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ABSTRACT
The high computational capability of graphics processing
units (GPUs) is enabling and driving the scientific discovery
process at large-scale. The world’s second fastest supercom-
puter for open science, Titan, has more than 18,000 GPUs
that computational scientists use to perform scientific simu-
lations and data analysis. Understanding of GPU reliability
characteristics, however, is still in its nascent stage since
GPUs have only recently been deployed at large-scale. This
paper presents a detailed study of GPU errors and their
impact on system operations and applications, describing
experiences with the 18,688 GPUs on the Titan supercom-
puter as well as lessons learned in the process of e�cient
operation of GPUs at scale. These experiences are helpful
to HPC sites which already have large-scale GPU clusters
or plan to deploy GPUs in the future.

1. INTRODUCTION
GPU architecture inherently provides more parallelism

than traditional CPU architecture. Traditionally, graphics
processing applications, such as video games and image
processing applications, have utilized GPUs for faster pro-
cessing and rendering. However, with the increased thrust
towards general-purpose computing on graphics processing
units (GPGPU), GPUs have started to influence high per-
formance computing (HPC) systems as well. Researchers
have demonstrated that GPU parallelism can be exploited
for a variety of scientific applications. Besides performan-
ce advantages, GPUs are also highly energy-e�cient (i.e.,
flops/watt). These inherent advantages make GPUs an at-
tractive computing architecture for large-scale HPC centers
that aim toward exaflop performance under a limited power
budget. Consequently, HPC centers are beginning to adopt
GPUs in their mainstream large-scale HPC systems. Titan,
the world’s second fastest supercomputer, consists of 18,688
NVIDIA Tesla K20X GPUs that computational scientists
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use routinely to perform scientific simulations and data ana-
lysis.

Applications from various domains, including combustion,
condensed matter physics, nuclear sciences, and molecular
dynamics, have been ported to scale on the Titan supercom-
puter and have e�ciently exploited the GPU parallelism at
scale [1]. There are numerous e↵orts documenting and sha-
ring the application porting and optimization experience on
GPU hardware [22]. However, there is still limited under-
standing about the reliability characteristics of GPUs and
its impact on scientific applications at large-scale. It is very
critical to understand the reliability characteristics of GPUs
and its impact on the HPC workloads. HPC workloads are
typically fairly long running simulations that often rely on
checkpointing mechanism to continue making forward pro-
gress even in the case of failures. Therefore, understanding
the characteristics of GPU related errors on large-scale sys-
tems are likely to benefit both system operators, designers,
and end users.

In this paper, we share our experience with the Titan su-
percomputer’s GPUs as these GPUs have been in produc-
tion for more than two years. We share our experience ba-
sed on di↵erent error logging methodologies with regards to
GPUs. We look at the GPU system failures specifically to
see how they impact the applications (e.g., execution inter-
ruption). We discuss the current state of practice in GPU
error logging, and some of the current challenges and issues.
We show the frequency of these errors and how they may im-
pact the applications. We address questions such as, which
GPU errors are more dominant than others, and what are
some of the most common driver related errors? We stu-
dy time inter-arrivals among di↵erent types of GPU errors,
and how di↵erent type of errors are distributed at di↵erent
computing granularity (e.g, at the cabinet and cage level).
We investigate the correlation between resource utilization
and di↵erent kind of errors to understand the impact and
implication of these errors. This work also studies how ap-
plication errors are distributed in space over the job’s node
allocation and how this changes over time. As we present
our analysis and discuss our findings, we point out how our
study could be useful for other current and future GPU-
enabled HPC centers, system designers and programmers.
We believe that insights derived from our field data analysis
carry significant implications for current and future HPC
computing facilities, and researchers focusing on resilience
of GPU workloads.
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Figure 1: Physical organization of the Titan super-
computer.

2. BACKGROUND AND METHODOLOGY
This section provides a brief background on the architec-

ture of the Titan supercomputer, GPU architecture details,
built-in resilience support, and GPU related errors. Subse-
quently, we also describe our data collection and analysis
methodology.

2.1 Titan Supercomputer Organization and
GPU Architecture

First, we describe the physical organization of the Titan
supercomputer (Fig. 1). Then, we briefly describe the details
of K20X GPU architecture details.

The basic building block of the Titan supercomputer is a
node consisting of a single AMD CPU and single NVIDIA
GPU. Each CPU is a 16-core AMD Opteron 6274 proces-
sor with 32 GB of DDR3 memory. Each GPU is a NVIDIA
K20X Kepler architecture-based GPU with 6 GB of GDDR5
memory. One custom, high-speed interconnect Gemini rou-
ter is shared by two nodes as shown in Fig. 1. Four nodes
comprise one blade/slot and each cage has eight such bla-
des. Each cabinet has three cages. The Titan supercomputer
consists of 200 such cabinets organized as a total of 25 rows
and 8 columns (Fig. 1).

The Kepler K20X GPU architecture, GK110 processor
used in the Titan supercomputer’s GPUs, is composed of
multiple streaming multiprocessors (SM). These SMs are the
basic building blocks of the GPU. Each SM has dedicated
shared memory and L1 cache regions. Each SM also has a de-
dicated register file that can be accessed only by the threads
in the same SM. SMs have access to the shared resources as
well, such as L2 cache and the device memory. The thread
block scheduler dispatches one or more blocks of threads to a
particular SM. Each SM has multiple Compute Unified De-
vice Architecture (CUDA) cores. Each CUDA core executes
only one thread at a time and has access to shared memory
and L1 cache region. Specifically, the K20X GPU has 2688
CUDA cores (28nm process technology). There are a total
of 14 SMs and 192 CUDA cores within each SM. A single
GPU has 3.95 Tflops single precision peak performance and
1.31 Tflops double precision peak performance. The on-chip
memory hierarchy on a GPU consists of each SM having 64K
registers, 64KB of combined shared memory and L1 cache,
and 48KB of read-only data cache. All SMs on the GPU
share a 1536 KB L2 cache and 6GB GDDR5 memory.

