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Introduction:

Quantum spin liquids (QSLs) are topological states of matter exhibiting remarkable
properties such as the capacity to protect quantum information from decoherence. While
their featureless ground states have precluded their straightforward experimental
identification, excited states are more revealing and particularly interesting due to the
emergence of fundamentally new excitations such as Majorana Fermions. Ideal probes of
these excitations are inelastic neutron scattering experiments. These we report here for a
ruthenium-based material, a-RuCls, continuing a major search (so far concentrated on
iridium materials inimical to neutron probes) for realizations of the celebrated Kitaev

honeycomb topological QSL. Our measurements confirm the requisite strong spin-orbit
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coupling and low-temperature magnetic order matching predictions proximate to the QSL.
We find stacking faults, inherent to the highly two-dimensional nature of the material,
resolve an outstanding puzzle. Crucially, dynamical response measurements above
interlayer energy scales are naturally accounted for in terms of deconfinement physics
expected for QSLs. Comparing these with recent dynamical calculations involving gauge
flux excitations and Majorana fermions of the pure Kitaev model, we propose the

excitation spectrum of a-RuCl; as a prime candidate for fractionalized Kitaev physics.

Main Text:

Exotic physics associated with frustrated quantum magnets is an enduring theme in condensed
matter research. The formation of quantum spin liquids (QSL) in such systems can give rise to

1234 Practionalization describes the

topological states of matter with fractional excitations
counterintuitive phenomenon where an electron breaks apart into well-defined independent
quasiparticles. The realization of this physics in real materials is an exciting prospect that may
provide a path to a robust quantum computing technology’. Fractional excitations in the form of
pairs of S=1/2 spinons are observed in quasi-one-dimensional (1D) materials containing S=1/2
Heisenberg antiferromagnetic chains®. Recent evidence for the 2D QSL state, in the form of
possible spinon excitations, has been found in quantum antiferromagnets on triangular’® and
Kagome’ lattices. The exactly solvable Kitaev model on the honeycomb lattice® represents a
class of 2D QSL that supports two different emergent fractionalized excitations: Majorana

fermions and gauge fluxes’'’. The comparatively simple gauge flux can be visualized as a spin-
gaug p y ple gaug p
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orbit coupled version of a plaquette observable like a resonance energy. The Majorana
Fermions, in general, do not have a straightforward real-space representation since they are not
associated with any real-space spin or charge density. An idea of their nature can be gleaned in
the strongly anisotropic limit of weakly coupled Ising dimers, where they can be thought of as
excitations taking the form of misaligned nearest-neighbor spin pairs on top of a ground state
consisting of a coherent superposition of satisfied dimers. How to observe such ephemeral
entities is one of the central challenges of condensed matter and materials physics today. It has
turned out that the signature of the Majorana fermion in the response function measured via
inelastic neutron scattering is perhaps one of the most direct ways of pinning down the

excitation’s existence'’. This manuscript reports precisely such a measurement.

The Kitaev model consists of a set of spin-1/2 moments {?l} arrayed on a honeycomb lattice.
The Kitaev couplings, of strength K in eqn. (1) are highly anisotropic with a different spin
component interacting for each of the three bonds of the honeycomb lattice. In actual materials a

Heisenberg interaction (J) is also generally expected to be present, giving rise to the Heisenberg-

Kitaev (H-K) Hamiltonian'"*'%.

H = Zi,j(KSl-mSjm +]§l.§;) eqn. (1)

where m is the component of the spin directed along the bond connecting spins (i,j). The QSL
phase of the pure Kitaev model (J=0), for both ferromagnetic and antiferromagnetic K, is stable

for weak Heisenberg perturbations.
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Remarkably the Hamiltonian (1) has been proposed to accurately describe edge-shared
octahedrally-coordinated magnetic systems, shown in Fig. 1a, with dominant spin-orbit

12 The focus to date has centered largely on Ir*" compounds'*™'?, however attempts to

coupling
measure the dynamical response15 via inelastic neutron scattering (INS) have met with limited
success, due to the unfavorable magnetic form factor and strong absorption cross-section of the
Ir ions. Resonant inelastic x-ray scattering (RIXS) has provided important information
concerning higher energy excitations in the iridates'® but cannot provide the meV energy

resolution necessary to provide a robust experimental signature of collective fractional

excitations that are expected to occur at energy scales of order 1 — 10 meV'" .

An alternative approach is to explore materials with Ru®" ions™. The realization that the material
a-RuCl3**** also has the requisite honeycomb lattice and strong spin-orbit coupling has

stimulated a groundswell of recent investigations™ ~*

. Whilst these studies lend support to the
material as a potential Kitaev material, conflicting results centering on the low temperature
magnetic properties have hindered progress. To resolve this, we undertake a comprehensive

evaluation of the magnetic and spin-orbit properties of a-RuCls, and further measure the

dynamical response establishing this material as proximate to the widely searched for QSL.

We begin by investigating the crystal and magnetic structure of a-RuCl;. The layered structure
of the material is shown in Fig. 1a. Figures 1b,c show the ABCABC stacking arrangement of the
layers expected in the trigonal structure (space group P3;12). That the layers are weakly bonded
to each other, similar to graphite, is demonstrated by the lattice specific heat (shown for a

powder in Fig. 1d). This displays a tell-tale T* behavior characteristic of highly 2D bonded
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systems™° rather than the usual T* observed in conventional 3D solids. Since the 2D layers are
weakly coupled the inter-layer magnetic exchanges will also be rather weak. In addition,
stacking faults are formed easily and significant regions of the sample can crystallize in

alternative stacking structures, for example ABAB? (See Supplementary Fig. 2).

Neutron diffraction shows low temperature magnetic order. The temperature dependence of the
strongest magnetic powder peak, with Ty = 14 K, is shown in Fig. le. Figure 1f shows the
temperature dependence of magnetic peaks in one 22.5 mg single-crystal, revealing two ordered
phases. The first, which orders below Ty = 14 K, is characterized by a wave-vector of q; = (1/2
0 3/2) (indexed according to the trigonal structure), whilst the other phase (2= (1/2, 0 1)) orders
below 8 K (See also Supplementary Fig.3). These temperatures correspond precisely to

anomalies observed in the specific heat and magnetic susceptibility”=%%

(Supplementary Fig.
1). This is readily explained as the observed L =3/2 phase corresponds naturally to a stacking
order of ABAB type along the c-axis, and the L = 1 corresponds to ABCABC stacking. Indeed,
the difference in 3D transitions is a residual effect of different interlayer bonding influencing the
ordering. Further, a comparison of intensities at (1/2 0 L) with (3/2 0 L)'® shows both phases
share identical zig-zag (ZZ) spin ordering in the honeycomb layers; a phase of the H-K model
adjacent to the spin liquid11 (See Supplementary Table 1). By calibrating to structural Bragg
peaks the ordered moments are measured to be exceptionally low, with an upper bound of n=0.4
1 0.1 pg . This is at most only 35% of the full moment determined from bulk

22,2527

measurements suggesting strong spin fluctuations consistent with a near liquid-like

quantum state in the material. (See Supplementary Information for more detail.)

