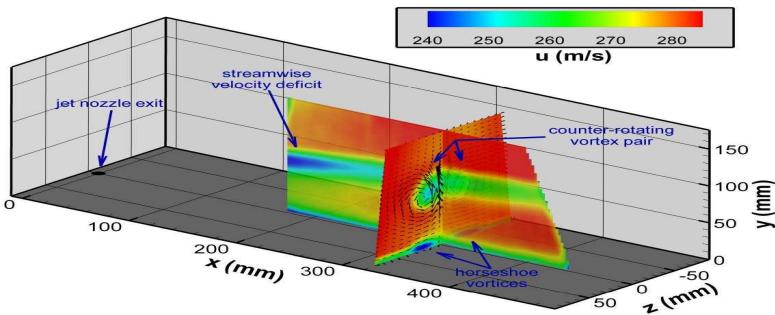
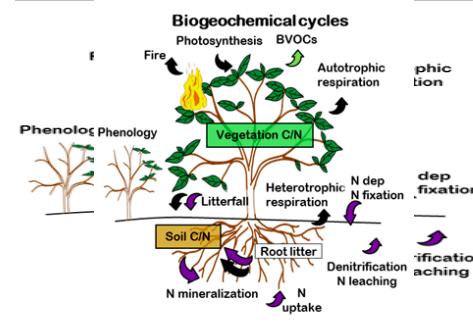
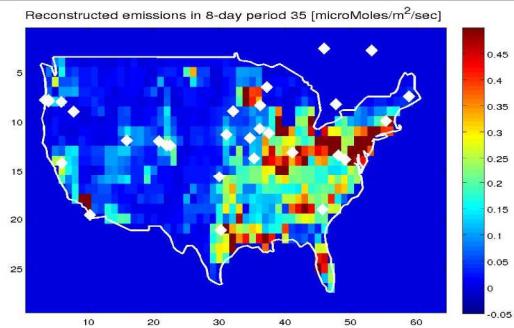


Exceptional service in the national interest



Bayesian inference of parameters of computationally expensive models

Jaideep Ray

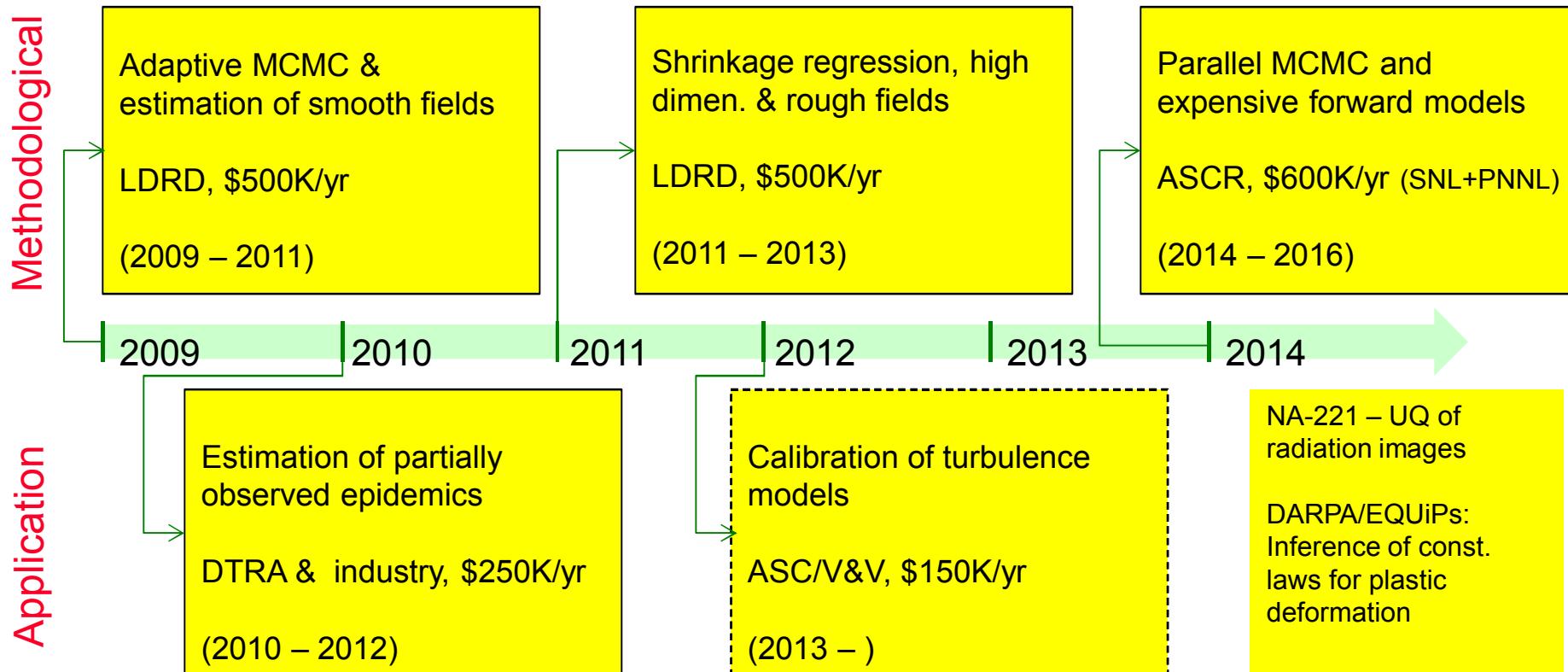
Introduction

- I develop methods to infer model parameters & inputs from experimental observations (inverse problems)
- Two issues: (1) inference with uncertainty (2) dimensionality reduction
- Funded by : SC/ASCR, LDRD (methods); ASC/V&V, DTRA (applications)
- Collaborators: 8900, 1400 (Comp & Info Sciences), Prof. Michalak (Carnegie Inst., Stanford), Prof. Marzouk (MIT) [methods]; 1500 (Engg. Sciences) & private industry [applications]
- Acknowledgments:
- SNL: L. Swiler, S. Lefantzi, S. Arunajatesan, J. Lee
- Outside: Z. Hou & M. Huang (PNNL); V. Yadav (JPL)

Take-home message

- **Calibration of models critical to predictive simulation**
 - Due to limitations of data, parameters are best inferred as PDFs
 - Can be done via Bayesian inference; the “solver” in this case are called Markov chain Monte Carlo (MCMC) methods (sequential)
 - Expensive; engineering & scientific models not calibrated this way
- **We are developing the technology to do so. 2 core advances:**
 - Development of surrogate models for engineering models
 - Development of multi-chain MCMC methods (parallelization)
- **Illustrate with calibration of Community Land Model (CLM)**
 - **Programmatic use:** calibration of turbulence models, disease models, etc.
- **End with what next, papers, software etc.**

Timeline of development



Similar work

- **Methodological**
 - Ghattas & Thanh (UT Austin) : focus on better proposal via local estimate of posterior distribution
 - Vrugt (UC Irvine) : multi-chain, with Differential Evolution; very similar
 - Haario (Finland) : multi-chain adaptive Metropolis; very similar
- **Applications**
 - Moser/Oliver (UT Austin): calibration of turbulence models
 - Edeling & Bijl (Delft): turbulence models; boundary layers
 - Solonen, Jarvinen, Haario: calibration, atmosphere model

Model calibration

- **Model calibration: Estimation of model parameters or inputs from observations. Fundamental to predictive simulations**

- Can be scalars (e.g., Young's modulus) or entire fields (CO₂ fluxes, permeability fields etc.)
- Model fitting : $\mathbf{Y}^{(obs)} = \mathcal{M}(\mathbf{p}) + \varepsilon$

$$\min_{\mathbf{p}} \quad \left\| \mathbf{Y}^{(obs)} - \mathcal{M}(\mathbf{p}) \right\|_2^2$$

- Inferred quantities are uncertain - Solution: estimate \mathbf{p} as a PDF
- **Bayesian Inference: A method to construct the PDF**
 - Requires a *prior* PDF $\pi(\mathbf{p})$ and an error model, $\varepsilon \sim N(0, \sigma^2)$
 - Produces a *posterior* PDF $P(\mathbf{p}, \sigma^2 | \mathbf{Y}^{(obs)})$; Bayes' formula

$$P(\mathbf{p}, \sigma^2 | \mathbf{Y}^{(obs)}) \propto \mathcal{L}(\mathbf{Y}^{(obs)} | \mathbf{p}, \sigma^2) \pi(\mathbf{p});$$

