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Trinity

• Cray XC40

• Total of about 19000 nodes

– About half are Intel Haswell with 2 processors per 
node and 16 cores per processor running at 2.3 
GHz and 128 GB memory per node

– About half are 60+ core Intel Knights Landing 
processors

• About 42 PetaFlops peak



Intel and Cray Center of Excellence

• Focus on SIERRA applications

– SIERRA/Solid Mechanics (SM)

– SIERRA/Aerodynamics

– SIERRA/Structural Dynamics (SD)

• SIERRA is a large C++ framework

– provides framework for several codes

– Includes several Third Party Libraries

– Contains common C++ classes and methods

– Common infrastructure for parallel codes



SIERRA/SM (Solid Mechanics)

 A general purpose massively parallel nonlinear solid mechanics 
finite element code for explicit transient dynamics, implicit 
transient dynamics and quasi-statics analysis.

 Built upon extensive material, element, contact and solver 
libraries for analyzing challenging nonlinear mechanics 
problems for normal, abnormal, and hostile environments.

 Similar to LSDyna or Abaqus commercial software systems.
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SIERRA/SM Bottlenecks

5

Explicit 
dynamics with 
contact

Application: Implicit with FETI 
pre-conditioner

Explicit dynamics 
w/o contact

Parallel proximity search 
and enforcing contact 
constraints

Hot spot: Serial sparse direct 
solve: matrix 
factorization and 
forward/backward 
solves

Assembling nonlinear 
element residuals and 
computing material 
response

Contact detection example:

Potential contact detected



I-Beam Problem (Quasi-Static)
-provided by Joe Bishop

Mesh:
• 3 Different mesh refinements: 

8,576,  68,608, and 548,864 
elements

• Mean Quadrature and SD hex 
elements

Unique Features:
• Crystal Plasticity material model
• Problem does not converge when 

mesh is refined
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Preconditioning with linear solver

• The preconditioning step dominates the cost (>90%).

• Occurs one per time step

• Accomplished with a Jacobian matrix which requires 
an iterative linear solver algorithm to provide M-1

• Iterative linear solve done with the FETI (Finite 
Element Tearing & Interconnecting) domain 
decomposition algorithm 

• FETI requires a local solve, coarse solve, and a 
preconditioner solve (similar to most domain 
decomposition algorithms) 

• Extensively uses sparse direct solvers
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QS Model Strong Scaling on Chama 
and MPI overhead with scale

(nodes= 619,581, elements=548,864)
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---------------------------------------------------------------------------
@--- Aggregate Time (top twenty, descending, milliseconds) ----------------
---------------------------------------------------------------------------
Call                 Site       Time    App%    MPI%     COV
Allreduce             133   4.05e+06    3.90   17.46    0.09
Allreduce             168   4.01e+06    3.87   17.31    0.08
Barrier                53    3.4e+06    3.28   14.65    0.22
Allreduce             189    1.8e+06    1.74    7.78    0.00
Bcast                  10   1.27e+06    1.22    5.48    0.01
Allreduce             167   1.19e+06    1.15    5.13    0.05
Bcast                  98   5.68e+05    0.55    2.45    0.04

mpiP Top 5 MPI functions and call sites; 512 MPI tasks
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Early KNC results
• Adagio compiles and runs on our test-bed KNC

• Scaling has proven difficult (with MPI and OpenMP)
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Adagio Performance Summary

• Explicit dynamics dominated by MPI globals at 
scale

– Try asynchronous collectives?

– May benefit from optimization for small messages

• Quasi-statics

– Need to investigate improvements after use of 
threading and vectorization with Pardiso / MKL

– Leverage math library threading/vectorization

10



Summary of Sierra/Aero

• Unstructured meshes
• One and two equation turbulence models
• LES and Hybrid RANS
• Uses either FETI or Trilinos for sparse matrix operations and 

solvers.
• Assembly is substantial portion of the computational cost.

turbulent flow past a cavity



High-Order Unstructured Collocation

Standard Element Flux-based FormulationUnstructured Element

• Still under development
• Provably Entropy(Nonlinear) Stable
• Discontinouos formulation
• High computational intensity
• Accurate on unstructured topologies
• Trilinos Solvers for implicit solves



Trilinos Solver

• Uses Tpetra, Ifpack2 and Belos libraries

• For matrix assembly, preconditioning and 
solvers respectively.

• Symmetric Gauss-Seidel for preconditioner

• GMRES for solver



Aero Profile w/comments
||  28.4% |  35715.2 |  545.8 |   1.5% |tftk::linsys::TpetraBaseBlockLinearSystem::sumInto

This function fills the actual linear system with values from the application code.

||  19.9% |  25054.0 |  391.0 |   1.5% |Tpetra::Experimental::BlockCrsMatrix<double, int, long, 
KokkosClassic::SerialNode>::localGaussSeidel

This is the main work routine of the preconditioner (local on each process) that computes a 
smoothed solution for symmetric gauss-seidel. It is called twice for each linear iteration.

||  14.5% |  18261.9 | 4939.1 |  21.5% |sierra::conchas::ElementFlux::operator()

This is the main computation of the residual and sensitivities for the linear system.

||  13.7% |  17243.7 |  232.3 |   1.3% |Tpetra::Experimental::BlockCrsMatrix<double, int, long, 
KokkosClassic::SerialNode>::localApplyBlockNoTrans

This is a sparse matrix-vector multiply.

||   2.9% |   3631.9 |   32.1 |   0.9% |tftk::linsys::TpetraBaseBlockLinearSystem::zeroSystem

This zeros the linear system.

||   2.7% |   3427.8 |   39.2 |   1.1% |sierra::conchas::TpetraLinearSystem::scaleBlockMatrix

This modifies the linear system.

||   1.6% |   2050.4 |  624.6 |  23.5% |sierra::conchas::FluxPenalty::operator()

This is the coupling terms for computing the residual and sensitivities for the linear system.



