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= | develop methods to infer model parameters & inputs from
experimental observations (inverse problems)

= Two issues: (1) inference with uncertainty (2) dimensionality
reduction

= Funded by : SC/ASCR, LDRD (methods); ASC/V&YV, DTRA
(applications)

= Collaborators: 8900, 1400 (Comp & Info Sciences), Prof. Michalak
(Carnegie Inst., Stanford), Prof. Marzouk (MIT) [methods]; 1500
(Engg. Sciences) & private industry [applications]

= Acknowledgments:
= SNL: L. Swiler, S. Lefantzi, S. Arunajatesan, J. Lee
= Qutside: Z. Hou & M. Huang (PNNL); V. Yadav (JPL)
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Take-home message

= Calibration of models critical to predictive simulation

= Due to limitations of data, parameters are best inferred as PDFs

= Can be done via Bayesian inference; the “solver” in this case are called
Markov chain Monte Carlo (MCMC) methods (sequential)

= Expensive; engineering & scientific models not calibrated this way

= We are developing the technology to do so. 2 core advances:
= Development of surrogate models for engineering models

= Development of multi-chain MCMC methods (parallelization)

= |[[lustrate with calibration of Community Land Model (CLM)

= Programmatic use: calibration of turbulence models, disease models,
etc.

= End with what next, papers, software etc.
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Methodological

Application

Timeline of development

Adaptive MCMC &
estimation of smooth fields

LDRD, $500K/yr

(2009 — 2011)
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2009 2010

Shrinkage regression, high
dimen. & rough fields

LDRD, $500K/yr

(2011 — 2013)

Parallel MCMC and
expensive forward models

ASCR, $600K/yr (SNL+PNNL)

(2014 — 20106)

2011

Estimation of partially
observed epidemics

(2010 — 2012)

DTRA & industry, $250K/yr

i Calibration of turbulence
| models

1
. ASC/V&Y, $150K/yr

NA-221 — UQ of
radiation images

DARPA/EQUIPs:

' Inference of const.
! laws for plastic

i deformation
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Similar work i) et

= Methodological

= Ghattas & Thanh (UT Austin) : focus on better proposal via local
estimate of posterior distribution

= Vrugt (UC Irvine) : multi-chain, with Differential Evolution; very similar
= Haario (Finland) : multi-chain adaptive Metropolis; very similar

= Applications
= Moser/Oliver (UT Austin): calibration of turbulence models

= Edeling & Bijl (Delft): turbulence models; boundary layers

= Solonen, Jarvinen, Haario: calibration, atmosphere model
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Model calibration i) fatonat

" Model calibration: Estimation of model parameters or inputs
from observations. Fundamental to predictive simulations

= Can be scalars (e.g., Young’s modulus) or entire fields (CO2 fluxes,
permeability fields etc.)

= Model fitting : Y(°0s)= ‘M(p) + ¢
min HY("bS) — j\/l(p)Hz
p 2

= |nferred quantities are uncertain - Solution: estimate p as a PDF

= Bayesian Inference: A method to construct the PDF
= Requires a prior PDF t(p) and an error model, £~ N(0, c?)
= Produces a posterior PDF P(p, o2 | Y(°bs)): Bayes’ formula

P(p,c” | Y")c L(Y |p,c*) n(p);
[(:|:)ocexp(—HY(°bS) —M(p)‘ 2/202)
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Markov chain Monte Carlo i) ators

= P(p, o2 | Ys)) is “solved” by sampling from it
= MCMC methods can sample from arbitrary PDFs efficiently

= Each sample requires a run of M(p) —and samples are serial

= Expensive!
= Ways out — our strategy

= Replace M(p) with a statistical surrogate (“curve fit”) 2M®)(p)
= MG)(p) is fast; using standard MCMC methods to solve inverse problem
= Sophistication lies in making 2M©)(p); not always possible
» Inferences include the effect of surrogate approximations
= Multi-chain MCMC methods — MCMC carried out by communicating
chains
= Use original 2M(p), not surrogate — no surrogate approximation errors
= Pool information collected by N chains to improve sampling efficiency

= Distribute sampling burden over multiple chains
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Core advances i) fatonat

= Surrogate models made by fitting to training

data Multi-chain adaptive
MCMC with k chains

= Sample p-space; run Y="M(p) for each p.
= “Curve-fit” Y, = MO)(p))

= ‘M®)(p,) : polynomials, GPs, neural nets, etc.

Differential
Evolution

= Qverfitting: Cross-validation (CV), shrinkage,
etc.

=  Multi-chain adaptive MCMC w/ M(p)

= |nitial exploration wasteful — fix using
differential evolution (GA); asynchronous!