5
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Having established the structural and magnetic properties of a-RuCls, we probe the nature of the
single-ion states to confirm the presence of strong spin-orbit coupling, which is required to
generate the Kitaev term K in (1). By using E; = 1.5 eV incident neutrons to measure the transition
from the Ru’" electronic ground state to its excited state the spin-orbit coupling A is extracted. In
the octahedral environment shown in Fig. 1 the ground state is a low-spin (J=1/2) state. The next
excited state (J=3/2) is separated by 3A/2. Neutrons can activate it by a spin-flip process and the
transition is seen in Fig. 2 at 195 £ 11 meV implying that A = 130 meV (also see Supplementary
Fig. 4 and Supplementary Information). This is close to the expected free-ion value (Age. = 150
meV?"*") and the predictions of recent ab-initio calculations®. The J=3/2 state will be split into

3233 The resolution limited line-

two Kramers doublets by small distortions of the octahedron
width suggests that such a splitting is relatively small, certainly less than the HWHM of 48 meV.
In any case, as the higher levels are too energetic to play any role, only the lowest lying doublet

needs to be considered. Projecting the inter-Ru’* couplings into this doublet results in Kitaev

terms as included in eqn. (1).

The above results indicate that the H-K Hamiltonian (1) can indeed satisfactorily capture the
interactions between Ru®” moments. If this is the case, then given the highly reduced ordered
moment and the extended QSL region close to the observed zigzag AFM phase, it is tempting to
speculate that signatures of fractionalization characteristic of QSLs will be manifest in the
collective magnetic excitations. Fig. 3 shows data for a-RuCl; powder measured using neutrons

of Ei=25meV. The scattering in the magnetically ordered state is shown in Fig. 3a for T =15
6
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K. Two distinct features are clearly visible spanning different energy ranges. The lower among
them, My, is centered near 4 meV and shows a minimum near Q = 0.62 A'l, which notably
corresponds to the M point of the honeycomb lattice as expected for a quasi-2D magnetic system
(for 3D behavior a wave-vector Q = 0.81 Alis anticipated). The white arrow draws attention to
the concave shape of the edge of the scattering, which is expected for magnon excitations in a ZZ
ordered state'”. This firmly establishes the nature of magnetic order and differentiates it from
other potential states such as a stripy ground state. The second feature is at a higher energy, M,,

centered near 6.5 meV.

Both features M; and M, correspond to powder averaged modes which are of magnetic origin as
identified by their wave-vector and temperature dependence. The thermal behavior of these
magnetic modes differs significantly from one to the other. Figure 3b shows the scattering at T =
15 K, just above Ty. It is seen that M, softens dramatically and the intensity shifts towards Q =
0. Conversely, M; is essentially unaffected. Constant Q cuts through the data are displayed in
Fig. 3c. The centers are at the positions indicated by the labeled dashed lines in Fig. 3a and 3b.
Comparing cuts (A,B) with (C,D) reinforces the collapse and shift of intensity for M; above Tx.
Cut B clearly shows two peaks implying that the density of states sampled by the powder
average at T =5 K has two maxima. The average peak energies determined by fits of the data to
Gaussian peaks are given by E; =4.1(1) meV and E; = 6.5(1) meV. Figure 3d shows constant
energy cuts integrated over the range [2.5, 3.0] meV, near the lower edge of M,. It is seen that at
low temperature M; is structured with low energy features showing up as peaks in cut E. These
are centered at Q; = 0.62(3) A and Q, = 1.7(1) A™". Above Ty this structure disappears, and the

7
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broad scattering shifts dramatically to lower Q. Fitting the T = 15 K data (cut F) to a Lorentzian
with the center fixed at Q = 0 yields a HWHM of roughly 0.6 A™!, suggesting that above Ty

spatial correlations of the spin fluctuations are extremely short ranged.

To gain further insight into the magnetic couplings we compare the INS data to the solution of
(1) using conventional linear spin wave theory (SWT) for ZZ order***”. The SWT provides a
quasi-classical approximation which works reasonably well when quantum fluctuations are
weak. Although strictly speaking it is inapplicable for strongly quantum fluctuating systems, it
provides a first starting point for estimating the approximate and relative strengths of the
couplings. In the honeycomb lattice appropriate for a-RuCls;, SWT predicts four branches, two
of which disperse from zero energy at the M point (’%, 0) to doubly degenerate energies w; =
\m and w, = |J|V2 respectively at the I" point (0,0)**. A large density of states in the
form of van Hove singularities is expected near @, and @,. Figure 4a shows the SWT and Fig.
4b the calculated powder averaged neutron scattering. Equating @, and @, with the peaks E; and
E; yields K and J values of (K=7.0, J=-4.6) meV (shown in Figure 4) or (K=8.1, J=-2.9) meV
(shown in Supplementary Fig. 5) depending on whether @, corresponds to E; or E;. These two
possibilities lie on either side of the symmetric point K=-2J, where w; = @w». The inset of Fig. 4d
shows each of these possibilities on the H-K phase diagram®. Either way the Kitaev term is

stronger and antiferromagnetic, while the Heisenberg term is ferromagnetic; again consistent

with ab-initio calculations?®.
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We note that the M; mode has a gap of at least 1.7 meV near the M point (see Fig. 5a) that is not
exhibited in the above SWT calculations. While such a gapless spectrum is a known artifact of
linear SWT for the H-K model**, the experimentally observed gap is too large to be accounted
for within systematic 1/S corrections. Extending the Hamiltonian to include further terms can
lead to a gap forming within SWT. However, calculations of the SW spectrum (See
Supplementary Fig. 5 and Supplementary Information) with additional terms in the Hamiltonian

(such as T and/or I”” terms®>

), when sufficient to generate the observed gap, show features in
the powder averaged scattering that are inconsistent with the observations. Within the SW
approximation a gap can also be generated by adding an additional Ising-like anisotropy, perhaps

at the level of 15% of J, which is also equivalent to an anisotropic Kitaev interaction. As

discussed below, the resulting SWT is still incompatible with the data.

Although the SWT calculation reproduces many of the features of the observed dynamical
response, crucial qualitative disagreements remain. Most importantly, the observed dependence
of the M, mode on temperature and energy is incompatible with linear SWT. The constant
wave-vector cuts shown in Fig. 3¢ show that M, maintains a totally consistent peak shape and
intensity above and below Tn. Moreover, for temperatures well above Ty to at least 40 K the
intensity for all measured wave-vectors is essentially unchanged as shown by Fig. 5b, which is a
plot of the M, intensity as a function of Q for several temperatures. In fact a well-defined M,
peak persists with a similar Q dependence up to at least 70 K corresponding to T ~ 5Tn. This is
in sharp contrast to the typical behavior of spin waves in conventional magnets, which generally
exhibit a dramatic decrease of intensity above the ordering temperature. It should also be noted

9
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that in the ordered state the energy width of M, is much broader than the SW calculation over the
observed range of Q. Fig. 5c, shows a constant Q cut around the M, mode (blue triangles). The
red line shows the equivalent powder averaged SWT calculation (Fig. 4b), broadened by the
instrumental energy resolution (marked “R”) and scaled so that the intensity matches the height
of the M, scattering. The low energy side of the calculation is affected by the lower mode and
therefore cannot be directly compared with the data, however it is clear from the high energy
side that there is considerable extra scattering (indicated by the shading) that is not captured by
SWT. As discussed in the supplementary information, the smooth drop off of intensity on the
high energy side of the M, peak argues against the extra width arising from additional features in
the spin wave spectrum that can be achieved by adding extra terms to eqn. (1). Finally, as
discussed in the supplementary information, for temperatures above Ty the detailed wave-vector

dependence of the scattering is not what is expected from conventional SWT.

