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Introduction

 I develop methods to infer model parameters & inputs from 

experimental observations (inverse problems)

 Two issues: (1) inference with uncertainty (2) dimensionality 

reduction

 Funded by : SC/ASCR, LDRD (methods); ASC/V&V, DTRA 

(applications)

 Collaborators: 8900, 1400 (Comp & Info Sciences), Prof. Michalak

(Carnegie Inst., Stanford), Prof. Marzouk (MIT) [methods]; 1500 

(Engg. Sciences) & private industry [applications]

 Acknowledgments: 

 SNL: L. Swiler, S. Lefantzi, S. Arunajatesan, J. Lee 

 Outside: Z. Hou & M. Huang (PNNL); V. Yadav (JPL)
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Take-home message

 Calibration of models critical to predictive simulation

 Due to limitations of data, parameters are best inferred as PDFs

 Can be done via Bayesian inference; the “solver” in this case are called 

Markov chain Monte Carlo (MCMC) methods (sequential)

 Expensive; engineering & scientific models not calibrated this way

 We are developing the technology to do so. 2 core advances:

 Development of surrogate models for engineering models 

 Development of multi-chain MCMC methods (parallelization)

 Illustrate with calibration of Community Land Model (CLM)

 Programmatic use: calibration of turbulence models, disease models, 

etc.

 End with what next, papers, software etc.
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Timeline of development
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Adaptive MCMC & 
estimation of smooth fields

LDRD, $500K/yr

(2009 – 2011)

Shrinkage regression, high 
dimen. & rough fields

LDRD, $500K/yr

(2011 – 2013) 

Parallel MCMC and 
expensive forward models

ASCR, $600K/yr (SNL+PNNL)

(2014 – 2016) 

Estimation of partially 
observed epidemics

DTRA &  industry, $250K/yr

(2010 – 2012) 

Calibration of turbulence 
models 

ASC/V&V, $150K/yr

(2013 – ) 

NA-221 – UQ of 
radiation images

DARPA/EQUiPs: 
Inference of const. 
laws for plastic 
deformation
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Similar work

 Methodological

 Ghattas & Thanh (UT Austin) : focus on better proposal via local 

estimate of posterior distribution

 Vrugt (UC Irvine) : multi-chain, with Differential Evolution; very similar

 Haario (Finland) : multi-chain adaptive Metropolis; very similar

 Applications

 Moser/Oliver (UT Austin): calibration of turbulence models 

 Edeling & Bijl (Delft): turbulence models; boundary layers

 Solonen, Jarvinen, Haario: calibration, atmosphere model
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Model calibration

 Model calibration: Estimation of model parameters or inputs 
from observations. Fundamental to predictive simulations
 Can be scalars (e.g., Young’s modulus) or entire fields (CO2 fluxes, 

permeability fields etc.)

 Model fitting : Y(obs) = M(p) + 

 Inferred quantities are uncertain - Solution: estimate p as a PDF

 Bayesian Inference: A method to construct the PDF 
 Requires a prior PDF (p) and an error model,   ~ N(0, 2)

 Produces a posterior PDF P(p, 2 | Y(obs));  Bayes’ formula
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Markov chain Monte Carlo

 P(p, 2 | Y(obs)) is “solved” by sampling from it

 MCMC methods can sample from arbitrary PDFs efficiently

 Each sample requires a run of M(p) – and samples are serial

 Expensive!

 Ways out – our strategy

 Replace M(p) with a statistical surrogate (“curve fit”) M(s)(p)

 M(s)(p) is fast; using standard MCMC methods to solve inverse problem

 Sophistication lies in making M(s)(p); not always possible

 Inferences include the effect of surrogate approximations

 Multi-chain MCMC methods – MCMC carried out by communicating 

chains

 Use original M(p), not surrogate – no surrogate approximation errors

 Pool information collected by N chains to improve sampling efficiency

 Distribute sampling burden over multiple chains
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Core advances

 Surrogate models made by fitting to training 

data

 Sample p-space; run Y=M(p) for each pi

 “Curve-fit” Yi ≅ M(s)(pi)

 M(s)(pi) : polynomials, GPs, neural nets, etc.

 Overfitting: Cross-validation (CV), shrinkage, 

etc.

 Multi-chain adaptive MCMC w/ M(p)

 Initial exploration wasteful – fix using 

differential evolution (GA); asynchronous!