= Adapt; propose p.,, based on successful
samples p,,, k=0...M

Metropolis
Hastings

= Have N chains pool samples; information
sharing leads to better p,, PoPot  PuPany  ParPanyg

= Amortize sampling over N chains
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Bayesian calibration of the CLM ) i,

= Community Land Model (CLM) — for terrestrial, biogenic &
hydrological processes
= Used with atmosphere and ocean models in Earth System models
= Can also be used with measured meteorology at a given site

= Default setting — reproduce observations @ global scale

= Needs to be recalibrated when used in “site” mode; good illustration
for Bayesian calibration of expensive models

= Calibration to monthly-averaged Latent Heat (LH)
measurements from US-ARM
= LH most affected by 3 hydrological parameters (F..., Q4 b)

= 2 calibrations:
= Using 2003-2007 data, done with surrogates
= Using synthetic data, done with CLM and 8-chain MCMC
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Calibration with surrogates ) feae,

= Calibration performed using i
2 different error models 2 i: 9
" To probe the causes of E i g
model — observation &, 11 8° |
mismatch a | /\\ 3 ;
= Allows model selection : ! R s ) ——
= Showed that seasonal ° _’:': F— 45 4 14 i
processes responsible for i log Q)
mismatch (t ~ 5 months) = S Sl g S 7]
= Remember — done with o T 5 -
surrogates : 23
* How much is the inference & 8o |
affected by surrogate model . | ° -
errors? =
UIU I:ll1 UIE . DIS I'.'l..4 [IIE é 4 IIE'IF ; 'I:] 'IIZ

J. Ray, Bayesian Calibration 9



Calibration with multi-chain MCMC & CLM @)=,

= Calibration with CLM provided as a

check 18—
/ .h--\""-‘-.
= Surrogate approximations affect vl e N -
the PDF of parameters
14| m— 2 5th percentile
o — median
= Synthetic data problem —— Tanparare
o surrogate
131 = == median surrogate
= US-ARM meteorology for 2003 . =22 o ot
= Y(bs) generated using Fy,,. = 1 5 T T

= Bayesian inference Y
|

Estimate Fg,,; track its various :
guantiles for convergence | A\ |
= Should converge to 1 7
= Redo with surrogates Yoomr @0 w0 e 10 0 0 tow fee 200
= Chains: 500 (CLM); 2000
(surrogate)

Surrogates allow rigorous statistical
= |Inversion with surrogates leads to  checks, but surrogate errors can lead to

an over-estimate of uncertainty excessive uncertainty
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Calibration of CLM - Impact ) e

= First time a Bayesian CLM
calibration had been done

= Provably converged results B e
To— ame
fOr PDFS —— CLM default

- o Observatons
= PDFs for 2 sites show that
parameter are site dependent

45

40

®= Proposed models for
structural error, showed how

to select them, and extracted % ™

info on causes of structural

error 2
= Showed the role of ensemble

predictions o |

= Using real CLM versus
surrogate, computed the ' ' ' : : |
effect of surrogate models on
the PDFs
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Applications & other work

= Estimation of turbulence model parameters
[3 parameters]

= Used for predictive RANS simulations of flow
over slender aerodynamic bodies

= (Calibration to jet-in-crossflow experiments
=  Funds: ASC/V&V
= Estimation of rough fields using wavelet
random field models [103 parameters]

=  Used in estimation of fossil-fuel CO2
emissions

= Specialized shrinkage methods for inverse
problems with O(103) dimensions

= Funds: LDRD

= Bayesian characterization of outbreaks from
limited data

= Funds: DTRA & private industry

J. Ray, Bayesian Calibration
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Sandia
Summary & what next? L

= We are developing scalable statistical inversion methods to
calibrate/infer model inputs from data
= Models: Engineering & scientific; PDE-based; expensive!
= The methods also help uncover model-form errors
= Funding: a mix of foundational & application-oriented sources

= What next?
= Scale up multi-chain MCMC

= Expand the use Bayesian inference to uncover model deficiencies
= Expand the fields where | apply Bayesian inference

= SNL Team

= Methods: L. Swiler, B. van Bloemen Waanders & S. Lefantzi
= Applications: S. Arunajatesan & L. Dechant,

J. Ray, Bayesian Calibration 13
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Papers and software L

1. J. Ray et al, "Bayesian calibration of the Community Land Model using surrogates" accepted,
SIAM Journal on Uncertainty Quantification, 2015.

2. J. Ray et al, “A sparse reconstruction method for the estimation of multiresolution emission
fields via atmospheric inversion”, under review, Geoscientific Model Development, 2015.