The SWT is a quantization of harmonic excitations from classical order. Moreover, the low
ordered moment observed in a-RuCl; indicates that linear SWT is inadequate. Indeed, we argue
that the behavior of the observed higher energy mode M, — which because of its short-time scale
is least sensitive to 3D couplings —is naturally accounted for via the QSL phase proximate in the

H-K phase diagram™.

This QSL viewpoint has the strong quantum limit as its starting point. It can avail itself of the
recently computed exact dynamical structure factor of the pure Kitaev model, in which spin
excitations fractionalize into static Ising fluxes and propagating Majorana fermions minimally

10
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coupled to a Z, gauge field'’. Powder averaged results of the scattering'® expected for the
isotropic antiferromagnetic Kitaev model is shown in Fig. 5d. Although the QSL is gapless, the
structure factor of its excitations shown in Fig. 5d does show a gap. This is due to the fact that a
spin flip always excites both quasiparticles - gapless Majorana fermions and a pair of Ising
fluxes, the latter with a nonzero excitation gap'®. This results in a low energy band from 0.125-
0.5 K with a peak of intensity near the M point in the Brillouin zone for an antiferromagnetic K.
Most interestingly, in addition, a second very broad and non-dispersing high energy band
appears, centered at an energy that corresponds approximately to the Kitaev exchange scale, K.
(For a similar calculation on the ferromagnetic Kitaev model, and a general discussion, see
Supplementary Fig. 6. and Supplementary Information) The intensity of the upper band is

strongest at Q = 0 and decreases with increasing Q.

With the Kitaev interaction dominant it is reasonable to expect that a-RuClj; is proximate to the
QSL phase. The additional non-Kitaev interactions lead to long-range order at low temperatures
and strongly affect the low energy excitations, which then exhibit spin-wave behavior.
Conversely, the high energy spin fluctuations native to the proximate quantum ground state are
more immune, and can persist even in the ordered state. This behavior is well known in coupled
S=1/2 antiferromagnetic Heisenberg chains®, where at energies large compared to the interchain
coupling the spectrum of fractionalized excitations (spinons) of the pure chain dominates the
response above and below the magnetic ordering temperature. This leads to a natural
interpretation of the M, mode as having the same origin as the upper mode of the Kitaev QSL.
The broad width of the M, mode as seen in the measurements can be naturally explained in terms

11
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of the fractionalized Majorana fermion excitations. The green line in Fig. 5S¢ shows the
calculated powder averaged QSL scattering including the effects of instrumental resolution, with
the value K = 5.5 meV chosen to match the experimental peak position of M, and the overall
height chosen to match the observed scattering. The calculated QSL scattering profile is well-
matched to the observed additional width of the M, scattering on the high energy side. This
value of K is somewhat smaller than that inferred from SWT, but it is very reasonable to expect
that the quantum description requires a renormalized parameter. The large energy width is
expected for a fractionalized system because several excitations are excited in a single spin flip
process. Moreover, the Q dependence of the intensity of the M, mode (Fig. 5b) strikingly
resembles that of the upper band in the pure Kitaev model. The feature is broad in momentum
since the real-space spin correlations of a QSL are short-ranged. For convenience, a side-by-side
comparison of the Q dependence of the data and the scattering calculated for SWT and a pure

Kitaev model is presented in Supplementary Fig. 7.

The fact that M, survives well above Ty, even if M, is completely washed out, indicates that the
M, mode is not directly connected to the existence of long range magnetic order. In the strictly
2D Kitaev model there is no true phase transition from the QSL to the high temperature
paramagnet“. However, recent Monte Carlo calculations at finite temperature suggest that high
energy Majorana fermions, thus the M, mode, remain stable up to the highest cross over

temperature at an energy scale of K*, consistent with the observations reported here.

12
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Taken together, the qualitative features from a complete quantum calculation using a Majorana
fermion treatment can successfully provide a broadly consistent account of the inelastic neutron
scattering data. This makes a-RuCls a prime candidate for realizing Kitaev and QSL physics.
Further support for the presence of Kitaev QSL physics in a-RuCl; is seen in recent Raman
scattering measurements>* which show broad response similar to that calculated for the pure
Kitaev model'” with a value of K = 8 meV, of the same order as that derived here. The Raman
continuum also persists to temperatures well above Ty. Much more detailed information on the
structure of the response functions will require INS in single-crystals of both a-RuCl; and other

43,44
D™,

relevant compounds, some of which are 3 The most instructive measurements on ot-

RuCl; should use single crystals free of the complications induced by stacking faults.

Ideally, a single fully quantum theoretical treatment should capture the microscopic behavior
across all energy and length scales; however, such a treatment is unavailable for the full
Hamiltonian describing the magnetic properties of a-RuCl;. Here, we have used the insight that
the high-energy short-range spin-liquid physics is well-captured by a pure Kitaev model which
permits an analytic treatment, but misses the weak ordering tendency due to perturbations to the
simple model Hamiltonian. These, however, and their concomitant low-energy spin wave
excitations can be approximately captured by SWT. Considering the usual renormalizations
inherent in semiclassical descriptions of quantum excitations, these two approximation schemes
for different parts of the spectrum can be described by similar microscopic parameters,
suggesting that the absence of a full treatment of the complete H-K model is a technical rather

than conceptual issue.

13
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Looking forward, it will also be of great interest to systematically investigate the effects of
disorder and doping in these materials*’, and there is also the hope of generating a genuinely

two-dimensional system by exfoliation techniques.

Methods:

Synthesis and bulk measurements: Commercial-RuCl; powder was purified in-house to a
mixture of a-RuCl; and B-RuCls, and converted to 99.9% phase pure a-RuCl; by annealing at
500 °C. Single-crystals of a-RuCl; were grown using vapor transport with TeCly as the
transport agent. The crystals exhibit an anisotropic mosaic for in-plane peaks, indicative of
stacking faults, as shown in Supplementary Fig. 2. Samples were characterized by standard bulk
techniques (see Supplementary Fig. 1). X-ray powder diffraction was carried out at room

temperature using a Panalytical Empyrian diffractometer employing Cu K, radiation.

The structure was found to be consistent with the trigonal space group P3;12 (No. 151) with
room-temperature lattice constants a=b=5.9783(2) A, c=17.170(1) A with ¥* = 13.7 and wRp =
5.16. For C2/m the corresponding fits are worse, with a = 5.982(1), b=10.3530(7), c=6.0611(5),
B=109.177(7) with x> = 16.9, WRp = 6.33. In addition, powder neutron diffraction was carried
out at 10 K. For the fit and the lattice constants at T = 10 K refer to Supplementary Fig. 2 and
Supplementary Table 2. Magnetic properties were measured with a Quantum Design (QD)
Magnetic Property Measurement System in the temperature interval 1.8 K <T <300 K.

