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Background/motivation ) .

We are interested in improved stochastic media computational
techniques, in particular alternatives to the Levermore-
Pomraning closure involving subgrid models.

We have previously created a deterministic “sampling”
technique for generating ensemble calculations.

In this work we have recognized opportunities for much greater
efficiencies in our calculations.




Interface description and generation of
realizations
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One method for generation of realizations in 1D Markovian
media directly determines interface locations

= Sample material at left boundary (e.g. material 1)

= Determine distance to first interface by sampling from
A7Ye~$/M1 where A, is the average chord length

= Determine distance to second interface by sampling from
/1516_6//12

= Repeat until far boundary reached

1 2 1 2 1 material assignment

A A 4 A 4 average chord length sampled




Pseudo-interface description and =
generation of realizations
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A different method for generation of realizations in 1D
Markovian media directly determines “pseudo-interface”
locations

= Determine distance to each pseudo-interface by sampling
from /1;16‘5/’10, where A, = 444, /(4; + 1,) is the combined
(effective) chord length between pseudo-interfaces

= Randomly assign materials afterwards (pseudo-interfaces
between identical materials disappear)

1 2 2 1 1 2 2 2 2 1 material assignment

A. A, A A A A, A A A A average chord length sampled
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The two descriptions/processes (interface vs. pseudo-interface)
are statistically equivalent. But the pseudo-interface description
has two useful properties:

= The frequency with which P pseudo-interfaces occur is
governed by the Poisson distribution f(P; A.) = e *<A.” /P!

= The location of pseudo-interfaces is uniformly distributed,
and thus independent of the location of other pseudo-
interfaces

This allows us to divide the problem into strata characterized by
the number of pseudo-interfaces (with known probabilities), and
also to generate realizations based on pseudo-interface location
rather than region width.
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Pseudo-interface approaches to the =
generation of realizations
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= Monte Carlo sampling of the number of pseudo-interfaces,
followed by Monte Carlo sampling of a realization, is
equivalent to the original process

= Alternative: Stratified sampling of the number of pseudo-
interfaces, followed by Monte Carlo sampling of a realization,
may offer some variance reduction

= Alternative: Instead of stratified sampling, use a stratified
decomposition — solve each stratified subproblem
independently using the best solution technique.

» Our approach: Within a stratum, use deterministic techniques to
generate realizations instead of Monte Carlo sampling.

7




Deterministic generation of realizations &z

Original technique:

= Use a numerical quadrature (e.g. Gauss-Legendre) to
determine the location of each pseudo-interface for a given P.
There will be as many quadratures as pseudo-interfaces (P-
dimensional product quadrature). The accuracy will be
governed by the quadrature order(s).

= Solve the transport problem for each generated realization,
and combine results according to quadrature integration rules
to solve the Pth subproblem
RP - Z Wn1 Z an Z Wnp Z P(mo) Z p(mP)Rnlnz ‘Mymg:--mp
np=1 mp=0
: Comblne the results over all subproblems according to

Poisson weighting: r = ¥imax R, £(P; 1,)
8




Example problem ) i,

Pscudomnterfaces Pscudointerface distrbution Matenal distnbution Problem
Number Probability Configuration Probability | Configuration | Probability

0 0903924 |, . 1 ; g‘? ;

L1 0381 1

o " 12 0.09 3

1 05 21 009 1

22 001 2

1 0.091305 - — T 081 -

12 0.09 5

1 05 21 0.09 6

22 001 2

L A L1 0381 1

o - 12 0.09 3

1.2 025 21 0.09 4

22 001 2

LL1 0.729 1

L12 0031 5

. — 121 0031 7

122 0.009 3

1 2 025 211 0.081 1

2172 0.009 8

221 0.009 6

2272 0.001 2

2 0.004611 LL1 00729 1

LL2 0.031 5

121 0.031 7

122 0.009 3

2 1 025 211 0.031 1

21,2 0.009 8

221 0.009 6

2372 0.001 2

L1 081 1

¢ — 12 0.5 5

1.2 025 21 0.09 6

22 0.01 2




New technique
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= We use a bisection rule to give equally-spaced quadrature
points with equal weights.

= We generate all desired locations of interfaces to create
unique transport problems

= We use counting theory to determine the frequency with
which a given transport problem occurs

= Combine the results over all transport problems.
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Constructing realizations ) s,

guadrature points

7y

interface locations

A




Counting realizations ) s,

pseudo-interface locations

L,

1 | 1 2 1

by

N,, N,: number of quadrature points in material 1,2 [5,4]

n,, n,: number of quadrature points in material 1,2 with at least
one pseudo-interface [1,1]

N,,, N,,;: number of interfaces with material 1,2 on the left [3,3]

n: Total number of quadrature points with at least one pseudo-
interface [8]

P, P,: Probabilities of material 1,2

12
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Counting and weighting ) s,

= Frequency with which a given transport problem occurs:

n
N,! N,! . J\? n!

— 14 n1+N21 Tl2+N12 1 2 Z _1 ](1__) e
W= e T, it it 4 TR e

]=

Pmax min(Ny,p—I) min(Nz,p—I-n;)
Pr = Pm,; Z Ppoisson Z Z Wr
p=I n1=0 n2=0

= Combine the results over all transport problems: r = 3/ rp,




Algorithmic complexity ) s,

Expense of approach for P pseudo-interfaces and N-point
qguadratures:

O(2N+1NP),P > N

0(2P*1INP) P < N
= New algorithm: < 0(2N*t1)

= QOriginal algorithm:

= We may reduce this number further by selectively filtering
out low-weight problems (problem-dependent).