3. V. Yadav et al, “A statistical approach for isolation fossil-fuel emissions in atmospheric
inverse problems”, under review, Journal of Geophysical Research — Atmosphere

4. J. Ray et al, "A multiresolution spatial parameterization for the estimation of fossil-fuel
carbon dioxide emissions via atmospheric inversions", Geoscientific Model Development, 7,
1901-1918, 2014.

5. J. Ray et al,, "Bayesian reconstruction of binary media with unresolved fine-scale spatial
structures" in Advances in Water Resources , 44:1--19, 2012.

6. S. A. McKenna et al, "Truncated multiGaussian fields and effective conductance of binary
media", in Advances in Water Resources , 34:617-626, 2011.

7. J.Ray, Y. M. Marzouk, and H. N. Najm, "A Bayesian approach for estimating bioterror attacks
from patient data", in Statistics in Medicine, 30(2):101-126, 2011

8. J.Ray & J. Lee, sparse-msrf: A package for sparse modeling and estimation of fossil-fuel CO2
emission fields, distributed under BSD license

I EEEEEEEE—————————
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Estimation of k-€ parameters

BACK-UP SLIDES
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= Aim: Develop a principled way of enriching a turbulence
model to reduce model-form error

= Needed for a predictive RANS simulator for transonic jet-in-crossflow

= Drawback: RANS simulations are simply not predictive
= They have “model-form” error i.e., missing physics

= They use parameters derived from canonical flows quite unlike jet-in-
crossflow interactions.

= Hypothesis

= Once a RANS model has been calibrated to a jet-in-crossflow
experiment, any lack of predictive skill is due to model-form

uncertainty i.e., shortcomings of the linear eddy viscosity model
(LEVM)

= |f the LEVM can be enriched with higher-order terms and re-
calibrated, we could reduce the error further

J. Ray, Bayesian Calibration 16
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Target problem - jet-in-crossflow

= A canonical problem for spin-
rocket maneuvering, fuel-air
mixing etc.

T R |
. < ‘\ 240 250 260 270 280
= We have experimental data (PIV T+ | ] u (m7s)
measurements) and T 1. /\RLJ“{%
corresponding RANS simulations = \\.
| | 4150
TOOE
E
450 >
>0

jet exit shock

counter-ratating
vortex pair
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Bayesian calibration

N Bl BE
/ B 240 250 260 270 280
. // u (m/s)
= We have velocity measurements on i
the crossplane TP =S
L. . vortex pair 150
= We computed a vorticity field o
100'§

= And used that (in a window) as the S

calibration variable
= We create a training set of 2744 3D
RANS simulations by sampling in the
(C,y Ceor Ciy) space

= We create statistical models for o, =

3000

@(C,, C,, C;) using polynomials 2000
= (@, is the streamwise vorticity in grid- 1000

cell | 0
-1000
= The statistical models were used in 2000
Bayesian inversion, in lieu of the RANS -3000
simulator T B

)6 -0.04 -0.02 Z? | 0.02 0.04 0.06
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PDF of (C,, C,,, C)

=  Marginalized versions of the
3D PDF shown here

= Vertical lines are the
“nominal” values of the
parameters

= We sampled 100 (C,, C,, C,,)
realizations from the PDF

= Generated 100 realizations
of the crossplane vorticity
field using the RANS
simulator

= Also found the best (Cw C.o
C.,) combination my
matching the experimental
vorticity field

Dansity

e

005 007 002 009 010 011 012

crmu

15
]

T T T
120 125 120

135 140
1

T
145

Density
0000 0001 0002 0003 0.0
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1.0

1.688 200

G2

208 210

1000 1200

sigma

1400
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Crossplane predictions )t

Vorticity (nominal case); J = 10.2 Vorticity (best case); J = 10.2

-1000
-1-2000

-1-3000

k- -4000

-5000

-6000

0.02 - 0.02
0 0005 001 0015 002 0025 003 0035 004 0045 005 0 0005 001 0015 002 0025 003 0035 004 0045 005

= Experimental vorticity in contours

= Stunning improvement in vorticity predictions

I EEEEEEEE—————————
J. Ray, Bayesian Calibration 20




Mid-plane predictions

i (U(x) - u)/U(x)

x/D. = 21
l
15 T T
O  Experimental
Ensemble mean
+ Bestcase
10
5k
i ] i e 1
0.1 -0.05 0.05 0.1 0.15

Velocity deficit
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x/ Dj =21
16 B° T T T T
o

141 “"a O  Experimental 7

% Ensemble mean

B + Bestcase
12F B .. e Nominal 7
10 B
8 |-
ol . |
4+ il
2 |- -
0 1
-0.1 0 0.1 0.2 0.3 0.4
v/U
oo
V-velocity