Temperature-dependent specific heat data were collected using a 14 T QD Physical Property
14
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Measurement System (PPMS) in the temperature range from 1.9 to 200 K. Our measurements of
the susceptibility (see Supplementary Fig. 1) are consistent with existing literature**>*" The
magnetic susceptibility of powders fits a Curie-Weiss law over the range above 150 K, with a
temperature intercept of 0 = 32 K and a single-ion Ru effective moment of 2.2 pug. Magnetic
order appears for T < 15 K leading to a broad specific heat anomaly. The detailed specific heat

25,2729
2729 and

of single-crystal specimens is sample dependent, but consistent with other groups
shows the onset of a broad anomaly near 14 K, and a sharper peak near 8 K, possibly with

additional structure in between those temperatures. This complicated behavior is a consequence

of stacking faults (see main text).

Neutron Diffraction: Neutron diffraction data for structural refinement on a 5.1 g powder
sample of a-RuCl; were collected at the POWGEN beamline at the Spallation Neutron Source
(SNS), at Oak Ridge National Laboratory (ORNL). The sample was loaded in a vanadium
sample can under helium, and measured at T = 10 K. Neutron diffraction measurements to
characterize the magnetic Bragg peaks in both powder and single-crystals was performed at the
HB-1A Fixed Incident Energy (FIE-TAX, E; = 14.68 meV) triple-axis instrument at the High-
Flux Isotope Reactor at ORNL. For powder diffraction, 4.7 g of powder was packed into a
cylindrical aluminum canister. For single-crystal diffraction, one ~0.7 x 1.0 cm?, 22.5 mg crystal
was attached to a flat aluminum shim using Cytop-M glue. It was then sealed with indium into an
aluminum canister with helium exchange gas and then aligned and confirmed to be a single-
domain sample using neutrons. This was attached to the cold-finger of a 4 K closed-cycle

refrigerator for performing the temperature scans.

15
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Inelastic neutron scattering: Inelastic neutron scattering of powder a-RuCl; was performed
using the SEQUOIA chopper spectrometer at the SNS*.  The sample (5.3 grams) was sealed at
room temperature ina 5 x 5 x 0.2 cm’ flat aluminum sample can using helium exchange gas for
thermal contact. This was mounted to the cold finger of a closed cycle helium refrigerator for
temperature control. Empty can measurements were performed under the same conditions as the
sample measurements. All inelastic data have been normalized to the incident proton charge and
have the empty can background subtracted. Measurements were made with E;=8, 25, and 1500
meV for the neutron incident energies. The E;=8 and 25 meV measurements were performed
using the fine resolution 100 meV Fermi chopper slit package spinning at 180 Hz and the T
chopper spinning at 30 Hz. The E;=1500 meV measurements used the 700 meV coarse
resolution Fermi chopper spinning at 600 Hz and the T, chopper spinning at 180 Hz*". The
Ei=1500 meV configuration yields a calculated full width at half maximum (FWHM) energy
resolution of approximately 97 meV at 200 meV energy transfer. The FWHM elastic energy
resolution is calculated to be 0.19 and 0.64 meV for the E; = 8 and 25 meV configurations
respectively. Care was taken to minimize the exposure of the sample to air, and after every
exposure the sample was pumped for at least 30 minutes to remove adsorbed moisture. Structural
refinements confirmed the purity of the powder sample. Spin wave simulations were performed
using SpinW codes* (Version 235) and used the nominal symmetric honeycomb structure for o-
RuCl;*'*%. The SWT powder average was performed with 3000 random points distributed over
the Brillouin zone. The Ru®* form factor utilized was interpolated using the results of relativistic

Dirac-Slater wave functions™.
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Figure 1: Structure and Bulk properties of 2D layered a-RuCls. a-c, The structure of a-
RuCl; (space group No. 151, P3;12). a, In-plane honeycomb structure showing edge-sharing
RuClg octahedra and the unit cell of the honeycomb lattice. b, View along the ¢ axis showing the
stacking of honeycomb layers in the unit cell, with Ru atoms in each layer denoted by the colors
red, blue or green. The different intra-layer Ru-Ru bonds, corresponding to the index “m” in
equation (1), are labeled in the red layer as o, B, or y, each with distance a/ V3. The two-
dimensional zig-zag magnetic structure is illustrated by the black spins on the red layer. ¢, Side
view of the unit cell showing the offsets along the C axis. Values noted are for room temperature

lattice constants. d, Specific heat of powder a-RuCl;. The solid red line is a fit of the data

x2
eX—1

2 %
following the two-dimensional Debye model C,(T) = ANk (QL) ) o dx for T> 16 K, and
D

for T < 16 K an empirical function describing the anomaly associated with magnetic order. The
inset in Fig. 1d shows a close-up of the anomaly associated with the low temperature magnetic
ordering transition at Ty = 14 K in powder samples. (See Extended Data Fig. 1 for more details
of thermodynamic measurements). €, Order parameter plot of the (1/2 0 3/2) magnetic Bragg
peak (Q=0.81 A™") in powder samples. The solid blue line is a power-law fit to the data above 9
K yielding Ty=14.6(3) K, with B = 0.37(3). f, Similar plot for single-crystals showing two
coexisting ordering wave-vectors (1/2 0 1) with Tyx; = 7.6(2) K (green) and (1/2 0 3/2) with T, =
14.2(8) K (blue). Note that the (1/2 0 1) peak loses intensity sharply, as compared to the (1/2 0

3/2). Inset: picture of the single-crystal (22.5 mg) used in these measurements.
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Figure 2: Spin-orbit coupling mode in a-RuCl;, measured at T = 5K with incident energy
Ei =1.5eV. a, Difference between data integrated over the ranges Q = [2.5, 4.0] Aland [4.5,
6.0] A”! shown in Extended Data Fig. 4, subtracted point by point, illustrating the enhanced
signal at low Q. The solid line is a fit to a background plus a Gaussian peak centered at 195 + 11
meV with HWHM 48 + 6 meV. With the settings used for the measurement the width is
resolution limited. b, Intensity for various values of wave-vector integrated over the energy
range [150, 250] meV (each point represents a summation in Q over 0.5 A™ except for the first
point which is over 0.26 A™). The solid line shows a two parameter fit of the data to the
equation A - |[f™29(Q)|? + B, where f™(Q) is the Ru’" magnetic form factor in the spherical
approximation. The shaded area represents the contribution arising from magnetic scattering.
Inset: A schematic of the single-ion energy levels for d” electrons in the strong octahedral field

(i.e., low spin) limit with spin-orbit coupling showing the J;> to Js/, transition at energy 3\/2.



