5-cdhl 5.135E-10 5.490E-10 4.975E-10 3.216% 10.353%
feS54p#-mil5-bahl 5.032E-11 5.024E-11 4.970E-11 1.249% 1.089%
feS6p#-milS-bahl 6.122E-13 5.970E-13 6.200E-13 1.255% 3.714%
fe58g#-mil5-bahl 9.783E-10 9.375E-10 9.335E-10 4.804% 0.426%
fe58g#-mil5-cdhl 1.548E-10 1.512E-10 1.493E-10 3.667% 1.304%
in115n#-mil5-bahl 1.545E-10 1.564E-10 1.651E-10 6.434% 5.274%
mg24p#-milS-bahl 8.013E-13 8.042E-13 7.661E-13 4.592% 4.973%
. mn55g#-mil2-cdhl 1.490E-09 1.436E-09 1.487E-09 0.209% 3.400%
Re Su Its . eX p erimen ta | mn552#-mil2-bahl 1.168E-13 1.151E-13 1.375E-13 15.045% 16.271%
. mo98g#-mil5-bahl 8.740E-10 8.642E-10 8.667E-10 0.842% 0.284%
CO n S I Ste n Cy mo98g#-mil5S-cdhl 7.940E-10 7.881E-10 7.982E-10 0.528% 1.271%
na23g#-pelt-bahl 3.242E-10 3.155E-10 3.057E-10 6.064% 3.219%
na23g#-pelt-cdhl 3.358E-11 3.547E-11 3.245E-11 3.469% 9.305%
nb932#-mil5-bahl 2.438E-13 2.435E-13 2.411E-13 1.124% 0.976%
niS8p#-milx-bahl ** 6.879E-11 6.879E-11 6.879E-11 0.000% 0.000%
niS82#-milx-cdhl 2.293E-15 2.332E-15 2.152E-15 6.569% 8.382%
ni60p#-milx-cdhl 1.228E-12 1.189E-12 1.254E-12 2.040% 5.168%
rmldu#-rmld-fiss 2.250E-10 2.281E-10 2.194E-10 2.546% 3.958%
rmleu#-rmle-fiss 2.463E-09 2.495E-09 2.573E-09 4.257% 3.040%
rmlpu#-rmlp-fiss 2.796E-09 2.803E-09 2.570E-09 8.776% 9.072%
s32cf#-void-bare 5.845E-02 5.886E-02 5.437E-02 7.501% 8.262%
sc45g#-mil5-bahl 1.802E-08 1.730E-08 1.731E-08 4.087% 0.057%
sc45g#-mil5-cdhl 1.295E-09 1.314E-09 1.352E-09 4.208% 2.791%
tid6p#-milx-bahl 6.700E-12 6.509E-12 6.400E-12 4.684% 1.698%
ti47p#-milx-bahl 1.237E-11 1.243E-11 1.265E-11 2.188% 1.723%
ti48p#-milx-bahl 1.639E-13 1.628E-13 1.625E-13 0.839% 0.183%
zn64p#-milx-bahl 2.403E-11 2.408E-11 2.451E-11 1.940% 1.735%
zr902#-milx-bahl 5.670E-14 5.689E-14 5.748E-14 1.353% 1.023%




Recap
= Pros
= The method guarantees an adjustment which preserves trial spectrum %

features without introducing unrealistic ones

The calculated activities match experimental data at least as well as LSL- J
M2

The method seems to be resolution independent J

= Cons

Data means nothing without error bars, and the method does not have @
any way to inherently handle uncertainty quantification (LSL-M2 does)

Users of other spectrum adjustment methods would say that an accurate
representation of the variance in the output spectrum is what determines @

the quality of adjustment, and not simply the agreement with a limited
experimental data set
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A closer look at LSL-M?2

= A brief look at the method

= Takes an underdetermined problem and makes it an over-determined problem
= Method guarantees to minimize the variance in the adjusted quantities
= One catch: all input parameters are adjusted, not only the spectrum

* |n the universal language:
& = (60=0)T[cov(6)] ™ (60-9) + (70-0)T[cov(00)] (700 + (™) [eov(a™)] (2™ ~a)

=  Where are we getting the covariance matrices from?

= A detailed uncertainty quantification of the model parameters is the most rigorous
method

= QOther estimation techniques exist




Sandia
r.h National
Laboratories

Expanding the genetic algorithm

= |f we are to include uncertainty quantification into the code, it should be:
= Rigorous
= Intrinsic
=  What output should we expect?
= Variance of the flux in each energy group
= Covariance (or correlation) matrix of the final solution
=  Options?
= Because the method is so abstract, error propagation is much more challenging

= Leading (and only candidate) at the moment: random sampling
= Generate many sets of input based on input parameter uncertainties
= Generate many sets of output

= Perform the statistics
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Sources of uncertainty

| Transport data libraries
/ compositions

" Material densities and

netic / Dosimetry cross sections |

Algorithm




Parallelization

= Utilizing parallelism: combining
MPI and OpenMP

= Each MPI process will get a MCNP
input spectra

= Each of these processes will be
threaded with each thread getting a
different set of dosimetry cross
sections and activities

= Memory usage?

= 89 energy groups = 3 MB per process
= Not really an issue
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Other plans

= Comparison of genetic algorithm to other codes (aside from LSL-M2)
= Adjustment of radiation metrology benchmark fields
= Parametric uncertainty quantification

= Varying each source of uncertainty individually to see its contribution to the adjusted
spectrum’s uncertainty

= Verification of covariance matrix estimation techniques using brute force
uncertainty quantification
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Conclusions

= The genetic algorithm produces promising, but currently
incomplete results

= The method is less likely to produce unrealistic adjustment
artefacts

= The method is almost completely independent of trial
spectrum resolution
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Questions?