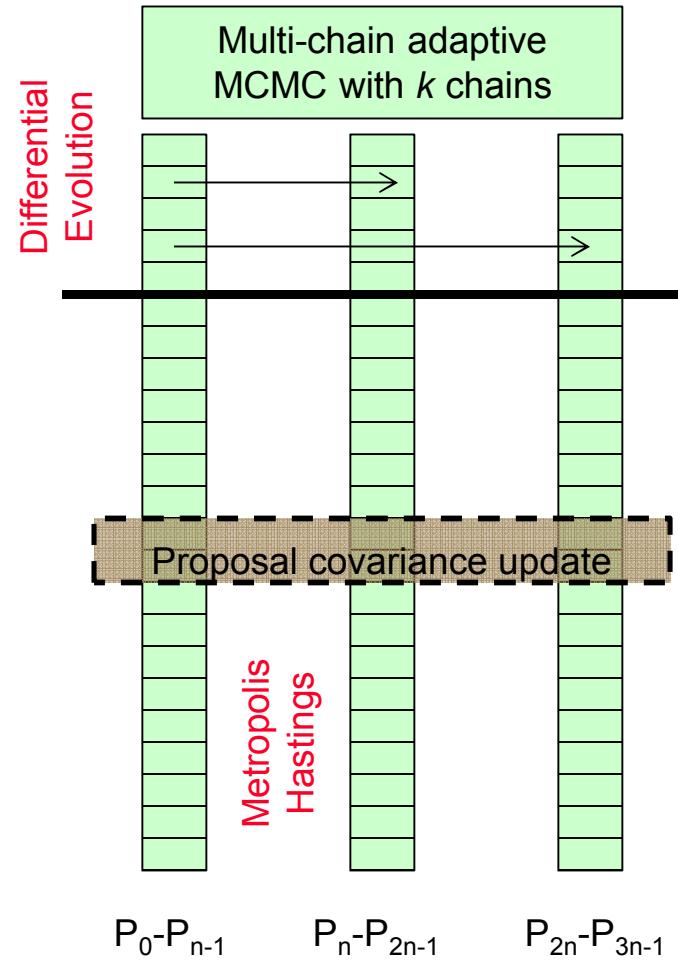
$$\mathcal{L}(\cdot | \cdot) \propto \exp\left(-\left\| \mathbf{Y}^{(obs)} - \mathcal{M}(\mathbf{p}) \right\|_2^2 / 2\sigma^2\right)$$

Markov chain Monte Carlo

- $P(\mathbf{p}, \sigma^2 | \mathbf{Y}^{(\text{obs})})$ is “solved” by sampling from it
 - MCMC methods can sample from arbitrary PDFs efficiently
 - Each sample requires a run of $\mathcal{M}(\mathbf{p})$ – and samples are serial
 - Expensive!
- Ways out – our strategy
 - Replace $\mathcal{M}(\mathbf{p})$ with a statistical surrogate (“curve fit”) $\mathcal{M}^{(s)}(\mathbf{p})$
 - $\mathcal{M}^{(s)}(\mathbf{p})$ is fast; using standard MCMC methods to solve inverse problem
 - Sophistication lies in making $\mathcal{M}^{(s)}(\mathbf{p})$; not always possible
 - Inferences include the effect of surrogate approximations
 - Multi-chain MCMC methods – MCMC carried out by communicating chains
 - Use original $\mathcal{M}(\mathbf{p})$, not surrogate – no surrogate approximation errors
 - Pool information collected by N chains to improve sampling efficiency
 - Distribute sampling burden over multiple chains

Core advances

- Surrogate models made by fitting to training data
 - Sample \mathbf{p} -space; run $\mathbf{Y} = \mathcal{M}(\mathbf{p})$ for each \mathbf{p}_i
 - “Curve-fit” $\mathbf{Y}_i \approx \mathcal{M}^{(s)}(\mathbf{p}_i)$
 - $\mathcal{M}^{(s)}(\mathbf{p}_i)$: polynomials, GPs, neural nets, etc.
 - Overfitting: Cross-validation (CV), shrinkage, etc.
- Multi-chain adaptive MCMC w/ $\mathcal{M}(\mathbf{p})$
 - Initial exploration wasteful – fix using differential evolution (GA); asynchronous!
 - Adapt; propose \mathbf{p}_{i+1} based on successful samples \mathbf{p}_{i-k} , $k = 0 \dots M$
 - Have N chains pool samples; information sharing leads to better \mathbf{p}_{i+1}
 - Amortize sampling over N chains

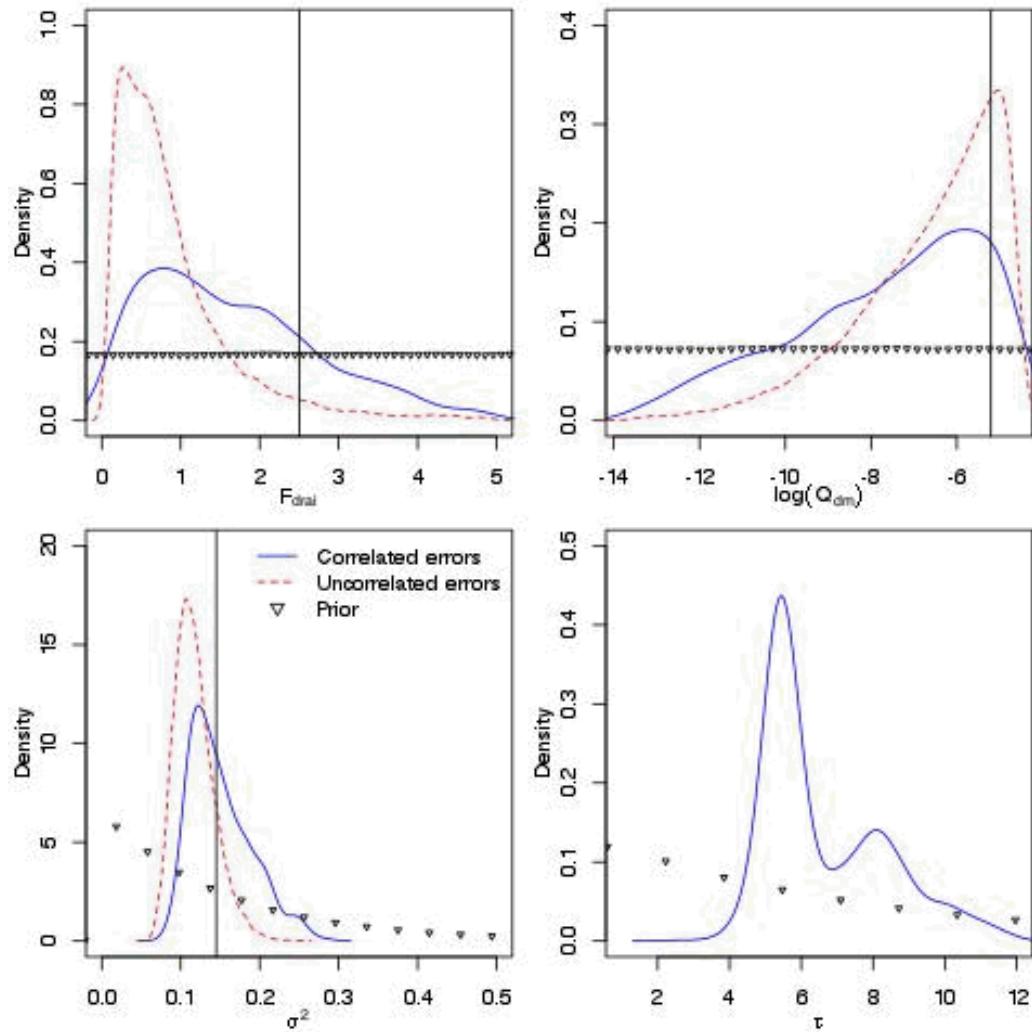


Bayesian calibration of the CLM

- Community Land Model (CLM) – for terrestrial, biogenic & hydrological processes
 - Used with atmosphere and ocean models in Earth System models
 - Can also be used with measured meteorology at a given site
- Default setting – reproduce observations @ global scale
 - Needs to be recalibrated when used in “site” mode; good illustration for Bayesian calibration of expensive models
- Calibration to monthly-averaged Latent Heat (LH) measurements from US-ARM
 - LH most affected by 3 hydrological parameters (F_{drai} , Q_{dm} , b)
- 2 calibrations:
 - Using 2003-2007 data, done with surrogates
 - Using synthetic data, done with CLM and 8-chain MCMC