Figure 3



Figure 3: Collective magnetic modes measured using 25 meV incident neutrons. a, False
color plot of the data at T = 5 K showing magnetic modes (M; and M;) with band centers near E
=4 and 6 meV. M, shows an apparent minimum near Q = 0.62 A™', close to the magnitude of the
M point of the honeycomb reciprocal lattice. The white arrow shows the concave lower edge of
the M; mode. The yellow “P” denotes a phonon that contributes to the scattering at an energy
near that of M, but at higher wave-vectors of Q >2 A™. b, The corresponding plot above Ty at
T = 15 K shows that M, has disappeared leaving strong quasi-elastic scattering at lower values of
Qand E. c, Constant-Q cuts through the scattering depicted in Fig. 3a and 3b centered at wave-
vectors indicated by the dashed lines. The cuts A and C are summed over the range [0.5, 0.8] A’
which includes the M point of the 2D reciprocal lattice, while B and D span [1.0, 1.5] A™". The
data from 2 — 8 meV in cut B is fit (solid blue line) to a pair of Gaussians yielding peak energies
E; =4.1(1) meV and E, = 6.5(1) meV. The solid lines through cuts A, C and D are guides to the
eye. d, Constant-E cuts integrated over the energy range [2.5, 3.0] meV, at 4 K (E) and 15 K (F).

See text for detail. All intensities are in arbitrary units in all panels.
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Figure 4: Spin Wave Theory calculations. a, Spin wave simulation for H-K model with (K, J)
= (7.0, -4.6) meV with a ZZ ground state. The lattice is the honeycomb plane appropriate for the
P3,12 space group. b, The calculated powder averaged scattering including the magnetic form
factor. The white arrow shows the concave nature of the edge of the lower mode in (Q, E) space,
similar to the data in Fig. 3a. ¢, Cuts through the data of Fig. 3a integrated over 0.2 A™ wide
bands of wave-vector centered at the values shown. Lines are guides to the eye. Note that actual
data includes a large elastic response from Bragg and incoherent scattering. d, The same cuts,
through the calculated scattering shown in Fig. 4b. Inset: Phase diagram of the H-K model, after
Ref. 33. The various phases are denoted by different colors: spin liquid (SL, blue),
antiferromagnetic (AFM, light violet), stripy (ST, green), ferromagnetic (FM, orange), and zig-
zag (ZZ, red). The red dots represent the two solutions for a-RuCl; as determined by the zone

center spin wave mode energies.
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Figure 5: Disagreements with classical SWT and agreement with QSL calculations. a,
Scattering from mode M; measured at T = 5 K using E; = 8 meV. Lower panel shows constant
energy cuts over the energy ranges shown, centered at the locations labeled (G,H) in the upper
panel. The absence of structured scattering below 2 meV confirms the gap in the magnetic
excitation spectrum. b, Constant-E cuts of the data through the upper mode at four different
temperatures, of which one curve at T =5 K is below Tx (red squares) and rest above Tn. The
lines are guides to the eye. C, A constant-Q cut of the E; =25 meV, T =5 K data in the Q range
shown. The blue triangles show the M; portion of the cut B in Fig. 3c, but with the linear
background term subtracted, and the blue line is a fit to a Gaussian peak. As discussed in the
text, the red line shows simulated SWT scattering and the green line shows the scattering
calculated from a Kitaev QSL response function. The shaded area represents magnetic
scattering that is not captured by the SWT. The double-ended arrow marked “R” shows the
FWHM of the instrumental resolution of 0.5 meV at 6.5 meV. d, The powder average scattering
calculated from a 2D isotropic Kitaev model, with antiferromagnetic K, using the results of Ref.
10, including the magnetic form factor. The upper feature is broad in energy and decreases in

strength largely monotonically as Q increases.



Stacking (HKL) Stripy 7 Data
(1/2 0 3/2) 252
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Supplementary Table 1: Comparison of the expected intensities from a stripy and zig-zag
order, with the observed intensities from single-crystal diffraction. The ratio of the
calculated intensities at the (1/2 0 L) positions with the (3/2 0 L) positions for L = 1 and 3/2 are
shown for zig-zag and stripy orders, corrected for both the Lorentz factor and the Ru®" form
factor. For the zig-zag order in a perfect honeycomb lattice, the shown (3/2 0 L) locations are
forbidden'’. The observed neutron diffraction intensities are shown. The observed neutron
diffraction intensity ratio for the (1/2 0 L) and (3/2 0 L) locations are almost zero, which suggests

zig-zag ordering.



Space group P3,12 C2/m
Lattice parameters a (A) 5.9632(1) | 5.9230(3)
b(A) 5.9632(1) | 10.3291(4)
c(A) 17.033(7) 6.011(3)
B(®) 90 109.14(5)
V (A% 524.56(4) | 349.72(3)
Fractional
Coordinates Rul x 0.221(1) 0
Rul y 0.443(2) 0.1677(4)
Rul z 1\6 0
Ru2 x 0.559(2)
Ru2y 0.117(3)
Ru2 z 1\6
CIl x 0.214(2) 0.2300(6)
Clly 0.453(1) 0
Cll z 0.4224(2) | 0.2340(6)
CI2 x 0.562 0.2492(4)
Cl2y 0.108 0.1718(2)
Cl2 z 0.422 -0.2337(3)
CI3 x 0.870(2)
Cl3y 0.764(1)
Cl3 z 0.4220(2)
WRp 5.41 5.31
i 35.71 34.33
ADP (U..) Rul 0.0002(3) | 0.0004(2)
Ru2 0.0002(3)
Cl1 0.0026(2) | 0.0031(1)
CI2 0.0026(2) | 0.0031(1)
Cl13 0.0026(2)
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Supplementary Table 2: Rietveld refinement results for both P3;12 and C2/m structural
models of a-RuCls; at low temperature. The fitted parameters obtained using GSAS are shown
for the data obtained on the POWGEN beamline of SNS for Bank 2 (TOF data using Acenter =
1.066 A) at T =10 K. The systematic uncertainties introduced by stacking faults prevent the
GSAS refinements from distinguishing between the two models. While the differentiation of the
structural model is not definitive, the sample is shown to be phase pure by the absence of any

impurity reflections. Parameters are fixed where no errors are given.
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Supplementary Figure 1: The magnetic susceptibility and heat capacity of single-crystal
and powder a-RuCls. a, The magnetic susceptibility y for powder a-RuCl; showing only one
anomaly at Ty =14 K. b, The 1/ plotted versus temperature. The data between 100 and 273 K
fits to a straight line which yields 6 =~ 32 K, and pegr = 2.2 pg. ¢-d, The magnetic susceptibility
with H|c = 0.1 Tesla and the heat capacity with H=0 of the single-crystals of a-RuCl; are
shown. Both shows at least two distinct anomalies - the 8 K (sharper, red arrow) and the 14 K
(broader, green arrow) corresponding to Neel transitions of the (1/2, 0, 1) and (1/2, 0, 3/2)

antiferromagnetic orders respectively, as shown in Fig. 1d,e in main text and Extended Data Fig.

