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Background/motivation

We are interested in improved stochastic media computational 
techniques, in particular alternatives to the Levermore-
Pomraning closure involving subgrid models.

We have previously created a deterministic “sampling” 
technique for generating ensemble calculations.

In this work we have recognized opportunities for much greater 
efficiencies in our calculations.
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Interface description and generation of 
realizations

One method for generation of realizations in 1D Markovian 
media directly determines interface locations

 Sample material at left boundary (e.g. material 1)

 Determine distance to first interface by sampling from

��
����� ��⁄ , where �� is the average chord length

 Determine distance to second interface by sampling from 

��
����� ��⁄

 Repeat until far boundary reached
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Pseudo-interface description and 
generation of realizations

A different method for generation of realizations in 1D 
Markovian media directly determines “pseudo-interface” 
locations

 Determine distance to each pseudo-interface by sampling 

from ��
����� ��⁄ , where �� = ���� �� + ��⁄ is the combined 

(effective) chord length between pseudo-interfaces

 Randomly assign materials afterwards (pseudo-interfaces 
between identical materials disappear)
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Pseudo-interface description and 
generation of realizations

The two descriptions/processes (interface vs. pseudo-interface) 
are statistically equivalent.  But the pseudo-interface description 
has two useful properties:

 The frequency with which P pseudo-interfaces occur is 

governed by the Poisson distribution � �; �� = ������
� �!⁄

 The location of pseudo-interfaces is uniformly distributed, 
and thus independent of the location of other pseudo-
interfaces

This allows us to divide the problem into strata characterized by 
the number of pseudo-interfaces (with known probabilities), and 
also to generate realizations based on pseudo-interface location 
rather than region width.
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Pseudo-interface approaches to the 
generation of realizations

 Monte Carlo sampling of the number of pseudo-interfaces, 
followed by Monte Carlo sampling of a realization, is 
equivalent to the original process

 Alternative: Stratified sampling of the number of pseudo-
interfaces, followed by Monte Carlo sampling of a realization, 
may offer some variance reduction

 Alternative: Instead of stratified sampling, use a stratified 
decomposition – solve each stratified subproblem
independently using the best solution technique.
 Our approach: Within a stratum, use deterministic techniques to 

generate realizations instead of Monte Carlo sampling.
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Deterministic generation of realizations

Original technique:

 Use a numerical quadrature (e.g. Gauss-Legendre) to 
determine the location of each pseudo-interface for a given P.  
There will be as many quadratures as pseudo-interfaces (P-
dimensional product quadrature).  The accuracy will be 
governed by the quadrature order(s).

 Solve the transport problem for each generated realization, 
and combine results according to quadrature integration rules 
to solve the Pth subproblem.

�� = � ���
� ���

⋯ � ���
� � �� ⋯ � � �� �����⋯����⋯��

�

����

�

����

�

����

�

����

�

����

 Combine the results over all subproblems according to 
Poisson weighting: � = ∑ ��� �; ��

����
���
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Example problem
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New technique

 We use a bisection rule to give equally-spaced quadrature 
points with equal weights.

 We generate all desired locations of interfaces to create 
unique transport problems

 We use counting theory to determine the frequency with 
which a given transport problem occurs

 Combine the results over all transport problems.
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Constructing realizations

quadrature points

1 2 11 2 2 1

interface locations
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Counting realizations

pseudo-interface locations

1 2 11 2 2 1

N1, N2: number of quadrature points in material 1,2 [5,4]

n1, n2: number of quadrature points in material 1,2 with at least 
one pseudo-interface [1,1]

N12, N21: number of interfaces with material 1,2 on the left [3,3]

n: Total number of quadrature points with at least one pseudo-
interface [8]

p1, p2: Probabilities of material 1,2
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Counting and weighting

 Frequency with which a given transport problem occurs:

�� = �� ���
��������

������
��!

��! �� − �� !

��!

��! �� − �� !
� −1 � 1 −

�

�

� �!

�! � − � !

�

���

�� = ���
� �������� � � ��

���	(��,������)

����

���	(��,���)

����

����

���

 Combine the results over all transport problems: � = ∑ ����
����
���



14

Algorithmic complexity

Expense of approach for P pseudo-interfaces and N-point 
quadratures:

 Original algorithm: 
� 2����� , � ≥ �

� 2����� , � < �

 New algorithm : ≤ � 2���

 We may reduce this number further by selectively filtering 
out low-weight problems (problem-dependent).
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Algorithmic complexity

 Number of transport calculations required for new algorithm:

 Number of transport calculations required for new algorithm 
with filtering (Pmax = N, benchmark problems 4-6, x=10):

N
����

1 2 3 7 11 15
3 8 14 16 16 16 16
7 16 58 128 256 256 256
11 24 134 464 3632 4096 4096
15 32 242 1152 32768 64384 65536