Major structures of a GPU, such as device memory, L2 ca-
che, instruction cache, register files, shared memory, and L1
cache region, are typically protected by a Single Error Cor-
rection Double Error Detection (SECDED) ECC. But, it
may not be possible to protect all the regions. For example,

Table 1: GPU hardware related errors.

GPU Error XID

Single Bit Error (corrected by the SECDED
ECC)

–

Double Bit Error (detected by the SECDED
ECC, but not corrected)

48

O↵ the Bus –
Display Engine error 56
Error programming video memory interface 57
Unstable video memory interface detected 58
ECC page retirement error 63,64
Video processor exception 65

logic, queues, the thread block scheduler, warp scheduler,
instruction dispatch unit, and interconnect network are not
ECC protected. We note that this opens up the possibility
of a soft-error causing side-e↵ects (crash or silent data cor-
ruption), but still not being caught by the ECC mechanism.
However, the chip area covered by an unprotected structure
is much smaller in comparison to the caches and other me-
mory structures, hence, the probability of such failure events
is fairly low. In K20X GPU architecture, the register files,
shared-memory, L1 and L2 caches are SECDED ECC pro-
tected, while the read-only data cache is parity protected.

2.2 GPU Errors, Collection and Analysis Me-
thodology

Our study covers more than 280 million node hours worth
of console logs from the Titan supercomputer. We study Ti-
tan’s system logs collected over the period of Jun’2013 to
Feb’2015. The console logs from the Titan supercomputer
are parsed using simple event correlators (SEC) on softwa-
re management workstations (SMW) to log critical system
events. This is a comprehensive log of critical system events
that alerts the system operators of unexpected/undesired
behavior. In this study, we focus specifically on GPU rela-
ted events that may a↵ect an application’s execution. An
application may encounter a GPU error for multiple rea-
sons, for example, an application bug, driver bug, hardware
or radiation-induced bit corruptions. Therefore, these errors
can be classified in two categories: (1) GPU related system
failures/errors that are caused by hardware or cosmic rays
(Table 1), (2) GPU related errors that are primarily cau-
sed by the application error, driver issue, thermal issue, etc.
(Table 2).

We note that some errors may appear in both tables since
determining precise source of a particular error is not always
possible. We also point out that analyzing GPU errors due
to an application or a runtime system can be misleading as
an excessive number of errors may be occurring due to the
debug job runs, program bugs or bad programming practi-
ces. One can refer to a complete list of di↵erent GPU errors
logged with di↵erent XID codes here [2]. Later, we also des-
cribe in detail the challenges and issues involved in recording
these events. We note that in addition to soft-errors, there
may be system integration related errors that may not be
specific to the GPU micro-architecture. For example, “O↵
the bus” error is related to losing the connection to the host.
It may be caused due to system integration issues, and is
not specific to the GPU micro-architecture design.

Some error events may be followed by multiple system
error events shortly after the initial errors occurrence. The-



Table 2: GPU software/firmware related errors.

GPU Error (possible cause) XID

Graphics Engine Exception (Driver, User App, System
Memory or FB Corruption, Bus Error, and Thermal Is-
sue)

13

GPU memory page fault (Driver or User App error) 31
Invalid or corrupted push bu↵er stream (Driver, User
App, Memory or FB Corruption, Bus Error, and Ther-
mal)

32

Driver firmware error (Driver error) 38
Video processor exception (Driver error) 42
GPU stopped processing (Driver error) 43
Graphics Engine fault during context switch (Driver er-
ror)

44

Preemptive cleanup, due to previous errors (Driver er-
ror)

45

Error programming video memory interface (Driver er-
ror)

57

Unstable video memory interface detected (Driver error) 58
Internal micro-controller halt (old driver error) 59
Internal micro-controller halt (new driver error, thermal) 62

refore, there may be one real “parent” event and multiple
“child” events. One can exclude these “child” error events
by applying a filtering to avoid bias in failure characte-
rization. We perform a filtering scheme similar to other
works [15, 21, 30, 32], but also study the impact and e↵ect
of these “child” error events in order to better understand
the GPU related errors. We note that such phenomena in
the context of GPU errors have not been studied before.

In addition to console logs, the GPU errors were also col-
lected by running nvidia-smi utility on all the GPU nodes.
This is primarily because console logs do not capture the
single bit error information. However, note that this utili-
ty is a snapshot information and doesn’t timestamp all the
single bit errors. In addition to reporting the single bit er-
rors, nvidia-smi output also includes double bit and ECC
page retirement related errors. Therefore, we use both the-
se methods of data collection to quantify and analyze the
characteristics of GPU errors. Furthermore, we have very
recently developed a framework where we can take nvidia-
smi snapshots before and after each batch job. This helps in
identifying the single bit error counts, location and its cor-
relation with di↵erent types of jobs. We have also utilized
job logs and resource utilization logs to study these issues
in detail.

3. QUANTIFICATION, IMPACT AND ANA-
LYSIS OF GPU ERRORS

First, we quantify and characterize the GPU errors rela-
ted to hardware. Next, we discuss software/firmware related
GPU errors and their key observed characteristics. Then, we
discuss the spatial and temporal characteristics of single bit
errors. As we discuss our findings and analysis, we point to
the significance of our findings for designers and architects
of future exascale systems.