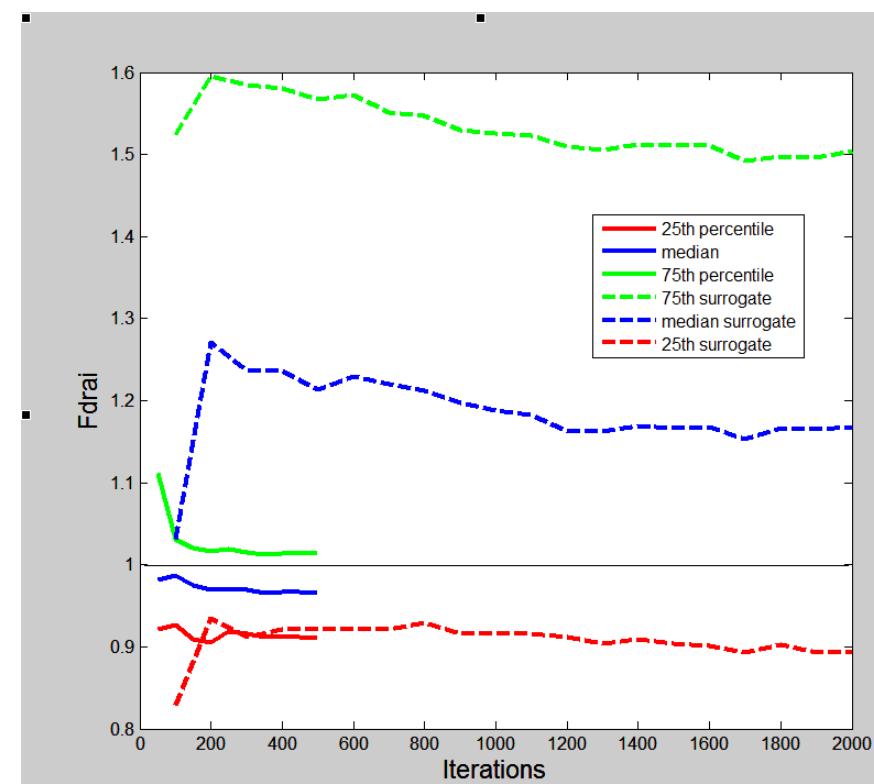
Calibration with surrogates

- Calibration performed using 2 different error models
 - To probe the causes of model – observation mismatch
 - Allows model selection
 - Showed that seasonal processes responsible for mismatch ($\tau \sim 5$ months)
- Remember – done with surrogates
 - How much is the inference affected by surrogate model errors?



Calibration with multi-chain MCMC & CLM

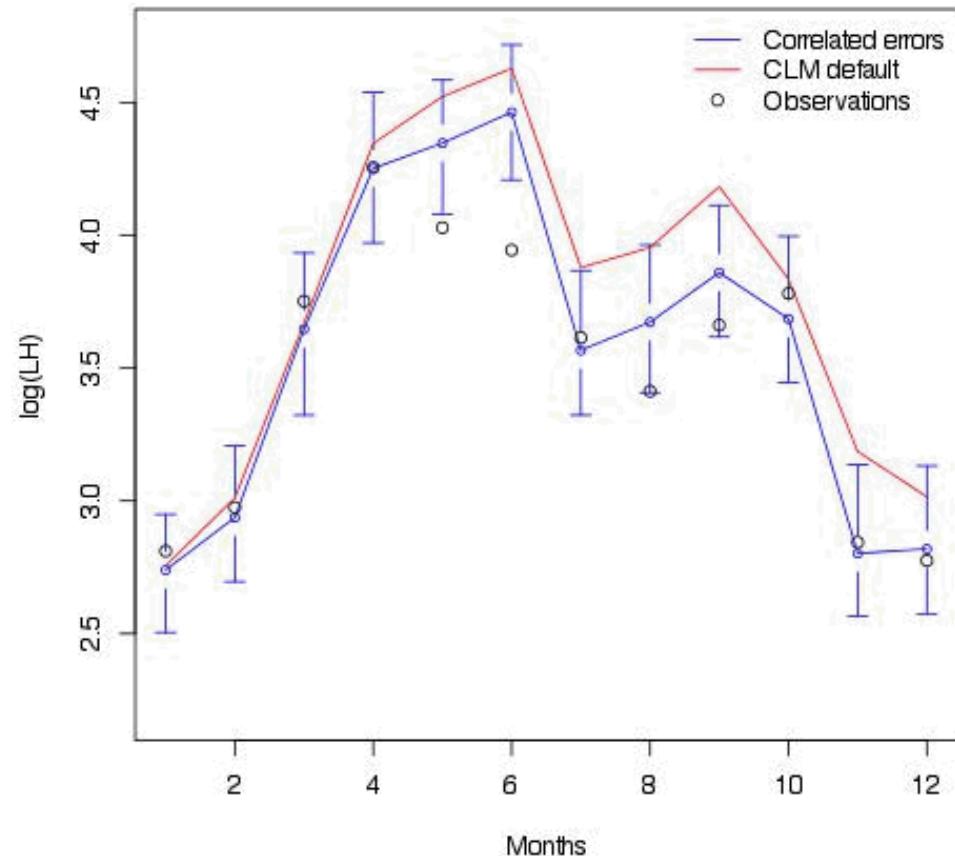
- Calibration with CLM provided as a check
 - Surrogate approximations affect the PDF of parameters
- Synthetic data problem
 - US-ARM meteorology for 2003
 - $\mathbf{Y}^{(\text{obs})}$ generated using $F_{\text{drai}} = 1$
- Bayesian inference
 - Estimate F_{drai} ; track its various quantiles for convergence
 - Should converge to 1
 - Redo with surrogates
- Chains: 500 (CLM); 2000 (surrogate)
- Inversion with surrogates leads to an over-estimate of uncertainty



Surrogates allow rigorous statistical checks, but surrogate errors can lead to excessive uncertainty

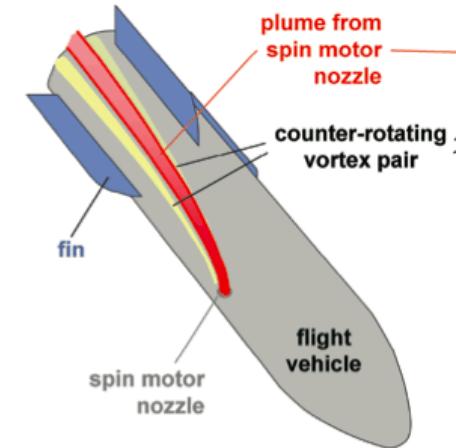
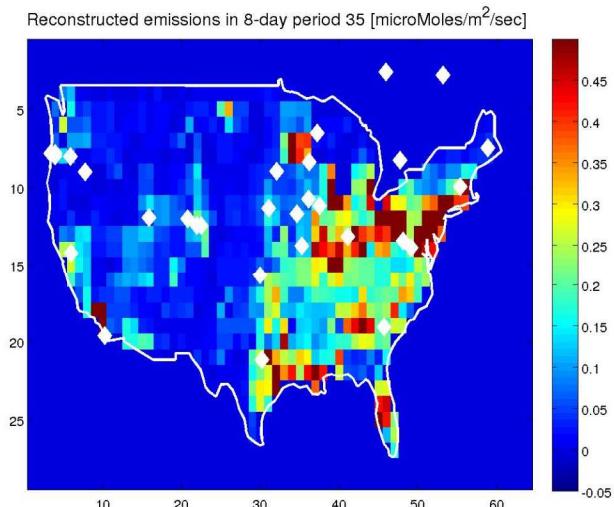
Calibration of CLM - Impact

- First time a Bayesian CLM calibration had been done
 - Provably converged results for PDFs
 - PDFs for 2 sites show that parameter are site dependent
 - Proposed models for structural error, showed how to select them, and extracted info on causes of structural error
 - Showed the role of ensemble predictions
- Using real CLM versus surrogate, computed the effect of surrogate models on the PDFs



Applications & other work

- Estimation of turbulence model parameters [3 parameters]
 - Used for predictive RANS simulations of flow over slender aerodynamic bodies
 - Calibration to jet-in-crossflow experiments
 - Funds: ASC/V&V
- Estimation of rough fields using wavelet random field models [10^3 parameters]
 - Used in estimation of fossil-fuel CO₂ emissions
 - Specialized shrinkage methods for inverse problems with $O(10^3)$ dimensions
 - Funds: LDRD
- Bayesian characterization of outbreaks from limited data
 - Funds: DTRA & private industry



Summary & what next?