N
Cumulative weight

0.9 0.95 0.99 0.995 0.999
3 5 7 11 14 16
7 22 42 115 135 200
11 106 250 809 1200 2092
15 333 1010 5063 7764 15871
19 883 2412 19146 34873 99275
23 2152 5884 65126 115662 477477
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Results

Relative error, case 7, x=1

�� =
�

���
, �� =

���

���
, �� = 0, �� = 1, �� = �� = 5.05 (Pavg=0.396)

Reflection:

Transmission:

N
����

1 2 3 7 11 15
3 0.01 0.01 0.01 0.01 0.01 0.01
7 < 0.01 < 0.01 0.01 0.01 0.01 0.01
11 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
15 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01

N
����

1 2 3 7 11 15
3 -0.002 -0.003 -0.003 -0.003 -0.003 -0.003
7 -0.001 -0.002 -0.002 -0.002 -0.002 -0.002
11 < 0.001 -0.001 -0.001 -0.001 -0.001 -0.001
15 < 0.001 -0.001 -0.001 -0.001 -0.001 -0.001



N
����

1 2 3 7 11 15
3 0.005 -0.002 -0.003 -0.004 -0.004 -0.004
7 0.007 -0.001 -0.002 -0.003 -0.003 -0.003
11 0.008 < 0.001 -0.002 -0.002 -0.002 -0.002
15 0.009 0.001 -0.001 -0.002 -0.002 -0.002

N
����

1 2 3 7 11 15
3 -0.03 0.02 0.02 0.03 0.03 0.03
7 -0.05 0.01 0.02 0.02 0.02 0.02
11 -0.06 < 0.01 0.01 0.01 0.01 0.01
15 -0.06 < 0.01 0.01 0.01 0.01 0.01
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Results

Relative error, case 4, x=1

�� =
��

��
, �� =

���

��
, �� = 0, �� = 1, �� = 9.9, �� = 1.1, (Pavg=1.01)

Reflection:

Transmission:



N
����

1 2 3 7 11 15
3 0.128 0.098 0.081 0.055 0.052 0.051
7 0.133 0.099 0.075 0.027 0.014 0.012
11 0.134 0.100 0.075 0.023 0.006 0.003
15 0.135 0.101 0.076 0.022 0.004 0.001

Relative error, case 1, x=1

�� =
��

��
, �� =

���

��
, �� = 0, �� = 1, �� = 0.99, �� = 0.11, (Pavg=10.1)

Reflection:

Transmission:

N
����

1 2 3 7 11 15
3 -0.423 -0.325 -0.266 -0.182 -0.171 -0.170
7 -0.437 -0.325 -0.247 -0.090 -0.046 -0.039
11 -0.443 -0.330 -0.248 -0.075 -0.021 -0.011
15 -0.445 -0.333 -0.251 -0.071 -0.013 -0.003
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Results



Relative error, case 1, x=10

�� =
��

��
, �� =

���

��
, �� = 0, �� = 1, �� = 0.99, �� = 0.11, (Pavg=101)

Reflection:

Transmission: N
����

1 2 3 7 11 15
3 4.7 4.4 4.2 3.8 3.8 3.8
7 4.7 4.3 4.0 3.2 2.9 2.7
11 4.7 4.3 3.9 3.0 2.5 2.3
15 4.7 4.3 3.9 3.0 2.4 2.0

N
����

1 2 3 7 11 15
3 -0.735 -0.696 -0.671 -0.632 -0.624 -0.623
7 -0.734 -0.683 -0.643 -0.544 -0.497 -0.473
11 -0.734 -0.681 -0.636 -0.516 -0.448 -0.406
15 -0.734 -0.680 -0.634 -0.504 -0.425 -0.374
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Results



N
Cumulative weight

0.9 0.95 0.99 0.995 0.999
3 -0.361 -0.180 -0.044 -0.013 0
7 -0.193 -0.110 -0.023 -0.013 -0.002
11 -0.154 -0.083 -0.018 -0.010 -0.002
15 -0.149 -0.069 -0.015 -0.008 -0.002

Relative difference between filtered and unfiltered results, case 4, 
x=10 (Pavg=10.1, Pmax=N)

Reflection:

Transmission:

Relative expense:
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Filtered results

N
Cumulative weight

0.9 0.95 0.99 0.995 0.999
3 0.101 0.047 0.010 0.003 0
7 0.084 0.048 0.008 0.004 < 0.001
11 0.094 0.045 0.009 0.005 < 0.001
15 0.100 0.040 0.008 0.004 < 0.001

N
Cumulative weight

0.9 0.95 0.99 0.995 0.999
3 0.313 0.438 0.688 0.875 1
7 0.086 0.164 0.449 0.527 0.781
11 0.026 0.061 0.198 0.293 0.511
15 0.005 0.015 0.077 0.118 0.242
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Conclusions

 New approach is significantly more efficient than the previous 
algorithm

 Accuracy is inversely related to Pavg

 Errors decrease as both Pmax and N increase

 In many cases the method is less expensive than Monte Carlo 
sampling

 Filtering can substantially reduce the expense even more with 
little degradation in results