3.1 Understanding Hardware Related Errors
GPU Double Bit Errors (DBE) Double bit errors

are soft errors that can be caused by a variety of reasons
including cosmic ray strikes and voltage fluctuations. The
SECDED mechanism in K20X GPU architecture can only
detect, but not correct these errors. Note that a double bit

Ju
n

20
13

A
ug

20
13

O
ct

20
13

D
ec

20
13

Fe
b

20
14

A
pr

20
14

Ju
n

20
14

A
ug

20
14

O
ct

20
14

D
ec

20
14

Fe
b

20
15

0

5

10

15

20

D
ou

bl
e

B
it

Er
ro

r
Fr

eq
.

(M
on

th
ly

)

Figure 2: Monthly frequency of double bit errors
on the Titan supercomputer (Jun’2013-
Feb’2015).

error does not necessarily mean that it will produce incorrect
program output or cause the execution to terminate prema-
turely. But, when a DBE is encountered, SECDED mecha-
nism always crashes the program. This is because SECDED
mechanism can not correct such errors and hence, can not
guarantee correct execution beyond the point of error detec-
tion.

We analyze the temporal and spatial characteristics of
GPU double bit errors (DBE) in this subsection. Fig. 2
shows the monthly occurrences of DBEs on the Titan su-
percomputer since the machine went into production with
the GPUs. On average, one DBE occurs approximately eve-
ry seven days (approx. 160 hours). We also found that an
excessively high number double bit errors did not occur on
particular day or set of days, which indicates that these er-
rors are not bursty in nature. Overall, the estimated MTBF
based on the vendor datasheet would be significantly lower
for our system compared to what our field data indicates.
We believe that this is in part due to (1) early rigorous,
stress, acceptance tests that weed out bad GPUs, (2) GPU
architecture has matured significantly, their soft-error resili-
ence has improved [30], and vendors have evolved to develop
better in-house stress tests.

We identify cards which incur double bit errors and put
them out of the production use (such cards undergo further
rigorous testing in a hot-spare cluster before being retur-
ned to the vendor after encountering a threshold number
of DBEs). We have returned the GPUs to the vendor after
they were stress tested in the hot-spare cluster and GPU
system failures were encountered. Such errors would have
likely occurred in production, but we avoided that by mo-
ving error-encountering cards to the hot-spare cluster. It is
expected that swapping out error-prone cards will lead to
improved system MTBF. However, we note that accurate-
ly quantifying the impact of such replacement is often very
hard, since it is di�cult to predict how many errors would
have been avoided in future after replacement.

Fig. 3(a) shows the spatial distribution of double bit er-
rors in the rows and columns of the Titan supercomputer’s
cabinets. Since DBEs are fairly rare event, an uneven distri-
bution in space is not completely surprising. However, inte-
restingly, we observed that DBE seem to occur more in the
upper cages of the cabinet than the lower cages (Fig. 3(b)).
We suspect that it indicates the DBE’s sensitivity toward
temperature. We note that due to the power/cooling set up
in the Titan supercomputer higher cages are typically hot-



(c)

0 

2 

4 

6 

8 

10 

0 5 10 15 20 25 

Ca
bi

ne
t C

ol
um

ns
 

Cabinet Rows 

Double Bit Errors (DBE) 

30 

35 

40 

45 

50 

1 2 3 

D
BE

 C
ou

nt
 

Cages (1-3) 
All DBE Occurrences 

(a)  

Double Bit Error  
Cage Distribution 

25 

30 

35 

40 

1 2 3 

D
BE

 C
ou

nt
 

Cages (1-3) 
Unique DBE Occurrences 

(b) 

Double Bit Error 
Cage Distribution 

14% 

86% 

Double Bit Error Count 
Distribution by Memory Structure  

Register File 
L1 Cache 
L2 Cache 
Texture Memory 
Device Memory 

Figure 3: Spatial distribution, cage-wise distribution and breakdown by memory structure type of double bit errors.

and do not re-occur frequently on a selected set of days. DBEs
do not necessarily show bathtub behavior, at least not in the
early life of the Titan supercomputer. We further confirmed
this with the data from Jan’2013 to May’2013. We found
that the failure rate earlier was similar to once it was in the
production. We believe that this is in part due to (1) early
rigorous, stress, acceptance tests that weed out bad GPUs, (2)
GPU architecture has matured significantly, their soft-error
resilience has improved [29], and vendors have evolved to
develop better in-house stress tests.

Fig. ?? shows the spatial distribution of double bit errors in
the rows and columns of the Titan supercomputer’s cabinets.
Since DBEs are fairly rare event, it is not completely surprising
an uneven distribution in space. However, interestingly, we
observed that DBE seem to occur more in the upper cages of
the cabinet than the lower cages (Fig. ??(a)). We suspect that
it indicates the DBE’s sensitivity toward temperature. We note
that due to the power/cooling set up in the Titan supercomputer
higher cages are upto a few degrees hotter than the lower
cages. However, it is fundamentally challenging to establish
this because some GPU cards may inherently be more prone
to DBEs even if they are situated in the lower cages. Fig. ??(b)
shows the number of distinct GPU cards experiencing DBEs
categorized by cage location within a cabinet. Counting only
one DBE error per card addresses the previously mentioned
issues, and shows that the trend only gets stronger.

Our double bit error analysis so far is based on the console
logs. Now, we confirm our findings against the output of
nvidia-smi utility (static snapshot). Unfortunately, the counts
do not match exactly. Nvidia-smi output always seems to
report less number of DBEs than our console log filtering
method. We believe this is because of a driver issue where a
double bit error causes the node to shut down before the DBE
incident is logged in the NVML InfoROM that is queried by
nvidia-smi utility. We observed some other inconsistencies in
error logging as well. Nvidia-smi reports a greater number of
double bit errors than single bit errors for some cards during
the same time-period. We can not verify this completely, since
single bit errors are not recorded to the console logs. But,
the theoretical probability of a double bit error happening is
lower than the probability of single bit error event. Therefore,
it can be attributed to inconsistency in logging in the NVML

Figure 4: Daily and monthly frequency of Off the bus error.