3 below.
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Supplementary Figure 2: Powder diffraction data and single-crystal rocking curves. a-b.
Powder neutron diffraction pattern obtained at the POWGEN beamline at SNS at 10 K. The
Rietveld analysis of the data is performed using GSAS for both the P3, 12 (a) and C2/m (b)
space groups. All the sample peaks are accounted for by the Rietveld analysis, which thus exhibit
the phase purity of the powder sample. The fitted lattice parameters are in Supplementary Table
2. c.Neutron diffraction data on a single-crystal showing in-plane versus out-of-plane rocking
curves for a (3 0 0) order Bragg peak. In-plane rocking scans are illustrated for two equivalent
Bragg reflections, and in each case the in-plane mosaicity is resolution limited (FWHM~0.3°),
proving a high degree of in-plane order. Conversely the out-of-plane mosaicity is broad

(FWHM~4°) pointing to presence of structural disorder arising from stacking faults.
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Supplementary Figure 3: Magnetic Bragg peaks in a-RuCls. a, Neutron diffraction raw data
from 5.3 grams of powder sample at T =4 K and 20 K revealing magnetic Bragg peak at Q =
0.81 A™. b, Point by point difference plot (4 K minus 20 K) of the data in a. The solid purple
line shows a Gaussian fit revealing the magnetic Bragg peak at Q = 0.81(1) A™". This
corresponds to the (1/2 0 3/2) wave-vector. c-d, Radial scans on a 22.5 mg single-crystal of
RuCl; through the (1/2 0 1) peak (c) and the (1/2 0 3/2) peak (d). Note that the (1/2 0 1) order
vanishes by T = 9 K, unlike the (1/2 0 3/2) order. This confirms that the two magnetic orders
with the same in-plane (1/2, 0), but different out of plane wave-vectors (L = 1 and 3/2) exist, and
are responsible for the magnetic anomalies observed in the magnetic susceptibility and heat

capacity.
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Supplementary Figure 4: Raw data for E; = 1.5 eV at two wave-vectors. The constant Q cuts
through the empty-can subtracted inelastic neutron powder data taken at SEQUOIA chopper
spectrometer with E; = 1.5 eV for two representative Q ranges one at low Q and the other at high
Q as shown. The lower Q cut shows a higher intensity than the higher Q cut which represents
magnetic scattering from the spin orbit coupling mediated J;, = J3; transition. The difference

between these two cuts is the peak shown in Fig. 2a in main text.
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Supplementary Figure 5: Spin Wave Theory calculations and corresponding powder
averages. a, Zig-zag and b, stripy structures. For each spin two-thirds of the nearest neighbors
are co-aligned in the zig-zag, and anti-aligned in the stripy magnetic structures. ¢, The nominal
in-plane honeycomb reciprocal lattice. The values noted are for the room temperature lattice
constants for a-RuCls. d-e, The SW spectrum for the parameters corresponding to (K, J) = (8.1, -
2.9) meV with a zig-zag ground state, and the corresponding powder averaged scattering cross-
section yields intensity bands at 4 and 6.5 meV. We note that this solution corresponds to an
alternate choice of ®; and m, compared to that shown in Fig. 4 of the main text. This choice
gives a much worse description of the observed intensity of the lower mode. f-g, The SW
spectrum for a stripy ground state with parameters (K, J) = (-9.4, 2.2) meV chosen to match the
energies E; and E;. The corresponding powder averaged pattern does not match the data in Fig.
3a. h-i, The SW spectrum for the J-K-I" model>*~*’ with parameters corresponding to (K, J, T') =
(7.8, -4.8, £1.45) meV with a zig-zag ground state and a gap of roughly 2 meV at the M point of
the reciprocal lattice. Corresponding powder averaged pattern yields additional intensity bands
(orange arrows) arising from broken band degeneracy not seen in our data in Fig. 3a. j-k, The
spin wave spectrum for the H-K model plus an additional Ising term DS”S?, with parameters (K,
J,D)=(6.4,-4.2,-0.6) meV with a zig-zag ground state showing a gap of roughly 2 meV at the
M point. Note that the anisotropic H-K model with parameter set K** = KPP = K"/1.1 = 6.4
meV, and J = -4.2 meV also shows a similar gapped spectrum. |-m A solution with K = -2J
shows only one mode at the position of My, here illustrated with parameters (K, J) = (6.0, -3.0)
meV. n-0 Adding an Ising term when K=-2J introduces a gap but does not break the band
degeneracy, shown here with (K, J, D) = (5.5, -2.75, -0.75) meV leading to a gap of roughly 2

meV. In all cases, the scattering cross-section includes the single-ion Ru®" form factor*®. The



white arrows in the powder averaged spectra indicate the shapes of the edge of the lower modes.
Experimental results shown in Fig. 3a are compatible with the zig-zag, but not the stripy, ground

state. The chosen ranges of the reciprocal lattice plotted are the same as those in Ref. 38.
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Supplementary Figure 6: Powder averaged simulations of the isotropic pure-Kitaev
calculations following Ref. 10. a, The powder averaged pattern with isotropic ferromagnetic
Kitaev interactions. b, The constant Q cuts with Q =[1.0, 1.5] A for the antiferromagnetic and
ferromagnetic Kitaev interactions show similar intensities for both the upper and the lower

modes. The upper mode is broad in both cases.
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Supplementary Fig. 7. Visual synopsis of Q and E dependence of the scattering: We show
the data obtained with E; =25 meV at T =5 K (Fig. 3a) side-by-side with the SWT result (Fig.
4a) and pure Kitaev QSL predictions (Fig. 5d). The comparison provides a visual synopsis of the
main result of this paper. We note that the energy width and wavevector dependence of the M,
mode is inconsistent with the SWT calculation, but in fact is accounted for rather well by the
Kitaev calculation. The solution set (K, J) = (7.0, -4.6) meV is chosen for the SWT as these
parameters give the best quantitative description of the lower mode within a SW calculation of

the H-K model.
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Supplementary Information:

Susceptibility and Heat Capacity measurements: See Supplementary Figure 1. The ratio of
the intensities for the Ty; = 8 K and Ty, = 14 K Neel transitions varies from crystal to crystal
depending on growth conditions. These have previously been suggested to be signatures of

229 bhase transitions in the system. The present work shows that

different®’, or possibly exotic
they arise from domains with different stacking orders in a highly two-dimensional system. This

also naturally explains the sample to sample variation of the bulk measurements. The single-ion

effective moment is estimated (see Supplementary Fig. 1) to be 2.2 ug, which in susceptibility

measurements correspond to,/J(J + 1)g, where g is the Lande g factor.