- We are developing scalable statistical inversion methods to calibrate/infer model inputs from data
 - Models: Engineering & scientific; PDE-based; expensive!
 - The methods also help uncover model-form errors
 - Funding: a mix of foundational & application-oriented sources
- What next?
 - Scale up multi-chain MCMC
 - Expand the use Bayesian inference to uncover model deficiencies
 - Expand the fields where I apply Bayesian inference
- SNL Team
 - Methods: L. Swiler, B. van Bloemen Waanders & S. Lefantzi
 - Applications: S. Arunajatesan & L. Dechant,

Papers and software

1. J. Ray et al, "Bayesian calibration of the Community Land Model using surrogates" accepted, *SIAM Journal on Uncertainty Quantification*, 2015.
2. J. Ray et al, "A sparse reconstruction method for the estimation of multiresolution emission fields via atmospheric inversion", **under review**, *Geoscientific Model Development*, 2015.
3. V. Yadav et al, "A statistical approach for isolation fossil-fuel emissions in atmospheric inverse problems", **under review**, *Journal of Geophysical Research – Atmosphere*
4. J. Ray et al, "A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions", *Geoscientific Model Development*, 7, 1901-1918, 2014.
5. J. Ray et al., "Bayesian reconstruction of binary media with unresolved fine-scale spatial structures" in *Advances in Water Resources* , 44:1--19, 2012.
6. S. A. McKenna et al, "Truncated multiGaussian fields and effective conductance of binary media", in *Advances in Water Resources* , 34:617-626, 2011.
7. J. Ray, Y. M. Marzouk, and H. N. Najm, "A Bayesian approach for estimating bioterror attacks from patient data", in *Statistics in Medicine*, 30(2):101-126, 2011
8. J. Ray & J. Lee, **sparse-msrf**: A package for sparse modeling and estimation of fossil-fuel CO₂ emission fields, distributed under BSD license

Estimation of $k-\varepsilon$ parameters

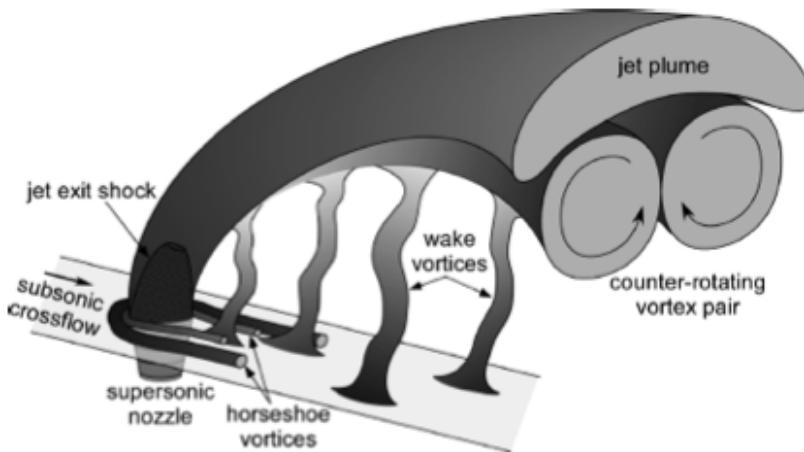
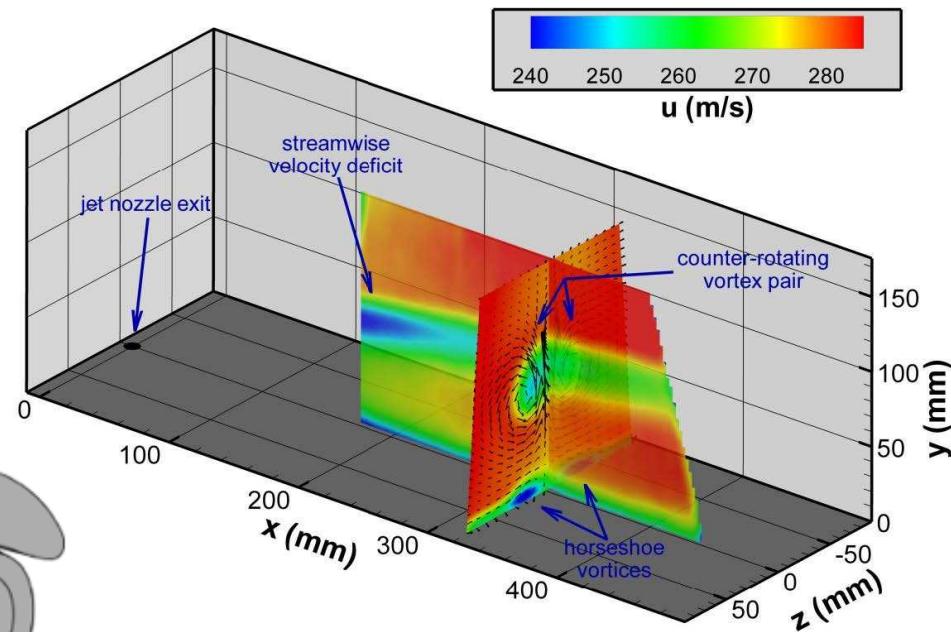
BACK-UP SLIDES

Introduction

- **Aim:** Develop a principled way of enriching a turbulence model to reduce model-form error
 - Needed for a predictive RANS simulator for transonic jet-in-crossflow
- **Drawback:** RANS simulations are simply not predictive
 - They have “model-form” error i.e., missing physics
 - They use parameters derived from canonical flows quite unlike jet-in-crossflow interactions.
- **Hypothesis**
 - Once a RANS model has been calibrated to a jet-in-crossflow experiment, any lack of predictive skill is due to model-form uncertainty i.e., shortcomings of the linear eddy viscosity model (LEVM)
 - If the LEVM can be enriched with higher-order terms and re-calibrated, we could reduce the error further

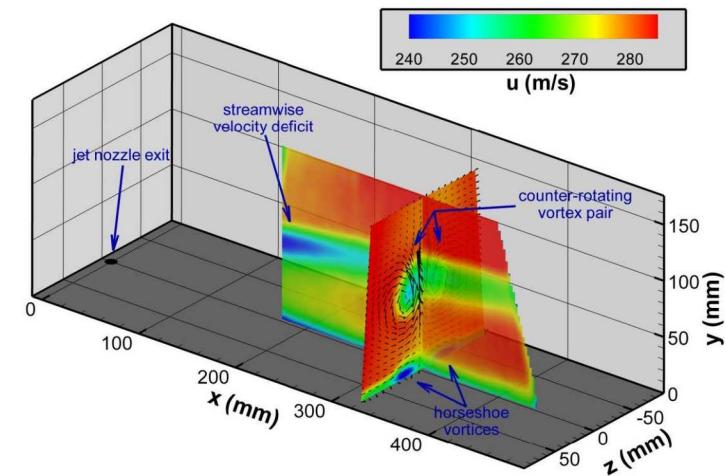
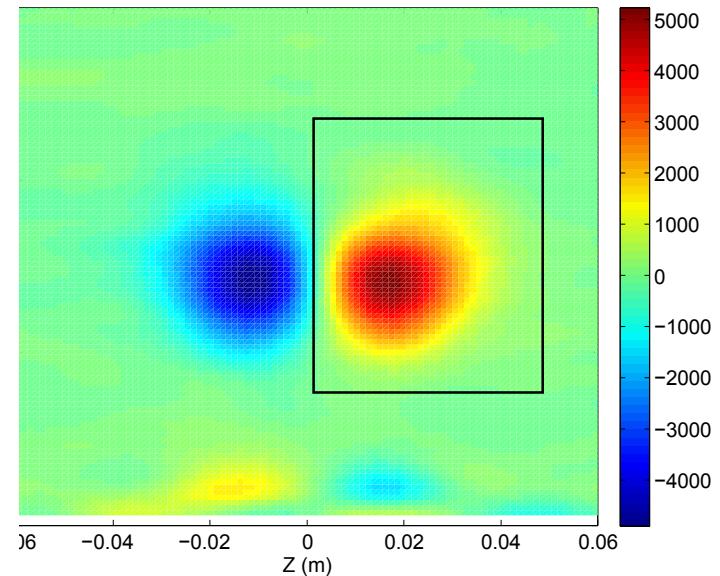
Target problem - jet-in-crossflow

- A canonical problem for spin-rocket maneuvering, fuel-air mixing etc.
- We have experimental data (PIV measurements) and corresponding RANS simulations