InfoRAM. However, we would like to emphasize that that
nvidia-smi utility is highly useful for operational purposes
and such utilities have come a long way from their inception,
continuously adding new and useful features – making the life
of system operators easier.

Next, we study the breakdown of double bit error per struc-
ture type (i.e., register file, L1 cache, L2 cache, texture mem-
ory, and device memory). We did this by decoding the error
log for DBE occurrences, instead of using nvidia-smi output
which readily provides this information (without any decod-
ing). Previously, we explained why the console logs are more
reliable for analyzing double bit errors. As shown in Fig. ??,
we found that 86% of double bit errors happen in the device
memory. This is not surprising as device memory is larger than
other memory structures by orders of magnitude. Interestingly,
rest 14% of the double bit errors happen in the register files
only, one of the smaller memory structures on GPU. This may
be potentially because of a less effective interleaving technique
in place that attempts to reduce the changes of registers getting
corrupted by double bit errors. More effective interleaving
techniques may cause more area and time overhead – causing
them to be less attractive in production and from access latency
standpoint. However, such reasoning are speculative in nature
since the vendor considers such information to be proprietary
in nature.

GPU Off The Bus and ECC Page Retirement Errors

Next, we analyze ‘Off the Bus and ‘ECC page retirement er-
rors. Off the bus failures cause applications to crash. These er-
rors are related to system integration issue and not architecture-

4

(b)(a)

Figure 3: Spatial distribution, cage-wise distribution and breakdown by memory structure type of double bit
errors.

ter than the lower cages in the same cabinet. For example,
we found that the GPUs in the uppermost cage are on an
average more than 10°F hotter than the GPUs in the lo-
wermost cage, as per a snapshot taken by the nvidia-smi
utility. However, it is fundamentally challenging to establish
a correlation between temperature and DBEs because some
GPU cards may inherently be more prone to DBEs even if
they are situated in the lower cages. Fig. 3(b) also shows
the number of distinct GPU cards experiencing DBEs ca-
tegorized by cage location within a cabinet. Counting only
one DBE error per card addresses the previously mentioned
issues, and shows that the trend only gets stronger.

Observation 1. MTBF of double bit errors on the Titan
supercomputer is quite high (approx. 160 hours, i.e., approx.
one DBE per week). We believe that improved resilience of
GPU architecture, acceptance testing, and rigorous hot-spare
testing contribute toward such a high MTBF.

One may attempt to compare the reliability of GPU-
based systems with current and past CPU-based systems.
However, we note that it is challenging to perform a fair
comparison across di↵erent systems due to significant di↵e-
rences in the underlying micro-architecture, design, process-
technology, system-software stack, etc. In general, the relia-
bility of OLCF systems have continued to improve even with
the introduction of new heterogeneous architecture.

Our double bit error analysis so far is based on the console
logs. Now, we attempt to confirm our findings against the
output of the nvidia-smi utility (static snapshot). Unfortu-
nately, the counts do not match exactly. Nvidia-smi output
reports fewer number of DBEs than our console log filte-
ring method. We suspected that this may be because of a
driver issue where a double bit error causes the node to
shut down before the DBE incident is logged in the NVML
InfoROM that is queried by the nvidia-smi utility. Our in-
teraction with the vendor confirmed this explanation. We
observed some other inconsistencies in the error logging as
well. Nvidia-smi reports a greater number of double bit er-
rors than single bit errors for some cards during the same
time-period. We can not verify this completely, since single
bit errors are not recorded to the console logs. But, the theo-
retical probability of a double bit error happening is lower
than the probability of single bit error event. Therefore, it
can be attributed to inconsistency in logging. However, we
would like to emphasize that the nvidia-smi utility is highly
useful for operational purposes, and such utilities have come
a long way from their inception, continuously adding new
and useful features – easing the job of system operators.

Observation 2. Nvidia-smi utility has evolved as a very
useful tool for GPU error monitoring. However, there are
some challenges in getting it to accurately account for all
DBEs. Therefore, one should not entirely rely on nvidia-
smi utility for analyzing double bit errors. The low-overhead
of the nvidia-smi utility makes it particularly attractive for
other monitoring purposes.

Next, we study the breakdown of double bit error per
structure type (i.e., register file, L1 cache, L2 cache, texture
memory, and device memory). We did this by decoding the
error log for DBE occurrences, instead of using the nvidia-
smi output which readily provides this information (without
any decoding). Previously, we explained why the console logs
are more reliable for analyzing double bit errors. As shown
in Fig. 3(c), we found that 86% of double bit errors hap-
pen in the device memory. This is not surprising as device
memory is larger than other memory structures by orders
of magnitude. Interestingly, the remaining 14% of the dou-
ble bit errors happen in the register files only, one of the
smaller memory structures on the GPU. We speculate that
a less e↵ective interleaving technique may be employed to
reduce the chances of registers getting corrupted by double
bit errors. However, such reasoning are speculative in nature
since the vendor considers such information to be proprie-
tary. More e↵ective interleaving techniques may cause more
area and time overhead – causing them to be less attractive
in fabrication and from the access-latency standpoint.

Observation 3. We observed that 86% of the DBEs hap-
pen in the device memory, while the remaining 14% happen
in the register file – despite it being a much smaller struc-
ture. This indicates that vendors should continue to improve
DBE resilience of the register file structure for future exas-
cale systems.