Neutron Diffraction and Magnetic Bragg peaks: Powder neutron diffraction data was
obtained at the POWGEN TOF neutron diffraction beamline at SNS in a standard sample-
changer fitted to a 10 K cryostat. Supplementary figures 2a and 2b show the data obtained at
Bank-2 of the beamline and their refinement using GSAS. The structural parameters at 10 K are
shown in Supplementary Table 2. The structure is found consistent with the polytypes P3;
1222751 as well as C2/m™ at low temperature, both showing comparable fit quality. Both
refinements contain the RuCl; phase and a vanadium phase to account for weak peaks from the
vanadium sample can. We observed that stacking faults affect most of the (H00) and (HO1) type

peaks, which showed a saw-tooth like Warren line shape. GSAS powder refinement routines

cannot properly model the high degree of stacking faults present, and this introduces

1
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uncontrolled systematic uncertainties into the detailed crystallographic parameters obtained from
the refinement. Nevertheless the data clearly indicate that the sample is pure. There are no
additional peaks that would indicate potential impurity phases, such as -RuCls;, RuOCl,, Ru or
RuO,. No obvious phase transition was observed between room-temperature and 10 K. For this
paper we adopt the P3; 12 nomenclature which has been proposed for this system and which we

find consistent with the data®’

Magnetic neutron diffraction was performed on both single-crystal and powder samples of a-
RuCl; at the HB-1A Fixed Incident Energy (E;= 14.68 meV) beamline at the High Flux Isotope
Reactor (HFIR) at ORNL. Single-crystal rocking curves are shown in Supplementary Figure 2c.
Magnetic Bragg peaks are shown in Supplementary Figure 3. Powder diffraction showed one
clear magnetic peak at Q ~ 0.81 A™', and its weak second harmonic at 2Q ~ 1.62 A™.
Supplementary Fig. 3b shows the magnetic Bragg peak which is fitted to a Gaussian to reveal the
exact location of the peak at Q = 0.81 + 0.01 A™". This corresponds to either (1/3, 1/3, 1) with a
120° order, or (1/2 0 3/2) with a zig-zag or stripy order. To confirm this, the single-crystal
diffraction was performed using one single-domain 22.5 mg crystal under identical experimental
conditions to the powder diffraction. Supplementary Fig. 3¢,d show the single-crystal magnetic

diffraction peaks and their temperature dependence. As shown, we see co-existent magnetic

peaks at two different wave-vectors, k_l) =(§02&)and k_z) = (& 0 3&) where £=1/2, with two
different transition temperatures Tx; = 8 K and T, = 14 K, precisely matching the Neel
transition temperatures obtained from the heat capacity measurements in Fig. 1d and

Supplementary Fig. 1. A search yielded no evidence of peaks for 120° order at the (1/3, 1/3, L)
2
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locations, which can hence be precluded. The ordered moment size is estimated by comparing
the structural Bragg peak intensities with the magnetic Bragg peaks, and yields a lower bound of
0.20(5) up that can be inferred by assuming that the moment direction is perpendicular to the
magnetic K vector. The moment direction is not completely resolved in our measurements,
however from the constraints imposed by measuring peaks in different directions an upper bound
can be ascertained for the total ordered moment, to be 0.4(1) ug. Thus the ordered moment is at
most around 35% of the value of the effective moment measured from susceptibility. Note that
the ordered moment size in neutron scattering measurements corresponds to g<J“>, where g is
the Lande g factor and o corresponds to the direction of the ordered moment.

As discussed in the main text, the powder data does not show statistically significant
evidence for a peak at 0.7A™" corresponding to the (1/2,0,1) position. If such a peak is included
in a fit it is present with an intensity of approximately 10% of that at the (1/2,0,3/2) position
although the peaks are not well resolved. This is not surprising when considering the low energy
necessary to induce stacking faults and the ease of introducing them by mechanically working
the sample. If the neighboring layers of one fixed layer are assumed to be one of the other two
possibilities, but occurring with similar probabilities, the average length of an ABCABC ordered
domain extends over very few lattice spacings, and most of the sample will be composed of
ABAB type ordered regions. This is reflected in the presence of only a single observed
transition in the powder samples, which also simplifies the interpretation of the observed

inelastic scattering.
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The Spin-Orbit coupling mode: In a simple picture the spin-orbit coupling leads to a
dispersionless magnetic mode of energy E = 3\/2 corresponding to the J,, = J3, transition. The
neutron scattering cross-section for this mode varies as the square of the magnetic form factor of
the Ru*" ion and therefore decreases with increasing Q. This allows one to distinguish magnetic
modes from other scattering processes. This is evident in the extra scattering at low Q visible in
Supplementary Figure 4. The large background at high Q (shown in Figure 2b) arises from
several sources including multi-phonon and multiple scattering. Over the region shown a Q

independent background is a reasonable approximation.

Spin wave models for zig-zag ground states plus extended Hamiltonians: Spin wave
calculations have been performed for both zig-zag and stripy ordered ground states which are
illustrated in Supplementary Figure 5a,b with the Brillouin zone shown in 5c. As mentioned in
main text, the spin wave minimum occurs at 0.6 A, corresponding to the M point of the 2D
lattice, as opposed to the 3D wave ordering vector of 0.8 A™. This is strong evidence that
interplanar coupling of the spins is small, and a two dimensional analysis can describe most
features of the relevant spin waves. These calculations are hence performed in a strictly two
dimensional limit, and therefore do not capture details of the low energy spin waves that may be
dependent on the precise stacking arrangement of the honeycomb lattices. The addition of
interplanar coupling will result in some small dispersion of spin waves along the c* direction
with a minimum at the 3D ordering wave-vector. As revealed in simulations including such a

coupling, this also leads to observable singularities separated by the same energy scale. Such
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features have not been observed in the highest resolution data taken with E; = 8 meV, allowing
for an estimate of an upper bound for the interplanar magnetic coupling on the order of 0.3 meV.
We note that recent calculations suggest that the interlayer binding energy is of order only a few
micro-eV/unit-cell®’, suggesting that effects on the 2D excitations arising from stacking faults

are likely to be negligible.

As discussed below, we have carried out numerous different simulations to investigate the
possible effect of additional Hamiltonian terms on the excitation spectrum and corresponding
powder averaged scattering. The powder measurement averages over directions in Q, but
preserves singularities arising in the density of states as a function of E. The scattering cross-
sections can be readily calculated and it is seen that the powder neutron spectrum contains
distinctive fingerprints of the Hamiltonian which can be readily compared to theoretical
calculations to obtain approximate parameters. This is especially true if the measurements are
high resolution, allowing for the extraction of the intensities and widths of the features with high
accuracy. In our data, any extra modes will be well-resolved to the instrumental resolution of
~0.5 meV (at 6 meV) which puts an absolute lower bound on the resolvability of the features.
Various combinations of all parameters known to us that have been suggested to describe the
system, including the I" and I’ terms, have been used for our spin wave simulations. We have

not found any of these that satisfactorily fit our powder averaged data.
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For illustrative purposes we consider the Hamiltonian including the H-K terms as well as

the symmetry allowed off-diagonal exchange term, I'*:

H =3, (KS"S™ +JS,- S, + '(S"S" +S"S™) . .. eqn. (S1)

Representative calculations with different values of K, J and I', and additional Ising terms are
shown in panels d — o of Supplementary Figure 5. Supplementary Fig. 5 d,e shows the scattering
from the alternate set of parameters (K,J) inferred from the spin wave analysis discussed in the
main text. Supplementary Fig. 5 f,g illustrates the inelastic scattering expected for a stripy

ground state, which is seen to be completely incompatible with the data.