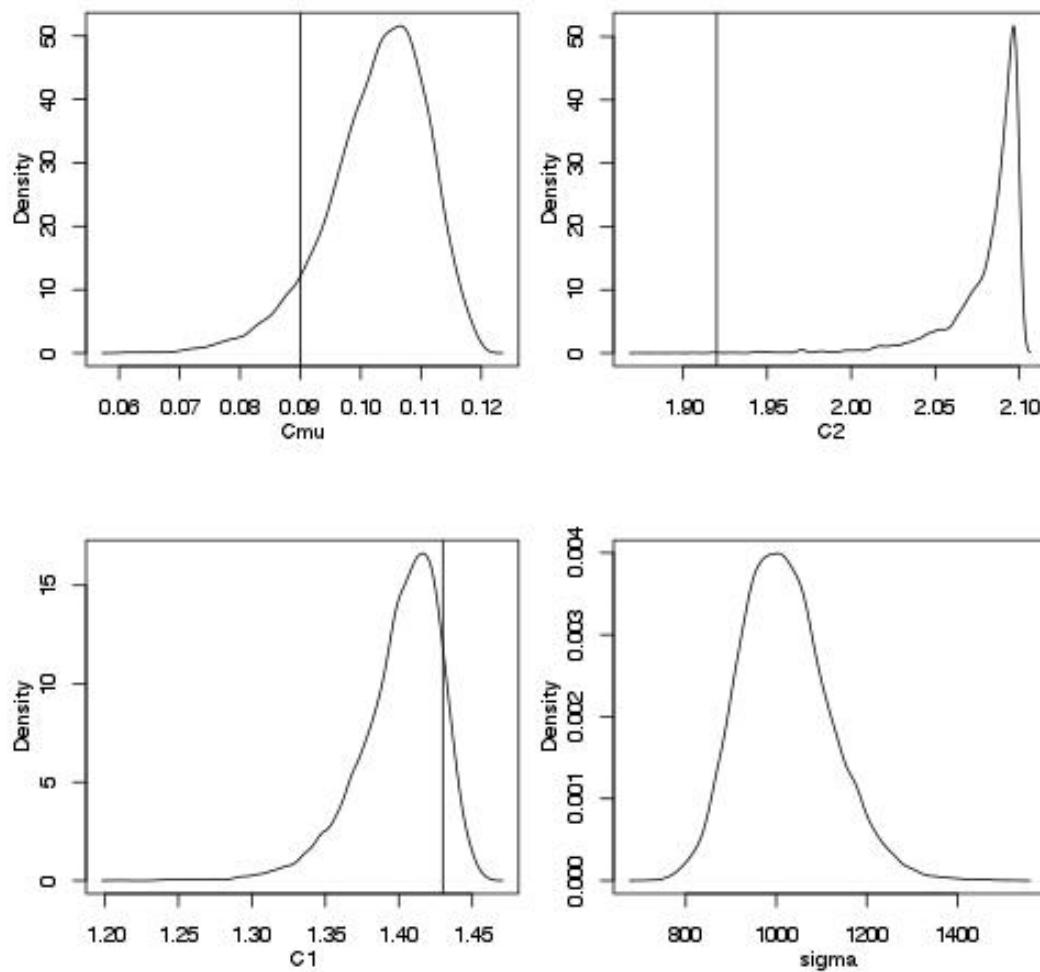
Bayesian calibration

- We have velocity measurements on the crossplane
 - We computed a vorticity field
 - And used that (in a window) as the calibration variable
- We create a training set of 2744 3D RANS simulations by sampling in the $(C_\mu, C_{\varepsilon 2}, C_{\varepsilon 1})$ space
- We create statistical models for $\omega_i = \omega_i(C_\mu, C_{\varepsilon 2}, C_{\varepsilon 1})$ using polynomials
 - ω_i is the streamwise vorticity in grid-cell i
- The statistical models were used in Bayesian inversion, in lieu of the RANS simulator

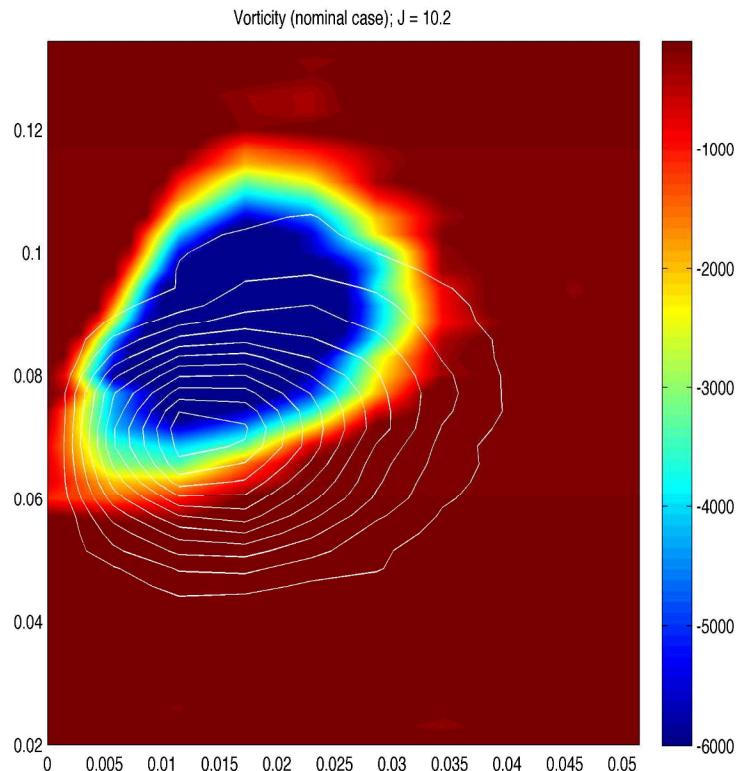
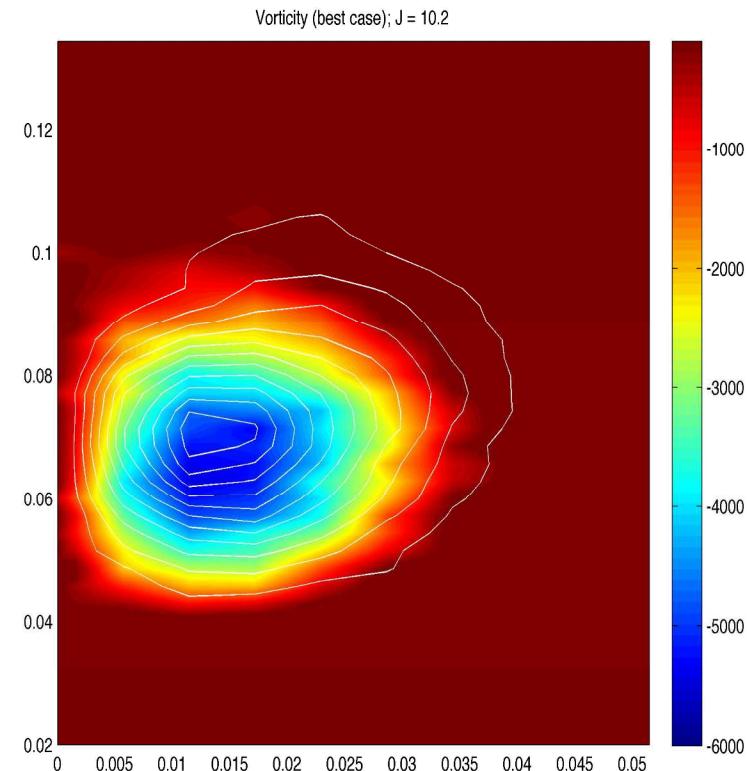


PDF of $(C_\mu, C_{\varepsilon 2}, C_{\varepsilon 1})$

- Marginalized versions of the 3D PDF shown here
 - Vertical lines are the “nominal” values of the parameters
- We sampled 100 $(C_\mu, C_{\varepsilon 2}, C_{\varepsilon 1})$ realizations from the PDF
 - Generated 100 realizations of the crossplane vorticity field using the RANS simulator
 - Also found the best $(C_\mu, C_{\varepsilon 2}, C_{\varepsilon 1})$ combination by matching the experimental vorticity field

