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Motivation for spectrum adjustment

 High energy resolution measurement of a neutron energy spectrum is 
extremely difficult

 Monte Carlo neutron transport codes are typically used to calculate them
 MCNP

 Serpent

 SCALE

 Statistical errors can be made vanishingly small, but modelling errors are 
often impossible to eliminate

 Higher accuracy in the spectrum leads to higher accuracy of radiation 
damage parameters

 Fe DPA                               

 Si Kerma

 GaAs damage
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What is spectrum adjustment?

 The adjustment of a spectrum produced 
by a transport code so that it is more 
consistent with experimental data

 What experimental data?
 Neutron activation analysis

 Bonner sphere detector response

 Other integral quantities

 Complication: there are typically around 
50 integral quantities and hundreds of 
energy groups
 Each integral quantity is an equation:

 The flux in each energy group is a variable
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How has this been done in the past?

 There are a plethora of codes to chose from, each with its 
own method:
 SAND-II: iterative perturbation method

 STAY’SL: least squares fitting

 LSL-M2: logarithmic least squares fitting

 MAXED: maximum entropy optimization

 FORIST: constrained least squares fitting

 FLYSPEC: differentiation of the recoil proton energy distribution

 GRAVEL: modified SAND-II iterative method

 And many, many more …

 With so many options, we made the only rational decision
 We wrote our own!
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So if there are so many codes, why 
introduce another?

 Spikes in the trial spectrum are 
evidence of cross section 
resonances, but new spikes 
after adjustment have no valid 
explanation

 Post-adjustment smoothing may 
remove peaks that are actually 
there

 As the resolution of the trial 
spectrum increases, so does the 
variance in the adjusted 
spectrum

 These characteristics are not 
unique to LSL-M2
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The goal:

 To create an adjustment method that preserves trial spectrum features 
without introducing new features

 In addition, the proposed method should produce a spectrum which 
predicts the observed data reasonably well, and at least as well as the 
adjusted spectra of other codes 

 The integrity of the method should be as independent of input trial 
spectrum resolution as possible
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The genetic algorithm

 What is it?
 An optimization method

 Designed to mimic natural selection

 Excellent for optimization problems of low 
complexity (where a single metric can easily 
define the quality of the solution)

 Travelling salesman problem

 Number partitioning problem

 Antenna design 

 Why did we choose it?
 Introduced to it in physics undergrad

 It’s application to engineering has not been 
thoroughly explored
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How does it work?
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Problem Abstraction Setting the Initial Population

Assign each specimen a fitness

Select parents for mating

Mate the parents to form children

Occasionally mutate the children

Repeat until number 
of children equals 
number of parents 
from previous 
generation

Repeat for a user 
defined number of 
generations



Abstraction

 Step 1: select the number of gene 
sites N, to be used

 Step 2: seek the energy domain of 
the problem (from trial spectrum)

 Step 3: select N points equidistant 
in log-space covering energy 
domain
 These will be referred to as the GENE 

SITES

 Step 4: each site is assigned a real 
number (typically close to 1)
 These numbers will be referred to as 

the GENES
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Setting the population

 For each specimen:
 For each gene site:

 Pull a random Gaussian distributed 
number (� = 0, � = 0.07)

 Add it to 1. The result is the value of 
the gene

 Perform a polynomial least squares 
regression through the gene values

 This polynomial will be referred to as 
the SHIFT FUNCTION

 Multiply the flux in each energy group 
of the trial spectrum with the value of 
the shift function at the groups 
midpoint energy

 Repeat this process until the initial 
population is of the desired size
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Assigning fitness values

 Remember the original goal: we want a spectrum that is consistent with 
experiment
 Specifically, we want the activities calculated using the adjusted spectrum and dosimetry 

cross sections to match well with the measured activities

 The fitness function should be large when the difference between 
calculation and experiment is small
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Parent selection

 Proportional selection
 Specimens with high fitness values have a high probability of being selected for mating

 Likewise, those with lower fitness values have a low probability of being selected

 Specifically:
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Mating

 Crossover: given 2 parents, it will produce 
2 children
 Obviously, other methods exist and we tried 

many of them.
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Mutation

 Gene-wise mutation:
 As each child receives each of it’s genes from 

it’s parents, each gene has a set probability 
of being selected for mating

 Gene Mutation in this case is simply adding 
another random Gaussian distributed 
number  (� = 0, � = 0.02) to the inherited 
gene value

 Why do we need mutation?
 It is common for genetic algorithms to 

converge upon a solution with a high fitness, 
but not the absolute highest fitness possible

 Mutation ensures that the entire solution 
space is being explored
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Results: effect of polynomial order
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2nd order 3rd order 4th order 5th order

6th order 7th order 8th order 9th order



Results: convergence speed
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Results: PLG final adjustment
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LSL Genetic Algorithm



Results: Resolution dependence
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89 Groups 640 Groups
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Results: experimental 
consistency



Recap

 Pros
 The method guarantees an adjustment which preserves trial spectrum 

features without introducing unrealistic ones

 The calculated activities match experimental data at least as well as LSL-
M2

 The method seems to be resolution independent

 Cons
 Data means nothing without error bars, and the method does not have 

any way to inherently handle uncertainty quantification (LSL-M2 does)

 Users of other spectrum adjustment methods would say that an accurate 
representation of the variance in the output spectrum is what determines 
the quality of adjustment, and not simply the agreement with a limited 
experimental data set
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A closer look at LSL-M2

 A brief look at the method
 Takes an underdetermined problem and makes it an over-determined problem

 Method guarantees to minimize the variance in the adjusted quantities

 One catch: all input parameters are adjusted, not only the spectrum

 In the universal language:

 Where are we getting the covariance matrices from?
 A detailed uncertainty quantification of the model parameters is the most rigorous 

method

 Other estimation techniques exist
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Expanding the genetic algorithm

 If we are to include uncertainty quantification into the code, it should be:
 Rigorous

 Intrinsic

 What output should we expect?
 Variance of the flux in each energy group

 Covariance (or correlation) matrix of the final solution

 Options?
 Because the method is so abstract, error propagation is much more challenging

 Leading (and only candidate) at the moment:  random sampling

 Generate many sets of input based on input parameter uncertainties

 Generate many sets of output 

 Perform the statistics
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Sources of uncertainty
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MCNP

Genetic 
Algorithm

Transport data libraries

Material densities and 
compositions

Geometrical parameters

Dosimetry cross sectionsMeasured activities



Parallelization

 Utilizing parallelism: combining 
MPI and OpenMP
 Each MPI process will get a MCNP 

input spectra

 Each of these processes will be 
threaded with each thread getting a 
different set of dosimetry cross 
sections and activities

 Memory usage?
 89 energy groups ≈	3 MB per process

 Not really an issue
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Other plans

 Comparison of genetic algorithm to other codes (aside from LSL-M2)

 Adjustment of radiation metrology benchmark fields

 Parametric uncertainty quantification
 Varying each source of uncertainty individually to see its contribution to the adjusted 

spectrum’s uncertainty

 Verification of covariance matrix estimation techniques using brute force 
uncertainty quantification
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Conclusions

 The genetic algorithm produces promising, but currently 
incomplete results

 The method is less likely to produce unrealistic adjustment 
artefacts

 The method is almost completely independent of trial 
spectrum resolution
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Questions?