GPU Off The Bus and ECC Page Retirement
Errors
Next, we analyze “O↵ the bus” and “ECC page retirement”
errors. O↵ the bus errors are related to system integration
issue and not architecture-specific. O↵ the bus errors cause
the applications to crash as host looses connection to the
GPU. Fig. 4 shows that O↵ the Bus errors only dominant
the period before December 2013. A system integration is-
sue with the GPU cards was identified, and subsequently
resolved by soldering the cards. Consequently, these errors
have almost become negligible. Notably, these errors were
mostly clustered and that’s when the criticality of the issue
was identified. We also note that these errors are fairly dis-
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Figure 4: Monthly frequency of O↵ the bus error.
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Figure 5: Spatial Distribution of O↵ the bus error.

tributed across the machine (Fig. 5). In particular, “O↵ the
Bus” errors show strong sensitivity towards temperature as
they tend to occur in upper cages more frequently (Fig. 5).
As noted earlier, the GPUs in the uppermost cage are on
an average more than 10°F hotter than the GPUs in the
lowermost cage, as per a snapshot taken by the nvidia-smi
utility. The di↵erence between all occurrences and unique
card occurrences is small because O↵ the Bus errors do not
tend to reappear on the same card.

Observation 4. “O↵ the bus” error used to be a frequent
GPU failure event that was caused by system integration is-
sues and not because of the inherent GPU micro-architecture
design. Such issues were resolved with soldering. The upper
cages in the cabinet experience more such errors than lower
cages, indicating the possibility of temperature sensitivity.
This observation was used for improved job scheduling for
large GPU jobs at OLCF.

ECC page retirement error is relatively new XID introdu-
ced by NVIDIA. As shown in Fig. 6, it has started appearing
only since Jan’2014. ECC page retirement error is supposed
to happen under two circumstances: (1) one double bit error
or (2) two single bit errors in the same page. Page address
is stored in the InfoROM and when the driver loads it can
get to know these page addresses and framebu↵er can ensure
that these pages are not used by the application. This essen-
tially improves the life of the card. The application crashes
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Figure 6: Monthly frequency of ECC page retire-
ment error.
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Figure 7: Spatial Distribution of ECC page retire-
ment error.

in the first case, but not in the second case.
The spatial and temporal characteristics of ECC page re-

tirement error are similar to previously discussed errors. The
spatial distribution is not uniform, and cards in the upper
cages are slightly more likely to experience errors (Fig. 7).
Next, we attempt to understand how likely it is that a DBE
is followed by an ECC page retirement error. Note that
the the DBE occurrences happening only after the period
Jan’2014 are accounted toward this analysis, and there may
be cases where no ECC page retirement error occurs between
two DBEs. Fig. 8 shows the distribution of ECC page retire-
ment errors under di↵erent time intervals since the last DBE.
Interestingly, 18 page retirement happens within 10 minutes
of a DBE occurrence, while only 1 event happened between
10 minutes and 6 hours. Therefore, an ECC page retirement
is likely to happen soon after the DBE occurrence, but if
some time (10 minutes in this case) has passed, the node
should be considered less likely to experience an ECC page
retirement error. Cases where ECC page retirement occurs
much later after the DBE occurrence (more than 10 minutes,
18 such cases in our scenario) are likely caused by two SBEs
happening in the same page. We found that there were 17
instances when no ECC page retirement happened between
two successive DBEs. It is not fully understood at this point
if this is intentional or an issue with the error logging.

Observation 5. “ECC page retirement” error is a recent
introduction in the list of GPU errors. It e↵ectively impro-
ves the quality of card by retiring degrading cells. Its inter-
arrival time relationship with double bit errors leads to more
information about the multiple single bit errors occurring on
the same page. System operators have to keep updating their
log parsing rules to account for such new introductions and
understand the implications.
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Figure 9: Error frequency of XID 31, 32, 43, and 44. (GPU memory page fault, Invalid or corrupted push bu↵er
stream, GPU stopped processing, and Graphics Engine fault during context switch, respectively).
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Figure 8: Occurrence of ECC page retirement error
following a DBE. Cases where no ECC page
retirement error happens between two DBEs are
not shown here.
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Figure 10: Error frequency of XID 13 (Graphics engine
exception).

3.2 Understanding Software, Firmware, and
Application Related GPU Errors

In this section, we characterize the impact of GPU errors
that are not caused by the GPU hardware. We present a
set of results showing the frequency of di↵erent XID errors.
Each XID error has its own possible source of cause, as de-
scribed in Table 2 and NVIDIA’s XID documentation [2].
Fig 10 shows the frequency of XID 13 error that has user
application listed as one the possible causes in the NVIDIA’s
XID documentation [2]. These errors often occur in bursts,
i.e., multiple errors happening on the same day. We suspect
this behavior may be caused by the debug and test runs by
the end users. Sudden rise in such errors may also correlate
with domain scientists’ project or paper deadlines since we
observed a significantly more number of failures in certain
weeks. However, it is not necessary that all events occurs
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Figure 11: Error frequency of XID 59 and 62 (Inter-
nal micro-controller halt).

due to an application error.
Some XID errors, which are primarily caused by driver

issues, are less frequently observed. For example, invalid or
corrupted push bu↵er stream and driver firmware error ha-
ve occurred less than ten times during the production run
(Fig. 9). Some driver related errors do not occur at all (e.g.,
XID 42). On the other hand, certain driver related errors
such as GPU stopped processing, graphics engine fault du-
ring context switch, and micro-controller halts occur more
frequently (Fig. 9 and 11). Note that these errors are prima-
rily driver related errors and may not show as much bursty
behavior (Fig. 11) as the user application related XIDs do
(e.g., XID 13, graphics engine exception).

Observation 6. User application caused XID errors are
bursty in nature and are frequent, while driver related XID
errors are not bursty and occur relatively less frequently.
We observed that only a few driver related XID errors occur
more frequently than others, such as micro-controller halts,
graphics engine fault during context, and GPU stopped
processing.