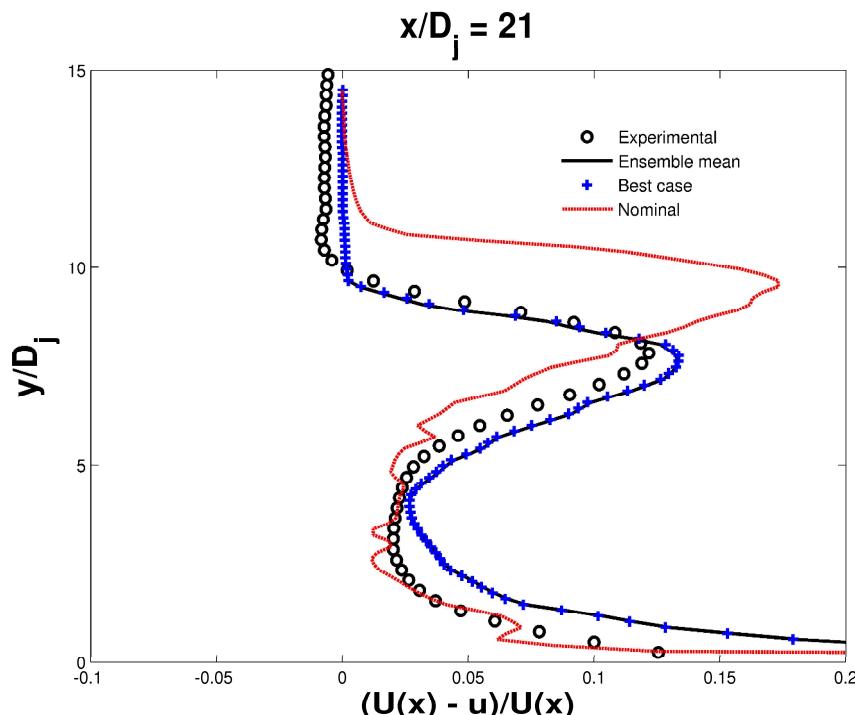


Crossplane predictions

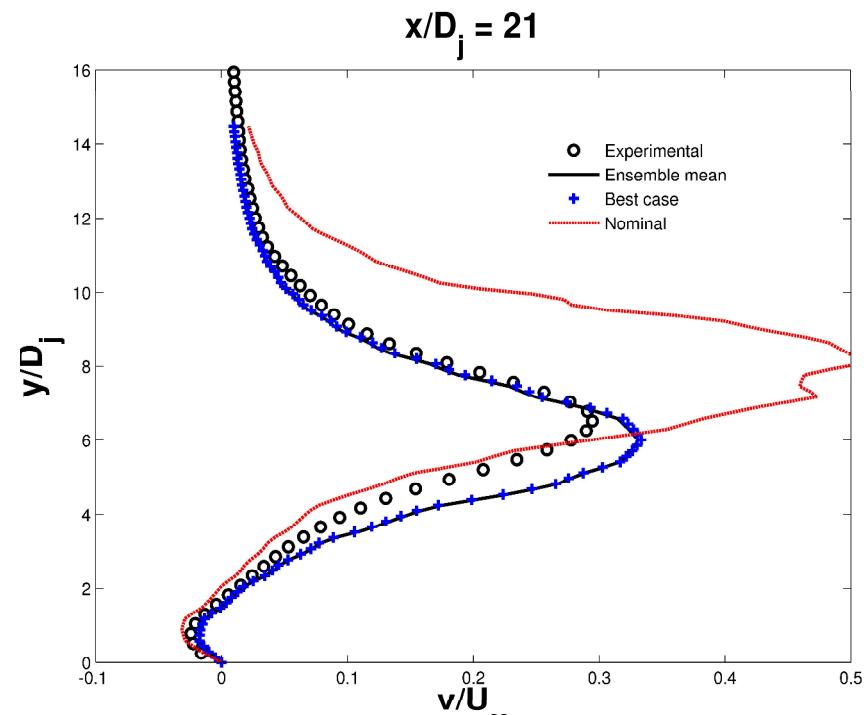


- Experimental vorticity in contours
- Stunning improvement in vorticity predictions

Mid-plane predictions



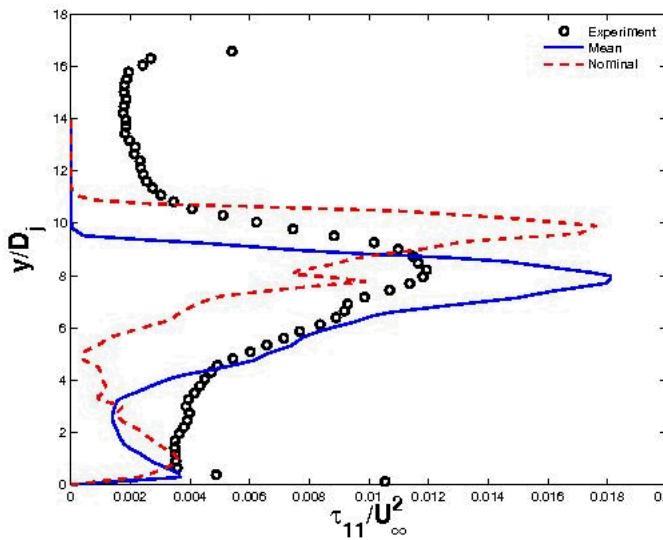
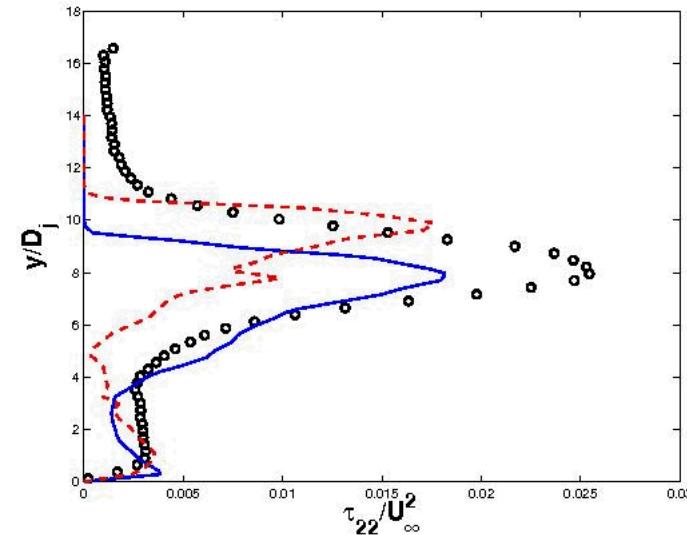
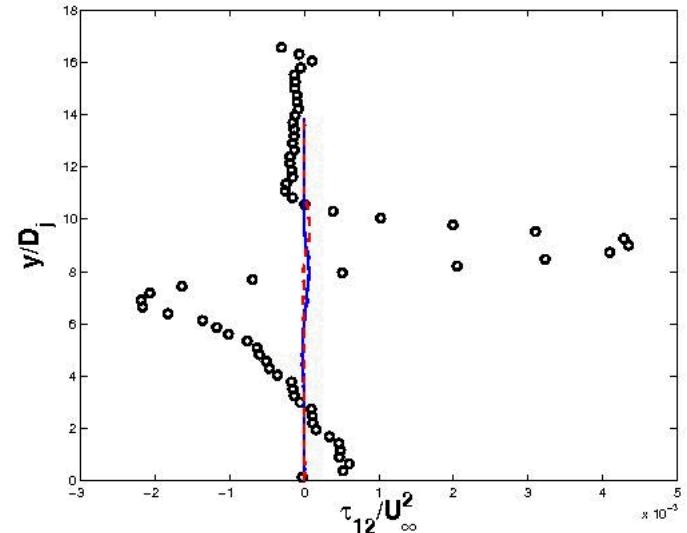
Velocity deficit



V-velocity

- Stunning improvement in vertical velocity predictions

Prediction of turbulent stresses


 τ_{11}

 τ_{22}

 τ_{12}

- $M=0.8, J=10.2$
- Not very good agreement; LEVM is deficient
- Improve it

Estimation of ffCO₂ emissions (shrinkage & wavelet-based random field models)

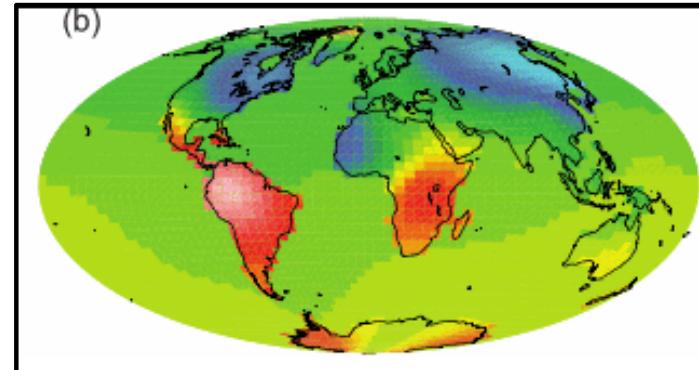
BACK-UP SLIDES

The ffCO₂ estimation problem

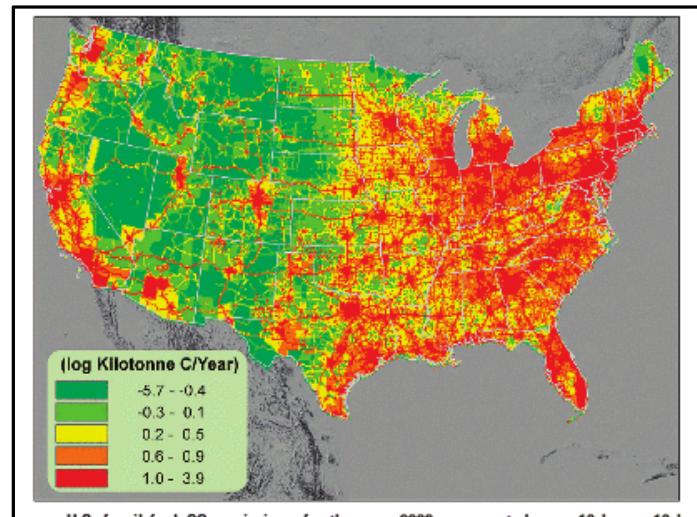
- **Aim:** Develop a technique to estimate anthropogenic CO₂ emissions from sparse observations
- **Motivations:**
 - An alternative to estimating CO₂ emission using bottom-up (economic model) techniques
 - Can provide independent verification in case of CO₂ abatement treaties
- **How is it done?**
 - Measure CO₂ concentrations in flasks at measurement sites; also column-averaged satellite measurements
 - Use an atmospheric transport model to invert for source locations

CO₂ flux inversions

- Biogenic CO₂ fluxes:
 - Smoothly variable in space
 - Modeled using multivariate Gaussian
 - Separate correlation lengths over land and oceans
- Anthropogenic (fossil fuel) emissions
 - Currently, only bottom-up estimates exist
 - A few databases – Vulcan (US-only, 2002); EDGAR (world)
 - Gaussian process will probably not work
 - What non-stationary covariance model to use?