 Adapt; propose pi+1 based on successful 

samples pi-k, k = 0 …. M

 Have N chains pool samples; information 

sharing leads to better pi+1

 Amortize sampling over N chains
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Bayesian calibration of the CLM

 Community Land Model (CLM) – for terrestrial, biogenic & 
hydrological processes
 Used with atmosphere and ocean models in Earth System models

 Can also be used with measured meteorology at a given site

 Default setting – reproduce observations @ global scale
 Needs to be recalibrated when used in “site” mode; good illustration 

for Bayesian calibration of expensive models

 Calibration to monthly-averaged Latent Heat (LH) 
measurements from US-ARM
 LH most affected by 3 hydrological parameters (Fdrai, Qdm, b)

 2 calibrations:
 Using 2003-2007 data, done with surrogates

 Using synthetic data, done with CLM and 8-chain MCMC
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Calibration with surrogates

 Calibration performed using 
2 different error models

 To probe the causes of 
model – observation 
mismatch

 Allows model selection

 Showed that seasonal 
processes responsible for 
mismatch ( ~ 5 months)

 Remember – done with 
surrogates

 How much is the inference 
affected by surrogate model 
errors?
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Calibration with multi-chain MCMC & CLM

 Calibration with CLM provided as a 
check

 Surrogate approximations affect 
the PDF of parameters

 Synthetic data problem

 US-ARM meteorology for 2003

 Y(obs) generated using Fdrai = 1

 Bayesian inference

 Estimate Fdrai; track its various 
quantiles for convergence

 Should converge to 1

 Redo with surrogates 

 Chains: 500 (CLM); 2000 
(surrogate)

 Inversion with surrogates leads to 
an over-estimate of uncertainty
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Calibration of CLM - Impact

 First time a Bayesian CLM 
calibration had been done

 Provably converged results 
for PDFs

 PDFs for 2 sites show that 
parameter are site dependent

 Proposed models for 
structural error, showed how 
to select them, and extracted 
info on causes of structural 
error

 Showed the role of ensemble 
predictions

 Using real CLM versus 
surrogate, computed the 
effect of surrogate models on 
the PDFs
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Applications & other work

 Estimation of turbulence model parameters 
[3 parameters]

 Used for predictive RANS simulations of flow 
over slender aerodynamic bodies

 Calibration to jet-in-crossflow experiments

 Funds: ASC/V&V

 Estimation of rough fields using wavelet 
random field models [103 parameters]

 Used in estimation of fossil-fuel CO2 
emissions

 Specialized shrinkage methods for inverse 
problems with O(103) dimensions

 Funds: LDRD 

 Bayesian characterization of outbreaks from 
limited data

 Funds: DTRA & private industry
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Summary & what next?

 We are developing scalable statistical inversion methods to 
calibrate/infer model inputs from data
 Models: Engineering & scientific; PDE-based; expensive!

 The methods also help uncover model-form errors

 Funding: a mix of foundational & application-oriented sources

 What next?
 Scale up multi-chain MCMC

 Expand the use Bayesian inference to uncover model deficiencies

 Expand the fields where I apply Bayesian inference

 SNL Team
 Methods: L. Swiler, B. van Bloemen Waanders & S. Lefantzi

 Applications: S. Arunajatesan & L. Dechant, 
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BACK-UP SLIDES
Estimation of k- parameters
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Introduction

 Aim: Develop a principled way of enriching a turbulence 
model to reduce model-form error
 Needed for a predictive RANS simulator for transonic jet-in-crossflow 

 Drawback: RANS simulations are simply not predictive
 They have “model-form” error i.e., missing physics 

 They use parameters derived from canonical flows quite unlike jet-in-
crossflow interactions. 

 Hypothesis
 Once a RANS model has been calibrated to a jet-in-crossflow 

experiment, any lack of predictive skill is due to model-form 
uncertainty i.e., shortcomings of the linear eddy viscosity model 
(LEVM)

 If the LEVM can be enriched with higher-order terms and re-
calibrated, we could reduce the error further
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Target problem - jet-in-crossflow

 A canonical problem for spin-
rocket maneuvering, fuel-air 
mixing etc.