Next, we provide an understanding of how an application
error propagates over time on di↵erent nodes. First, we ob-
served that user application related errors are reported on
all the nodes allocated to the job, instead of just one node
where the problem may have occurred. We take XID 13 error
as an example to illustrate the change in spatial distribution
as we apply time filtering at di↵erent granularities. Fig. 12
(top) shows the spatial distribution of XID 13 for the case
when no filtering is applied, i.e., XID 13 error appearance



Figure 12: Spatial distribution of XID 13 error with
di↵erent time threshold filtering.

on all the nodes are accounted for. Fig. 12 (middle) shows
the spatial distribution of XID 13 for the case when a five-
second filtering is applied, i.e., any XID 13 error appearing
in the console log after a previously encountered XID 13 is
ignored if the time di↵erence is less than five seconds. E↵ec-
tively, this counts only one XID 13 event per job because the
job would crash after the error. Fig. 12 (bottom) shows the
spatial distribution of XID 13 events that occurred within
the five-second window.

First, we observe that the XID 13 errors exhibit uneven
spatial distribution (Fig. 12 (middle)). This indicates that
debug jobs may be unevenly distributed across the cabinets.
A more surprising observation is that both Fig. 12 (top) and
(bottom) show a distinct pattern where alternate cabinets
have greater event density. This is due to folded-torus cab-
ling used in Titan [8] to avoid uneven length of cables in the
classic 3-D torus. This causes nodes within the same job to
be allocated in this alternating manner in the 3-D torus Ge-
mini interconnect resulting in such a pattern. We also found
that five seconds was a reasonable interval within which all
nodes in the same job reported the error.

Observation 7. Spatial distribution of user application
related XID errors can be understood using the physical
organization and interconnect of the system. Typically, we
observed that the errors appear on all the nodes allocated to
the job within five seconds.

While XID 13 is not supposed to be caused by hardware,
we found an instance where a particular node was repeatedly
encountering XID 13, irrespective of the application schedu-
led on it. Since XID 13 is not associated with hardware,
we did not take the node down immediately after the error
event. We later confirmed, after the node diagnostic testing,
that it was indeed a problem related with the hardware.

Figure 13: Temporal re-occurance relationship bet-
ween di↵erent XID events (for a time
window of 300 sec.)

Observation 8. It is extremely challenging to pinpoint
the source (hardware, software, firmware, thermal issues
etc.) of any XID error. NVIDIA has performed rigorous
tests to come up with the list of possible sources of these
XID errors. But, we recently observed a case where XID 13
was due to hardware instead of other problems as previously
assumed/known.

We investigate the parent-child relationship among di↵e-
rent Xid events in Fig. 13. The figure shows the fraction of
Xid events shown on ‘Previous Failure’ axis that will obser-
ve an event shown on ‘Following Failure’ within a 300 sec
window. We use a large time window here in order to allow
more time for child events to show up after a parent event.
The top heatmap includes all event pairs while the bottom
heatmap excludes the pairs of same type of events. We can
observe that a DBE (XID 48) is likely to be followed by
XID 45 and XID 63, and XID 13 is likely to be followed by
XID 43. We also observe that many XID errors often oc-
cur multiple times (or at multiple nodes in the same job)
in the console logs after the original XID event. This can
be observed by the entries along the diagonal which show
high values for these XIDs. On the other hand, o↵ the bus,
XID 38, XID 48 (DBE), and XID 63 do not show multiple
occurrences within a 300-second time window. This implies
that these events are relatively more isolated in nature.

Observation 9. Doing correlation analysis between dif-
ferent types of errors help us understand which errors are
more likely to be followed by another type of error, which er-
rors occur in isolation and may not have precursor events,
etc.
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Figure 14: Spatial distribution of SBEs based on number of SBE o↵enders: All GPU cards that ever encountered
any SBE (left), top 10 most o↵ending GPU cards removed (middle), and top 50 most o↵ending GPU cards
removed (right).
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Figure 15: Cage distribution of single bit errors and SBE experiencing distinct GPU cards: Frequency of single
bit errors (a), number of distinct GPU cards a↵ected by SBE (b).

3.3 Understanding Single Bit GPU Errors
In this section, we study the characteristics of single bit

errors. Recall that single bit errors are corrected by the SEC-
DED ECC mechanism, so they do not a↵ect the program’s
execution. However, they are an indicator of error resilience
of the hardware and have implications toward the ECC page
retirement error as described earlier. We verify this fact by
looking at the nodes that experience high number of SBEs
and find that some of those nodes have experienced ECC
page retirement error in the console logs. But, it should be
noted that nvidia-smi output aggregates the SBE count over
a period of time, therefore, we cannot directly relate it to
the console log events for causal relationship.

Fig. 14 shows the spatial distribution of single bit errors.
The leftmost figure clearly shows a highly skewed distribu-
tion of SBEs. This is primarily because a small fraction of
GPU cards are responsible for almost all of the SBEs. To
address this issue, we excluded the 10 GPU cards which ha-
ve experienced the most number of SBEs and plotted the
spatial distribution (Fig. 14(middle)). We observe that the
skewness is reduced, and it goes further down when we eli-
minate the top 50 GPU cards. This shows that some cards
experience significantly more single bit errors than others.
We found that removing the top 50 cards from the spatial
distribution produces an almost homogeneous distribution.
However, we also found that less than 1000 cards have ever
experienced a single bit error (less than 5% of the whole
system).