Algorithmic complexity ) s,

= Number of transport calculations required for new algorithm:

Prgx
N 1 2 3 '/ 11 15
3 8 14 16 16 16 16
7 16 58 128 256 256 256
24 134 464 3632 4096 4096
32 242 1152 32768 | 64384 | 65536

= Number of transport calculations required for new algorithm
with filtering (P,,,, = N, benchmark problems 4-6, x=10):

N Cumulative weight

0.9 0.95 0.99 0.995 0.999
3 5 7 11 14 16
7 22 42 115 135 200
11 106 250 809 1200 2092
15 333 1010 5063 7764 15871
19 883 2412 19146 34873 | 99275
23 2152 5884 65126 | 115662 | 477477




Results

Relative error, case 7, x=1
2 200

o.=—0,=—¢61=20,c
1 10112 1 )y L2

101’

— 1, /11 =/12 — 505 (P

avg

N Pmcx
i 1 2 3 7 11 15
Reflection: 3 0.01 0.01 0.01 0.01 0.01 0.01
7 <001 | <001 | 001 | 001 001 | 001
<001 | <001 |<001 |<001 |<001 |<0.01
<001 | <001 |<001 |<001 |<001 |<001
- . N Pm X
Transmission: 1 2 3 7 11 15
3 20.002 | -0.003 | -0.003 | -0.003 | -0.003 | -0.003
7 20.001 | -0.002 | -0.002 | -0.002 | -0.002 | -0.002
<0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001
<0.001 | -0.001 | -0.001 | -0.001 | -0.001 | -0.001

Sandia
National
Laboratories

=0.396)




Results

Relative error, case 4, x=1

s =10 _ 100
1799727 17

Reflection:

Transmission:

, C1 = O, Cyr = 1, /11 — 99, /12 — 11, (P

Prngx
N 1 2 3 7 11 15
3 -0.03 0.02 0.02 0.03 0.03 0.03
7 -0.05 0.01 0.02 0.02 0.02 0.02
-0.06 <0.01 0.01 0.01 0.01 0.01
-0.06 <0.01 0.01 0.01 0.01 0.01
Pngx
N 1 2 3 7 11 15
3 0.005 -0.002 | -0.003 [ -0.004 | -0.004 | -0.004
7 0.007 -0.001 | -0.002 [ -0.003 | -0.003 [ -0.003
0.008 | <0.001 | -0.002 | -0.002 | -0.002 | -0.002
0.009 0.001 -0.001 | -0.002 | -0.002 | -0.002
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Relative error, case 1, x=1

0, =— 0, =—2¢,=0,c,=1,1; = 099, 1, = 0.11, (P

=10.1)
99 11

avg

N Pmcx
i 1 2 3 7 11 15
Reflection: 3 20.423 | 0325 | -0.266 | -0.182 | -0.171 | -0.170
7 20.437 | -0.325 | -0.247 | -0.090 | -0.046 | -0.039

-0.443 -0.330 | -0.248 | -0.075 | -0.021 [ -0.011
-0.445 -0.333 | -0.251 | -0.071 | -0.013 [ -0.003

. . N Pm X
Transmission: 1 2 3 7 11 15
3 0.128 0.098 0.081 0.055 0.052 0.051
7 0.133 0.099 | 0.075 | 0.027 | 0.014 | 0.012

0.134 0.100 0.075 0.023 0.006 0.003
0.135 0.101 0.076 0.022 0.004 0.001




Results

Relative error, case 1, x=10

10 100
— — C

o4 =—, 0, =
1799727 17

1= O; Ca2 = 11 /11 = 0991 /12 — 011' (P

Reflection:

Transmission:

Prngx
N 1 2 3 7 11 15
3 -0.735 -0.696 0.671 | -0.632 | -0.624 | -0.623
7 -0.734 -0.683 0.643 | -0.544 | -0.497 | -0.473
-0.734 -0.681 0.636 | -0.516 | -0.448 | -0.406
-0.734 -0.680 0.634 | -0.504 | -0.425 | -0.374
Pngx
N 1 2 3 7 11 15
3 4.7 4.4 4.2 3.8 3.8 3.8
7 4.7 4.3 4.0 3.2 2.9 2.7
4.7 4.3 3.9 3.0 2.5 2.3
4.7 4.3 3.9 3.0 2.4 2.0
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Filtered results
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Relative difference between filtered and unfiltered results, case 4,

x=10 (P,,,=10.1, P,,,,=N)
N Cumulative weight
. 0.9 0.95 0.99 0.995 0.999
Reﬂect|0n : 3 -0.361 -0.180 -0.044 | -0.013 0
7 -0.193 -0.110 -0.023 -0.013 [ -0.002
-0.154 -0.083 -0.018 -0.010 [ -0.002
-0.149 -0.069 -0.015 -0.008 [ -0.002
.. N Cumulative weight
Tra nsMission: 0.9 0.95 0.99 0.995 0.999
3 0.101 0.047 0.010 0.003 0
7 0.084 0.048 0.008 0.004 | <0.001
0.094 0.045 0.009 0.005 | <0.001
0.100 0.040 0.008 0.004 [ <0.001
N Cumulative weight
. 0.9 0.95 0.99 0.995 0.999
Relat|Ve expense: 3 0.313 0.438 0.688 0.875 1
7 0.086 0.164 0.449 0.527 0.781
0.026 0.061 0.198 0.293 0.511
0.005 0.015 0.077 0.118 0.242

20



Conclusions rh) teima_

= New approach is significantly more efficient than the previous
algorithm

= Accuracy is inversely related to P,
" Errors decrease as both P, and N increase

= |n many cases the method is less expensive than Monte Carlo
sampling

= Filtering can substantially reduce the expense even more with
little degradation in results