As discussed in the main text, the observed M, scattering has an energy gap A > 1.7 £ 0.1 meV
that is established by analyzing the E;= 8 meV constant Q cut at the M point band minimum, Q
=0.62(3) A™". With I = 0 the H-K SWT cannot reproduce the experimentally observed gap. A
non-zero I” term can induce a gap at the M point. However, it also lifts mode degeneracies, and
as described in main text, when it is large enough to match the experimental gap value it also
yields additional singularities in the powder averaged spectrum that are not seen experimentally.
To assess whether or not spin wave theory can explain the broad energy response of the M,
mode, a numerical search of (K-J-I") parameter space was conducted. Supplementary Figure
5h,i shows one of the best solutions found with parameter set [K, J, ['] =[7.0, -3.5, £1.75] meV.

This solution produces an unbroken band of scattering at M, with about half of the observed
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width, but is contradicted by the data as it predicts extra singularities in the lower mode (orange
arrow) that are not observed. A smaller I" does not broaden the upper mode appreciably to match
the data, while a larger I" both splits the M, band and makes the unobserved additional mode in
M; much more prominent. The addition of arbitrary extra Heisenberg terms (such as next-
nearest neighbor terms) to equation 1 to artificially broaden the upper mode also breaks the
degeneracy of the modes creating extra singularities and at lower energies not observed in the
data. As argued in the main text, the line-shape of the M, mode cannot be satisfactorily

accounted for by adding extra modes or bending the bands.

We also note that an additional Ising-like anisotropy, which includes anisotropic Kitaev

terms as a special case, also leads to a gap in SWT without creating any extra bands:

H =3 ;(KSPS™ +JS, - S, + D,S°S) . ... eqn.(S2)

Supplementary Fig. 5j,k shows a calculation for the special case p = z, chosen to match the
experimental gap. Notably, this scenario is equivalent to introducing anisotropy in the Kitaev
term of the H-K model with one of the three components increased by roughly 10% relative to
the other two components, in the two solutions marked in Fig. 4(d) inset. Although there is no
physical motivation for the assumption of an Ising-like term in the Hamiltonian, one cannot
absolutely rule out the possibility of an anisotropy in the Kitaev terms. However, the calculated

spin wave scattering does not reproduce the energy width of the M, mode. We note that it has
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been suggested that the Hamiltonian for a-RuCl; should be XY like as opposed to Ising-like*’.
SWT calculations with an XY anisotropy are not compatible with the inelastic neutron scattering

data.

Note that all of the SW simulations illustrated above assume the presence of long-range order,
and hence none of them can explain the experimental temperature dependence of the M, mode

(Fig. 5b) which extends well beyond the ordering temperature.

As an interesting aside, the ratio K/J =-2 has been suggested previously for interactions in
trigonally symmetric lattices with magnetic cations interacting via three edge-shared octahedral
anions. (see, e.g., equation 5.8 in Ref. S4). With this ratio the SWT has additional degeneracies,
and the result is the appearance of only the M| mode, as depicted in Supplementary Fig. 5]-m
and also in Supplementary Fig. 5Sn-o with an additional Ising term leading to a gap. The possible

relevance of this is discussed further below.

Wave-vector dependence of the intensity above Ty : In typical antiferromagnets above the
ordering temperature Ty the system is in a disordered state with short range order characterized
by a correlation length ¢. Under this circumstance propagating spin waves can still appear at
reduced wave-vectors q such that g€ = 1, i.e. close to an antiferromagnetic zone boundary. If an
apparently well-defined peak arises from the zone boundary scattering, a constant E scan in a
powder can exhibit structure when Q has a magnitude equal to that of the zone boundary in any

magnetic Brillouin zone. Moreover, the powder averaged measurement for a quasi-2D system

8
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includes contributions from all 2D zone boundaries with QZDZB < Q. Thus, the monotonic
decrease intensity as a function of Q observed for M; is unexpected for SWT, however it

matches the calculated scattering from the Kitaev QSL.

Pure Kitaev Model: With the validity of the spin-waves in question because of the low ordered
moment, and given the continuity of the high-energy mode across the Neel transition, we argue
that the pure Kitaev model is a more appropriate description of the physics for the higher energy
mode. Calculations for the both antiferromagnetic and ferromagnetic pure Kitaev interactions'®
(i.e. with no Heisenberg contributions) are shown to also produce two modes in the powder
average as is shown in Fig. 5d and Supplementary Fig. 6. For both cases, the intensity originates
from Majorana fermions in the presence of a heavy Z, flux pair. In particular, in the limit of
vanishing Heisenberg interactions, the lower mode originates from Majorana Fermions strongly
affected by the pair of fluxes. The upper mode at a scale E ~ K originates from high energy
Majorana fermions which are much less sensitive to the local scattering by the flux pair, or the
magnetic LRO; this mode therefore more closely resembles the Majorana density of states in this
energy region. As discussed in the main text the response is broad in both energy and
momentum, and can here be directly related to the broadness of the Majorana Fermion DOS in
the presence of a flux pair. The broad M, mode from deconfined Majorana Fermions is
insensitive to energy scales of the interlayer coupling. Our results in RuCl; hence place this
material as a particularly strong contender for further studies of the properties of 2D Majorana

physics.



10

11

12

13

14

15

16

17

18

19

20

While we have carried out two parallel analyses (classical SWT and QSL) describing the
location and behavior of both modes, both ultimately derive from the same microscopic
Hamiltonian. The full description of the magnetic response function at all energies and
temperatures will thus require a complete quantum theory of the excitations of the Heisenberg-
Kitaev Hamiltonian, possibly with additional terms. Such a treatment is not available with
present technology. In absence of the above all-inclusive quantum H-K theory, one ansatz
popular in the literature attempts to treat both the modes together in SWT using the H-K
Hamiltonian. This generally permits an approximate evaluation of interaction parameters. For
systems that show magnetic order, where SWT is appropriate as a low-energy theory, the
interaction parameters derived in this fashion can often be employed to infer the nature of the

ordered ground states .

Comparison of wave-vector dependence of the Kitaev and spin-wave models: For
convenience of comparison, the supplementary Figure 7 shows a direct comparison of the low
temperature response function of a-RuCl; (Fig. 3a), spin-wave theory (Fig. 4b), and the pure

Kitaev calculation (Fig. 5d).

An alternate single-mode scenario:

One can check for robustness of the fitted value of K from SWT by treating an alternate

hypothetical scenario where the spin wave spectrum is fitted to optimally reproduce only the

10
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single lower mode M, leaving the origin of the upper mode M; a priori undetermined. As
discussed above, this can be done by choosing K=-2J where @, and @, coincide. With this
choice K =6 meV yields only one band of intensity corresponding to the location of M, at 4.2
meV. Supplementary fig. 5 1-m shows the calculation and their powder average for the gapless
case, while Supplementary fig. 5 n-o with parameters K = - 2J = 5.5 meV, D =-0.75 meV (or
alternatively, K® = KPP = K"/1.14 = -2 = 5.5 meV) represents the gapped scenario. As we see,
this ansatz yields values and sign of K and J values in the vicinity of the two solutions obtained
above and hence the listed parameters remain valid even in this scenario. Crucially, K = 6 meV
continues to reproduce the location of the M, mode at E =~ 6 meV in our Kitaev-only QSL

computation.
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