Domain Areas
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 General Structural Dynamics, Finite Elements

 Vibrations, normal modes, implicitly integrated transient 
dynamics, frequency response analysis

 Shells, Solids, Beams, Point Masses

 Complicated Large Structures

 Typically many constraint equations

 Acoustics and Structural Acoustics

 Even larger systems

 More constraints

 Infinite Elements (nonsymmetric)

 Optimization, UQ and Inverse Methods

 Adjoint methods

 Material and Parameter inversion

 Verification and Validation

12/10/14

Sierra/SD



Sierra/SD Algorithms

 Domain Decomposition Linear Solvers
 Sparse linear solver dependence

 Threaded sparse solvers could play important future role

 Alternative algorithms for new architectures

 Flexibility in choice of subdomains, over-decomposition, …

 Eigen Solvers
 Arpack current workhorse

 Sparsekit sparse matrix utility package dependence

 Trilinos/Anasazi

 Could move in this direction going forward

 Linear solver dependence

 Orthogonalization
 Important to both linear and eigen solvers
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Linear Solver Role

Name Analysis 
Type

Solve time/
Total time

Solve phase/
Solve time

mc2912 modal 0.96 0.90

nfn9 modal 0.98 0.97

endevco transient 0.85 0.98

largerv static 0.71 0.52

Selected Sierra-SD performance test results (chama)

A lot of time in solve phase (initialization time often much smaller), 
final two columns can be even closer to 1 in practice

• Transient analysis (one solve for each time step)
• Modal analysis (multiple solves for each eigenmode)
• Each “solve” may take 10s to 100s of iterations



Domain Decomposition 101

• Partition into smaller subdomains

• Solve local (subdomain) problems 

• Solve global (coarse) problem

• Combine local & global solutions

• Multilevel extensions

• Inexact solves

• Rich theory

B. Smith, P. Bjorstad, and W. Gropp, Domain Decomposition: Parallel Multilevel Methods for Elliptic 
Partial Differential Equations, Cambridge University Press, 1996.

A. Toselli and O. Widlund, Domain Decomposition Methods: Algorithms and Theory, Springer, 2005.



Sierra/SD TPLs

 Sparse Direct Solvers
 SPRSBLKLLT (supernodal, left-looking, Ng & Peyton)

 SuperLU (for complex frequency domain analysis)

 Pardiso (option for Intel platforms, future importance?)

 NoPivot (in-house code, left-looking, threads)

 Movement to Trilinos/Amesos2

 Parallel Linear Algebra
 Trilinos/Epetra movement to Trilinos/Tpetra for solver

 Dense Linear Algebra
 BLAS, LAPACK, MKL, ScaLapack

 Graph Partitioning
 (Par)Metis, Chaco, Zoltan/phg
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Target Problems for CoE Focus

 NFN9 subsystem model
 Currently runs on 120 processors

 Refine mesh for scaling studies

 OUO model

 Sparse Linear Solvers
 Focus mainly on solve phase

 Will provide representative linear systems

 Evaluate performance of threaded and/or GPU accelerated solvers

 Goals:
 Profile performance for improved speed, especially in solve phase

 Identify problem areas

 Suggestions for improvement

 Reduce per-core memory footprint

20



Simplified Code Structure

Salinas

gdsw solvergdsw solver init

solver init solver

preconditioner orthogonalization

Epetra
communication

blkslvn
(dgemm)



Overview

• Total time 1029.5 sec

– User                     538.5 sec (52.3%)

• blkslvn 450.8 sec  (43.7%)

– MPI                           9.6 sec ( 0.9%)

– MPI_SYNC           481.4 sec (46.8%)

• MPI_Barrier 352.3 sec  (34.2%)

• MPI_Allreduce 123.0 sec  (11.9%)

• Total FLOPS 343.0e9 - double precision

– 331.5 MFLOPs/rank (3.5% peak)



Preconditioner Solve

• On node backsolve

– Shows 0 time when instrumented

– called in .h file

• Calls blkslvn (FORTRAN)

• blkslvn called average of 6182 times

• calls dgemm

– CrayPat loses connection to dgemm(shows up in 
call tree attached to root)

• Time for direct solve not in calling routines

• blkslvn takes 450.8 sec (83.7% of user time)



Communication Matrices

Whole Code GDSW Solver



Summary

• Shown three applications from SIERRA 
Framework with performance profiling

• Significant time spent in two areas:

– Solvers

– Matrix Assembly

• Haswell performance should follow current 
processors

– How to utilize the extra features of Haswell?

• Some experience with Knights Corner

– How to translate to Knights Landing