Next, we investigate if, similar to the double bit errors,
single bit errors also tend to occur more frequently in the
top cage in a cabinet. Clearly, the uneven distribution of
SBEs among GPUs make this analysis challenging. If all
GPU cards are considered, then single bit errors occur most
in the the topmost cage (Fig. 15(a)). However, this trend
quickly reverses when we exclude the top 10 SBE experien-

cing GPU cards. Interestingly, when we remove the top 50
SBE o↵enders, we obtain a fairly homogeneous distribution
of single bit errors across the cages, like the spatial distributi-
on across rows and columns. However, this analysis may still
have some GPU cards experiencing multiple SBEs. Therefo-
re, we plotted the distribution of “distinct” cards across the
cages for all three cases (Fig. 15(b)). Interestingly, GPUs ex-
periencing any single bit error are distributed equally across
the cages for all three cases. This indicates that single bit
errors may be less sensitive toward the location within a ca-
binet, instead some cards are inherently likely to experience
more SBEs than others (as illustrated by Fig. 14).

Observation 10. Single bit errors show a highly skewed
distribution on the Titan supercomputer. However, when 50
top SBE o↵ending nodes are removed, the distribution beco-
mes relatively homogeneous in space. It remains challenging
to illustrate that cards in higher cages are prone to more
single bit errors. It appears that some cards are inherently
more prone to SBEs rather than due to their location.

4. UNDERSTANDING THE CORRELATI-
ON BETWEEN SINGLE BIT ERRORS
AND GPU RESOURCE UTILIZATION

In this section, we want to understand the relationship
between single bit error (SBE) and GPU resource utiliza-
tion. In particular, we investigate the correlation between
GPU core hours, number of nodes and memory consump-
tion with SBEs. Recall that double bit errors happen rela-
tively infrequently, consequently, it is quite challenging to
draw statistically sound conclusions about the correlation
between DBE and GPU resource utilization. On the other
hands, we observe SBEs in the order of hundreds per day,
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Figure 16: Maximum memory consumption and sin-
gle bit errors: all jobs (a), and excluding
jobs that used any of the 10 GPU cards
experiencing the most single bit errors
(b). Batch jobs are sorted based on the total
memory consumption. Respective curves have
been normalized to the average of total memo-
ry consumption and SBE count.

making it statistically meaningful to investigate the correla-
tion. For this analysis, we used recently deployed method of
collecting SBE counts on a per batch job basis for the peri-
od of over a month, and the correlation was studied between
SBEs and GPU resource utilization. We note that the SBE
counts can not be collected on a per aprun basis instead
it is collected on a job basis since the nvidia-smi output is
run before and after the job script, irrespective of number
of apruns within the job script.

Fig. 16, 17, 18, and 19 have been sorted by maximum
memory consumption, total memory consumption, number
of nodes, and the GPU core hours, respectively. We sorted
batch jobs in this order to better visualize the correlation.
We also note that the values have been normalized to ave-
rage value of the respective metrics because the ranges are
quite large, making it hard to visualize how does the SBE
count change with the increase in a particular resource utili-
zation. The first case in each plot considers all the GPU jobs.
However, as we noted earlier, some GPU nodes may experi-
ence significantly more SBEs than other nodes, and hence,
can potentially skew our analysis. Therefore, our second case
excludes jobs that used any of of top 10 SBE o↵ender nodes.
We found that removing top 50 o↵ending nodes showed si-
milar results as removing top 10 SBE o↵enders (but results
not shown due to space restrictions).

From Fig. 16 and 17, we observed that maximum and to-
tal memory consumption had very little correlation with the
SBE count (both the Spearman and Pearson coe�cient were
less than 0.50 with p-value <0.05). We explain this observa-
tion by looking at the memory structures where these SBEs
are happening. Most of the single bit errors happen in the L2
cache despite its much smaller size than the device memory.
This could help us explain why SBE count may not always
exhibit strong correlation with the memory utilization.
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Figure 17: Total memory consumption and single
bit errors: all jobs (a), and excluding jobs
that used any of the 10 GPU cards expe-
riencing the most SBEs (b).

Observation 11. The single bit errors show very weak
correlation with the GPU memory utilization. This is cau-
sed by the SBEs occurring predominately in on-chip memory
structures. However, current GPU activity accounting tools
do not provide cache and register file level activity tracking
to investigate this issue in more detail.

SBE count shows good correlation with the number of
nodes and GPU core hours for the case where all jobs are
considered (the Spearman coe�cient is 0.57 and 0.70, re-
spectively). We note that the Pearson coe�cient was still
low because the correlation may not be linear in nature and
hence, is better captured by the Spearman correlation analy-
sis. SBE occurrences tend be more strongly correlated with
GPU core activity than memory utilization. Interestingly,
removing the jobs that used any of the top 10 o↵enders
weakens the correlation for both number of nodes and GPU
core hours (reducing it to below 0.50 for the Spearman co-
e�cient).

Observation 12. Based on our experience, statistically
establishing a correlation between GPU resource utilization
and SBE count is not straight forward. In fact, our results in-
dicate that higher core utilization does not necessarily lead to
increased SBE occurrences. More fine grained activity coun-
ters, such GPU SM level activity, will help us establish such
correlation better and could be used for other purposes inclu-
ding code optimization.

We also investigated if SBE occurrence has sensitivity to-
ward specific user-code. Ideally, this can be investigated if
we have access to full information about the binaries that
are being run, how the code characteristics change across in-
put types, di↵erent implementations of the same algorithm,
etc. However, many applications that are run on Titan may
be mission critical and application-level information may be
sensitive, so it is not feasible to perform a rigorous analysis
at the whole system level. But, we have used userID as a
proxy for the kind of application they represent in order to
perform a first-order analysis. Fig. 20(left) shows that typi-
cally users utilizing more GPU core hours tend to experience
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Figure 18: Number of nodes and single bit errors:
all jobs (a), and excluding jobs that used
any of the 10 GPU cards experiencing the
most single bit errors (b).

higher SBE occurrences. Interestingly, the Spearman coe�-
cient is 0.80, higher than the one previously discussed based
on the batch job analysis. This indicates the userID may
be a better indicator for SBE correlation than solely using
GPU core hours. Our correlation coe�cient actually impro-
ves as the top 10 SBE o↵ender nodes are excluded from the
discussion. However, there are notable exceptions as seen in
the Fig. 20(right), which is a zoomed version of the first part
of the left figure.