Biogenic emissions: Mueller et al, *JGR*, 2008



Anthropogenic emissions: Gurney et al, *EST*, 2009

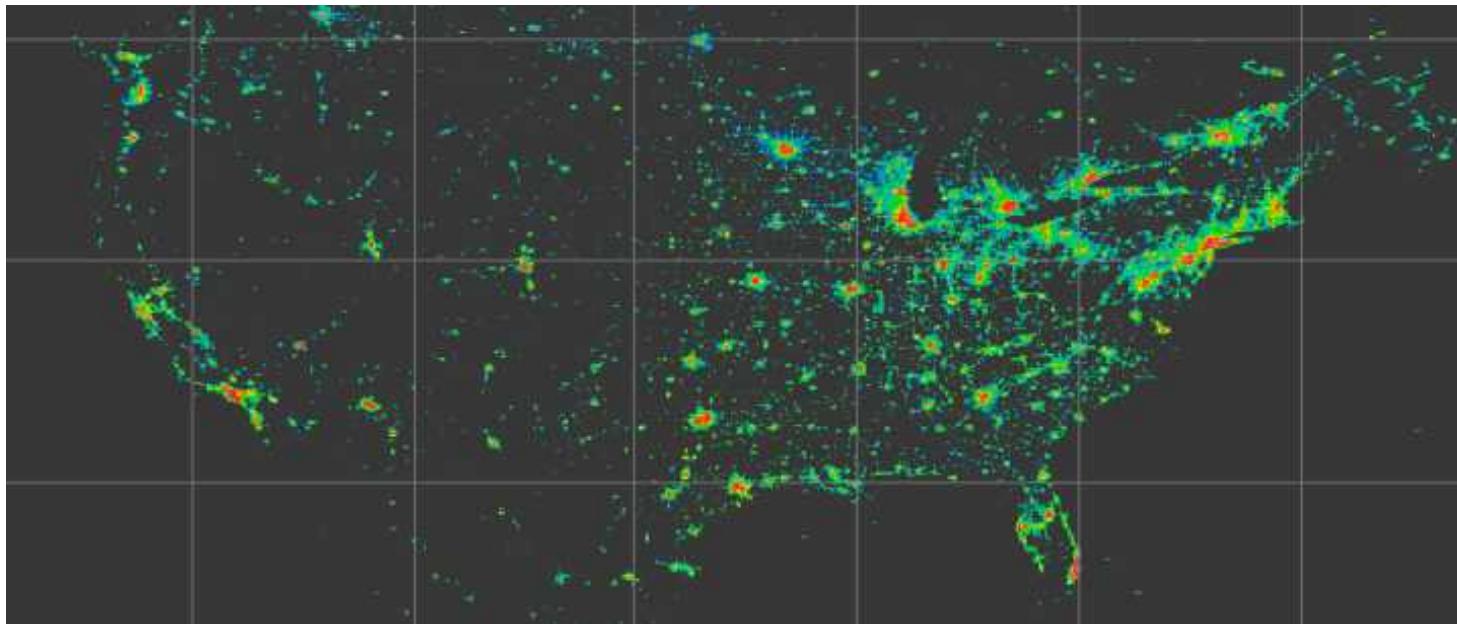
Spatial modeling

- An emission field on $2^N \times 2^N$ pixels grid
 - Can be decomposed on a wavelet basis, N deep
 - Each level s has $2^s \times 2^s - (2^{s-1} \times 2^{s-1})$ weights
- Spatial model for emissions

$$e(x) = \sum_{s=1}^N \sum_{i=1}^{2^s} \sum_{j=1}^{2^s} w_{s,i,j} \phi_{s,i,j}(x) = \Phi \mathbf{w}$$

- ϕ are orthogonal bases (wavelet basis) of different resolution (scale)
- A priori, the model is not low-dimensional (\mathbf{w} is large)
- **Conjecture**
 - $w_{s,i,j}$ are mostly zero (i.e., is sparse)
 - Most can be removed by comparing to a wavelet transform of nightlights
 - Of the remaining, a fraction (near cities) may be estimated from observations; rest are small and can be set to zero

Dimensionality reduction



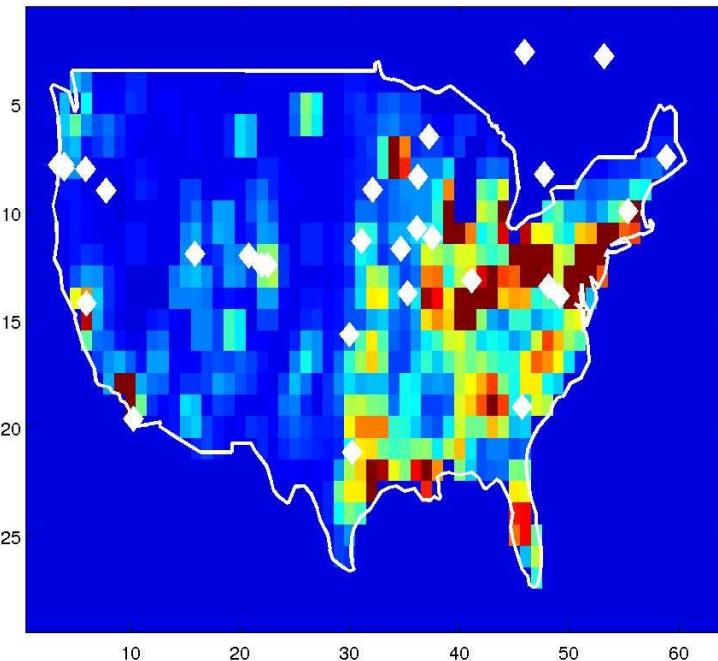
- Nightlights are a good proxy for FF emissions
 - Except emissions from electricity generation and cement production
 - Nightlights easily observed – DoD's DMSP-OLS
- Use thresholded radiance-calibrated nightlights from 1997-98 to mask out unpopulated regions

Reconstruction – via penalized optimization

- Typically, when fitting, we would solve
 - minimize $\| \mathbf{y}^{(obs)} - [\mathbf{A}][\Phi]\mathbf{w} \|_2$ wrt \mathbf{w}
- Sparsity-enforced (we want a sparse \mathbf{w})
 - minimize $\| \mathbf{y}^{(obs)} - [\mathbf{A}][\Phi]\mathbf{w} \|_2 + \|\mathbf{w}\|_1$
 - The last penalty cuts down on the # of elements in \mathbf{w}
- Many algorithms to solve this – usually formulated as
 - Minimize $\|\mathbf{w}\|_1$ under the constraint $\| \mathbf{y}^{(obs)} - [\mathbf{A}][\Phi]\mathbf{w} \|_2 < \varepsilon_s$
 - We use StOMP
- The ffCO₂ problem
 - $[\Phi]$ are the basis set – in our case, Haar wavelets; \mathbf{w} are the wavelet coefficients; $[\mathbf{A}]$ is the transport matrix $[\mathbf{H}]$
 - $\mathbf{y}^{(obs)}$ are tower measurements of CO₂ concentrations
 - minimize $\| \mathbf{y}^{(obs)} - [\mathbf{H}][\Phi]\mathbf{w} \|_2 + \|\mathbf{w}\|_1$

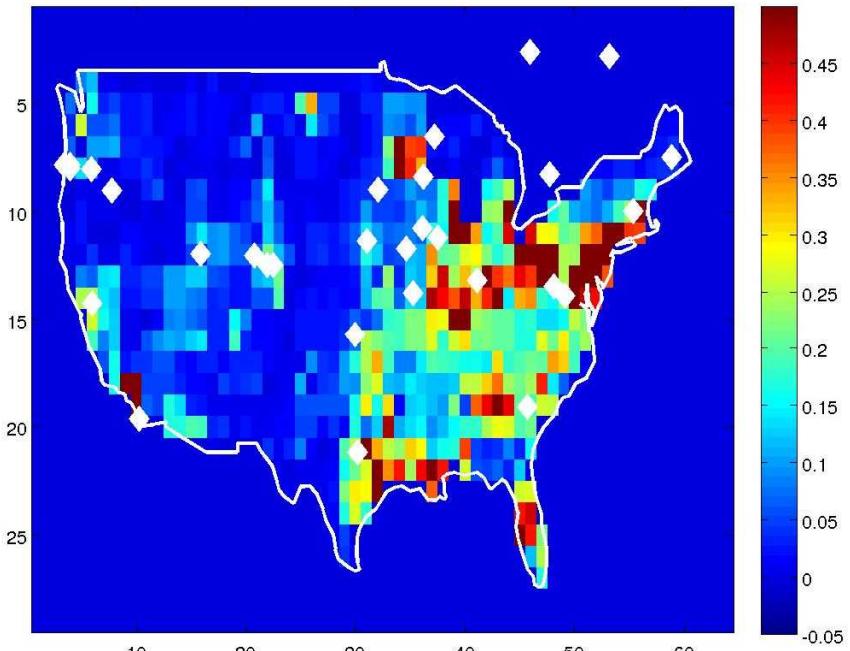
How good is the reconstruction?