 We have experimental data (PIV 
measurements) and 
corresponding RANS simulations
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 We have velocity measurements on 
the crossplane

 We computed a vorticity field

 And used that (in a window) as the 
calibration variable

 We create a training set of 2744 3D 
RANS simulations by sampling in the 
(C, C2, C1) space

 We create statistical models for i = 
i(C, C2, C1) using polynomials

 i is the streamwise vorticity in grid-
cell I

 The statistical models were used in 
Bayesian inversion, in lieu of the RANS 
simulator

Bayesian calibration
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PDF of (C, C2, C1) 

 Marginalized versions of the 

3D PDF shown here

 Vertical lines are the 

“nominal” values of the 

parameters

 We sampled 100 (C, C2, C1) 

realizations from the PDF 

 Generated 100 realizations 

of the crossplane vorticity 

field using the RANS 

simulator

 Also found the best (C, C2, 

C1) combination my 

matching the experimental 

vorticity field
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Crossplane predictions

 Experimental vorticity in contours

 Stunning improvement in vorticity predictions

With nominal parameter values With calibrated parameter values

20J. Ray, Bayesian Calibration 



Mid-plane predictions

 Stunning improvement in vertical velocity predictions

Velocity deficit V-velocity

21J. Ray, Bayesian Calibration 



Prediction of turbulent stresses

 M=0.8, J=10.2

 Not very good agreement; 
LEVM is deficient

 Improve it
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BACK-UP SLIDES

Estimation of ffCO2 emissions (shrinkage & wavelet-based random field 
models)

J. Ray, Bayesian 
Calibration 
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The ffCO2 estimation problem

 Aim: Develop a technique to estimate anthropogenic CO2

emissions from sparse observations

 Motivations:

 An alternative to estimating CO2 emission using bottom-up (economic 

model) techniques

 Can provide independent verification in case of CO2 abatement 

treaties

 How is it done?

 Measure CO2 concentrations in flasks at measurement sites; also 

column-averaged satellite measurements

 Use an atmospheric transport model to invert for source locations
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CO2 flux inversions

 Biogenic CO2 fluxes:
 Smoothly variable in space

 Modeled using multivariate Gaussian

 Separate correlation lengths over 
land and oceans

 Anthropogenic (fossil fuel) 
emissions
• Currently, only bottom-up estimates 

exist 

• A few databases – Vulcan (US-only, 
2002); EDGAR (world)

• Gaussian process will probably not 
work

 What non-stationary covariance 
model to use?
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Spatial modeling

 An emission field on 2N x  2N pixels grid
 Can be decomposed on a wavelet basis, N deep

 Each level s has 2s x 2s – (2s-1 x 2s-1) weights 

 Spatial model for emissions

  are orthogonal bases (wavelet basis) of different resolution (scale)

 A priori, the model is not low-dimensional (w is large)

 Conjecture
 ws,i,j are mostly zero (i.e., is sparse)

 Most can be removed by comparing to a wavelet transform of 
nightlights

 Of the remaining, a fraction (near cities) may be estimated from 
observations; rest are small and can be set to zero
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Dimensionality reduction

 Nightlights are a good proxy for FF emissions

 Except emissions from electricity generation and cement production

 Nightlights easily observed – DoD’s DMSP-OLS

 Use thresholded radiance-calibrated nightlights from 1997-98 to mask 
out unpopulated regions
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Reconstruction – via penalized optimization

 Typically, when fitting, we would solve
 minimize | y(obs) – [A][]w |2 wrt w

 Sparsity-enforced (we want a sparse w)
 minimize | y(obs) – [A][]w |2 + |w|1

 The last penalty cuts down on the # of elements in w

 Many algorithms to solve this – usually formulated as
 Minimize |w|1 under the constraint | y(obs) – [A][]w |2 < s

 We use StOMP

 The ffCO2 problem
 [] are the basis set – in our case, Haar wavelets; w are the wavelet 

coefficients; [A] is the transport matrix [H]

 y(obs) are tower measurements of CO2 concentrations

 minimize | y(obs) – [H][]w |2 + |w|1
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How good is the reconstruction?

 A week in September 2008

True emissions Reconstructed emissions
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Did sparsification work?

 Only about half the 
wavelets could be 
estimated

 We are probably not 
over-fitting the 
problem
 Data-driven 

sparsification works
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Reconstruction error in total US emission

 We get about 3.5% error, worst case
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Is the spatial distribution correct?

 The spatial distribution of emissions is very close to truth

 Especially, if considering monthly fluxes
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