Observation 13. UserID seems to a better proxy for
identifying which users/codes may be getting a↵ected by SBE
occurrences. This information can be used to identify user
codes for better soft-error resilience.

Next, we discuss the characteristics of GPU workloads on
the Titan supercomputer. Fig. 21 shows how the memory
consumption, number of nodes vary with GPU core hours
and wall clock time. In particular, we observed that it is not
necessary that the longer running jobs consume more me-
mory. In fact, we noticed that jobs with the highest maxi-
mum and total memory use less than the average GPU core
hours (Fig. 21(a)). However, as expected, jobs with longer
GPU core hours also tend to use higher number of nodes
(Fig. 21(b)). Fig. 21(c) shows that some jobs with smaller
node counts may actually be the longest running jobs (as
per the wall clock time). Some jobs using larger node counts
show mixed behavior: some jobs run for longer wall clock
time, while others don’t. Fig. 21(d) shows that jobs con-
suming the maximum amount of memory may actually be
running on a relatively smaller node count.

Observation 14. We observed that GPU jobs running at
really large-scale or running for maximum wall clock time
do not necessarily stress or consume the maximum amount
of memory. Some relatively smaller scale workloads consu-
me the memory resource most. Some smaller scale jobs may
even run much longer than larger scale jobs. We also obser-
ved that the jobs consuming the maximum amount of memo-
ry may be running on a relatively smaller node count.
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Figure 19: GPU core hours and single bit errors: all
jobs (a), and excluding jobs that used any
of the 10 GPU cards experiencing the
most single bit errors (b).
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Figure 20: GPU core hours and single bit errors ca-
tegorized by users.

5. RELATED WORK
Understanding, characterizing, and mitigating the side-

e↵ects of system failures has been an active research area.
Several studies have looked into reliability characteristics of
large-scale HPC systems [5, 7, 18, 19, 21, 23–25, 31]. These
studies have primarily focused on system and application
errors on CPU-based, large HPC systems. They have cha-
racterized the frequency and impact of di↵erent kind of er-
rors. These studies have taken advantage of properties of
the failures to improve the e�cacy of fault-tolerance mecha-
nisms such as checkpoint-restart [15, 20, 32]. Some of these
studies also propose to exploit the correlation among failu-
res to alert/trigger events for failure prediction [11–13, 18].
These techniques may employ machine learning and other
techniques to utilize the RAS log information.

Some studies have specifically focused on di↵erent sys-
tem components, such as DRAM [17,27, 28] and hard-drive
disks [26]. Some studies have also focused on evaluating and
characterizing emerging architectures such as FPGAs and
CMPs [3, 4]. However, large-scale GPU reliability characte-
rization studies are relatively limited [5, 16, 30], primarily
because GPU architecture is relatively newer technology in
the HPC space.

Recently, there have been many e↵orts focusing on im-
proving GPU reliability [14]. For example, fault injection
experiments have been conducted to track error propagati-
on and estimate the AVF of several GPU kernels [9, 10, 29].
Some other works have focused on evaluation of the robust-
ness of kernels to soft errors [6]. Haque et al. [16] deployed
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Figure 21: GPU resource consumption characteristics (sorted by GPU core hours (a), (b), and number of
nodes (c), (d)).

a software-based GPU soft-error detector on Folding@home
distributed platform. This tool and study focused on G80
and GT200 architectures. The study shows that newer ge-
neration of GPUs exhibit an order of magnitude lower soft
error rate and GPUs also show sensitivity to memory faults
in pattern dependent manner. Other recent studies [5, 30]
report double bit error rate on the NCSA Blue Water and
Titan supercomputer. These studies also show that newer
generations of GPUs are more error resilient despite large
structure sizes. These conclusions were confirmed with the
neutron beam test results. Evidence was provided to show
that GPU errors also show temporal locality.

However, none of these studies cover the application and
firmware specific errors. Neither do they show the correlati-
on among GPU system failures and the spatial distribution
of di↵erent kind of errors. In contrast to previous studies, we
also show how application specific errors appear over its no-
de allocation and correlation among di↵erent types of GPU
errors. We also studied the e↵ect of GPU resource utiliza-
tion and di↵erent kind of GPU errors. We provide insights
about the GPU workloads and how they may be used toward
future HPC system operations. We also discuss the challen-
ges and issues with the current GPU error logging methods
and its impact on system operation. As we approach toward
exascale, GPUs are likely to be an important part of an exa-
flop HPC system. Therefore, we believe that early experience
with the world’s largest GPU-enabled system will help the
whole community in improving the understanding the ope-
rations of GPUs, their reliability characteristics, and issues
involved in error logging. We believe that lessons learned de-
rived from our field data analysis may help in improving the
operation e�ciency of current and future HPC computing
facilities.

6. CONCLUSION
Understanding the operations of GPUs and identifying

critical GPU reliability challenges for exascale time-frame
are going to become increasingly important. In this paper,
we present an in-depth study of di↵erent types of GPU er-
rors, their characteristics and impact on HPC workload on
the Titan supercomputer. We discuss many important fin-
dings related to the spatial characteristics of GPU errors,
their frequency and their correlation among themselves. We
also discussed how GPU resource utilization may impact
di↵erent types of errors and some general characteristics of
GPU workloads on the Titan supercomputer. Our findings
can potentially be helpful in improving the operational e�-

ciency of other HPC centers and improving the accuracy of
reliability modeling and simulation in future research stu-
dies. Overall, we believe that our experience and analysis is
useful in understanding the challenges and issues with GPU
error measurement and analysis at large-scale.
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