= Stunning improvement in vertical velocity predictions
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Prediction of turbulent stresses
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i o

o L L L [ - | L L L L
o onoz 0.004 0.006 [ulialu} 0.0 2 0.0z 0014 0016 o018 0.0z

T1" Ve

16

= M=0.8, J=10.2

12

= Not very good agreement; o

LEVM is deficient 1
= |Improve it T

P e
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Estimation of ffCO2 emissions (shrinkage & wavelet-based random field
models)

BACK-UP SLIDES
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The ffCO2 estimation problem ) i

= Aim: Develop a technique to estimate anthropogenic CO,
emissions from sparse observations

= Motivations:

= An alternative to estimating CO, emission using bottom-up (economic
model) techniques

= Can provide independent verification in case of CO, abatement
treaties

= How is it done?

= Measure CO, concentrations in flasks at measurement sites; also
column-averaged satellite measurements

= Use an atmospheric transport model to invert for source locations

J. Ray, Bayesian Calibration 24




CO, flux inversions ) e

* Biogenic CO, fluxes:
= Smoothly variable in space
= Modeled using multivariate Gaussian

= Separate correlation lengths over
land and oceans

E

u AnthrOpogenIC (fOSS'l fUE|) Biogenic emissions: Mueller et al, JGR, 2008
emissions

e Currently, only bottom-up estimates
exist

* A few databases — Vulcan (US-only,
2002); EDGAR (world)

e Gaussian process will probably not

{lag Kllotenne ClYear)

]
1
N
work -

* What non_Statlonary covariance Anthropogenic emissions: Gurney et

model to use? al, EST, 2009

-
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Spatial modeling LL

= An emission field on 2V x 2N pixels grid
= Can be decomposed on a wavelet basis, N deep
= Each level s has 25 x 25— (251 x 25'1) weights
= Spatial model for emissions
N 2 2
e(x)=D D 2 Wi by (X) = PW

N N
s=1 i=1 j=1

= ¢ are orthogonal bases (wavelet basis) of different resolution (scale)
= A priori, the model is not low-dimensional (w is large)

= Conjecture

= w,_..are mostly zero (i.e., is sparse)

S,i,J

= Most can be removed by comparing to a wavelet transform of
nightlights

= Of the remaining, a fraction (near cities) may be estimated from
observations; rest are small and can be set to zero

Sandia
National
Laboratories
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Dimensionality reduction ) s

= Nightlights are a good proxy for FF emissions
= Except emissions from electricity generation and cement production
= Nightlights easily observed — DoD’s DMSP-OLS

= Use thresholded radiance-calibrated nightlights from 1997-98 to mask
out unpopulated regions

I EEEEEEEE—————————
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Reconstruction — via penalized optimization .

Typically, when fitting, we would solve
= minimize | y°bs)— [A][®]w |, wrt w
= Sparsity-enforced (we want a sparse w)
= minimize | y°bs) - [A][®]w |, + [w],
= The last penalty cuts down on the # of elements inw
= Many algorithms to solve this — usually formulated as

= Minimize |w|,under the constraint | yl°*s)— [A][®]w |, < g,
= We use StOMP

The ffCO2 problem

= [®D] are the basis set — in our case, Haar wavelets; w are the wavelet
coefficients; [A] is the transport matrix [H]

= ylobs) are tower measurements of CO, concentrations

= minimize | y°bs) - [H][®@]w |, + |w];

J. Ray, Bayesian Calibration 28
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How good is the reconstruction? ) o,

True emissions in 8-day period 35 [microf\/loles/mzlsec] Reconstructed emissions in 8-day period 35 [microMoIes/mZ/sec]

True emissions Reconstructed emissions

= A weekin September 2008
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Did sparsification work?

Wavelet coefficients, for mid-complexity RF model
2 T T T T T T
O True values

Reconstruction

Coefficient value

T

| | | |
0 100 200 300 400 500 600 700
Wavelet coefficient #

Sandia
r.h National
Laboratories

Only about half the
wavelets could be
estimated

We are probably not
over-fitting the
problem

= Data-driven
sparsification works

J. Ray, Bayesian Calibration
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Reconstruction error in total US emission

US total emissions estimation error (%)
T T T T

)

Relative reconstruction error

= We get about 3.5% error, worst case

J. Ray, Bayesian Calibration
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s the spatial distribution correct? h) e,

Correlation between true and estimated emissions

0.97

096

0951

0941

0931

Correlation

0921

0911

0.9
— 8-day (weekly) emissions

*  32-day (monthly) emissions

089 1 1 1 1
0 5 10 15 20 25 30 35 40 45

Period #

= The spatial distribution of emissions is very close to truth
= Especially, if considering monthly fluxes

-
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