True emissions in 8-day period 35 [microMoles/m²/sec]



True emissions

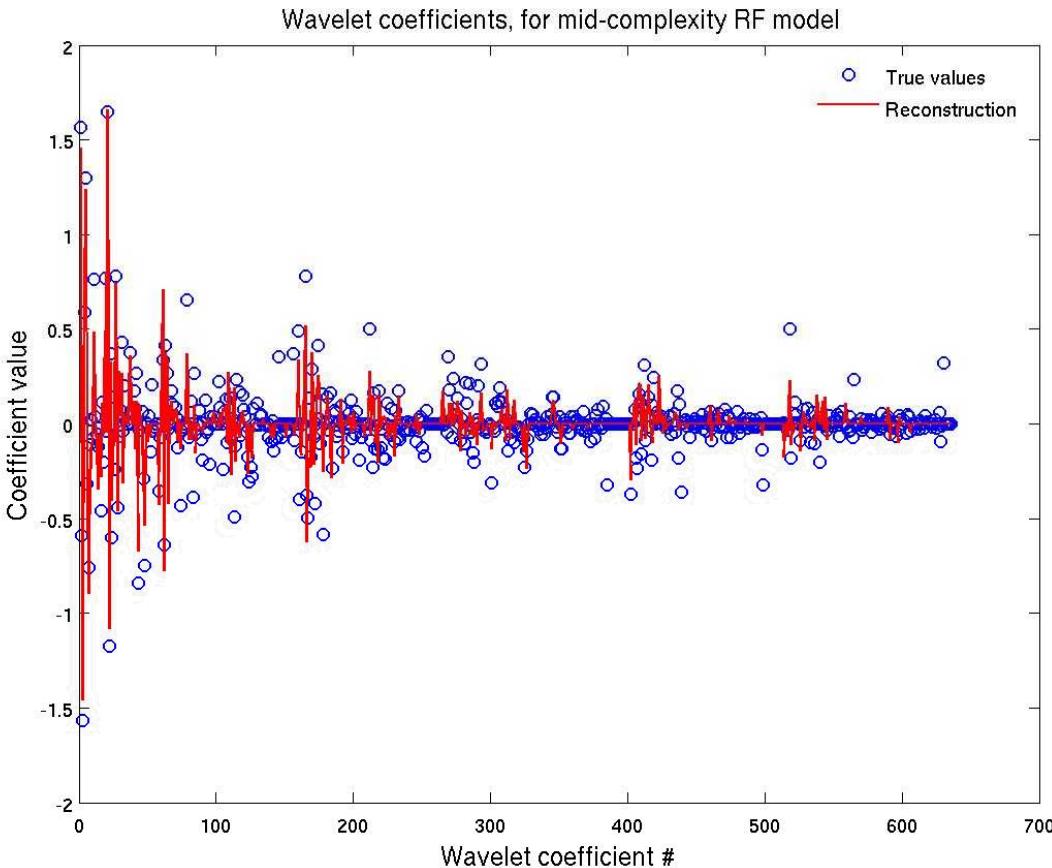
Reconstructed emissions in 8-day period 35 [microMoles/m²/sec]



Reconstructed emissions

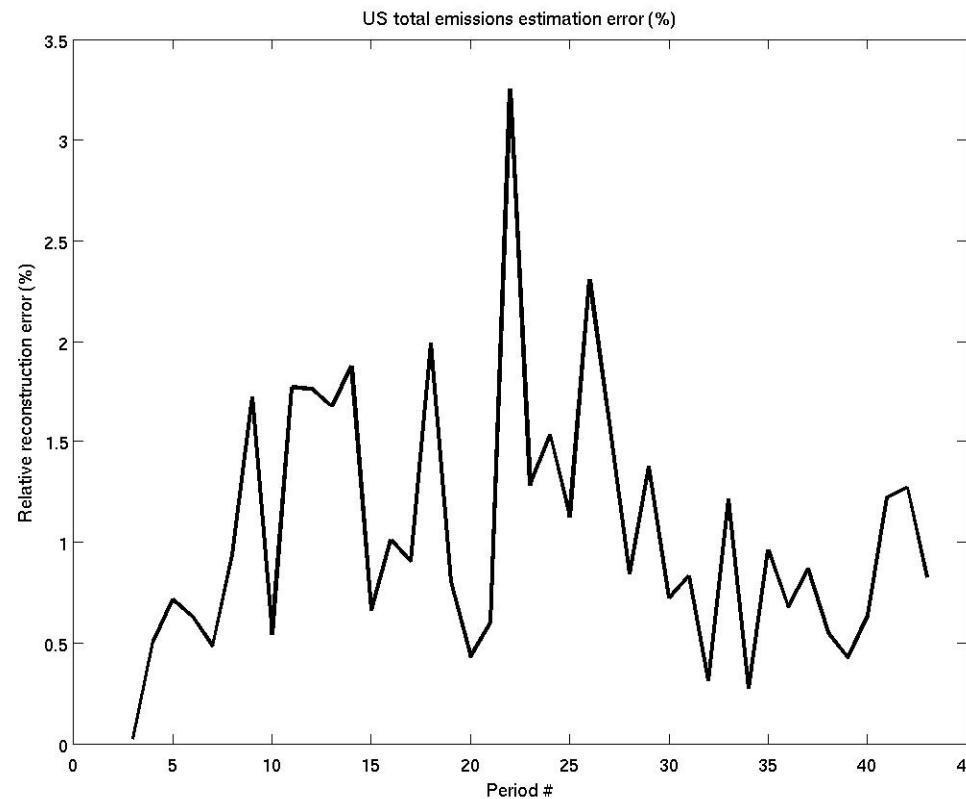
- A week in September 2008

Did sparsification work?



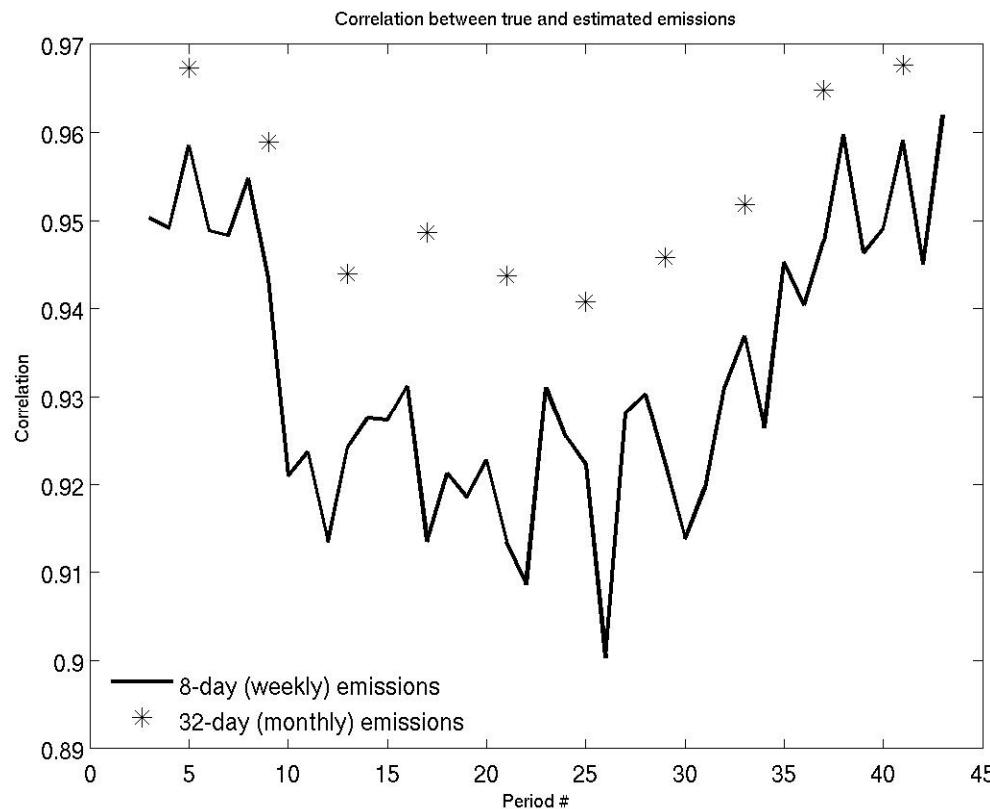
- Only about half the wavelets could be estimated
- We are probably not over-fitting the problem
 - Data-driven sparsification works

Reconstruction error in total US emission



- We get about 3.5% error, worst case

Is the spatial distribution correct?



- The spatial distribution of emissions is very close to truth
- Especially, if considering monthly fluxes