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‘ Motivation

Despite improved algorithms and powerful £ 0/00000
supercomputers, “high-fidelity” models are often too
expensive for use in a design or analysis setting.

Example applications of interest to Sandia that could
benefit from ROMs:

=X

* Complex fluid dynamics problems, e.g., transonic compressible
flow past a cavity: single LES simulation takes weeks even
when run in parallel on state-of-the-art supercomputers.

e Climate modeling, e.g., ice flow simulations for sea-level rise
predictions: Bayesian inference tools cannot handle high-D
parameter spaces, MCMC requires thousands of forward
solves.

This talk presents a recent paper on ROM stabilization:

I. Kalashnikova, B.G. van Bloemen Waanders, S. Arunajatesan, M.F. Barone.
"Stabilization of Projection-Based Reduced Order Models for Linear Time-
Invariant Systems via Optimization-Based Eigenvalue Reassignment". Comput.
Meth. Appl. Mech. Engng. 272 (2014) 251-270.
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roper Orthogonal Decomposition (POD)/
Galerkin Method to Model Reduction

High-Fidelity
Simulations:
Decgﬂnﬁ’dg’smon Galerkin Projection
Snapshot 2 » R T
x(t) = P arxpr(t) &, [x(t) = Ax(t) + Bu(t)]
Snapshot K
*  Snapshot matrix: X = (x', ..., x) € R™" N = # of dofs in high-

fidelity simulation

K = # of snapshots

M = # of dofs in ROM
(M << N,M << K)

« SVD:X=UXVT
* Truncation: @, = (¢4, ..., o) =UC,1: M)

“Small” ROM

LTI System:
xa(t) = DT APyxu(t)+ ®1,Bu(t)
yum(t) = Coyxu(l)

ROM = “Reduced Order Model”
FOM = “Full Order Model”

LTI = “Linear Time Invariant”
' [




i Stability Issues of POD/Galerkin ROMs

LTI Full Order Model (FOM) LTI Reduced Order Model (ROM)
x(t) = Ax(t) + Bu(t) Xy (t) = Ayxy (t) + Byu(t)
y(t) = Cx(t) Yu(t) = Cyxy(t)

 ROM Linear Time-Invariant (LTI) system matrices given by:

Problem: A stable # A, stable!

* There is no a priori stability guarantee for
POD/Galerkin ROMs.

e Stability of a ROM is commonly evaluated a
posteriori — RISKY!

* Instability of POD/Galerkin ROMs is a real

problem in some applications... ...e.g., compressible cavity flows,
high-Reynolds number flows, ... _
i) e
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Literature Review

Approaches for building stability-preserving POD/Galerkin
ROMs found in the literature fall into two categories:

1. ROMs which derive a priori a stability-preserving model reduction
framework (usually specific to an equation set).

Can have an * ROMs based on projection in special ‘energy-based’ (not L?)
intrusive inner products, e.g., Rowley et al. (2004), Barone & Kalashnikova
implemetation et al. (2009), Serre et al. (2012).

—

2. ROMs which stabilize an unstable ROM through an a posteriori post-
processing stabilization step applied to the algebraic ROM system.

—

 ROMs that require solving an optimization problem for a
Can have modified POD basis, e.g., Bond et al. (2008), Amsallem et al.

inconsistencies (2012), Balajewicz et al. (2013).

between ROM — o _ . _ )
and FOM physics | * ROMs with increased numerical stability due to inclusion of

‘stabilizing’ terms in the ROM equations, e.g., Wang, Borggaard,
lliescu et al. (2012).

Stability Preserving ROM Approaches:
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OM Stabilization via Optimization-Based
Eigenvalue Reassignment*

« Approach falls in 2" category of stabilization methods, but ensures stabilized ROM

solution deviates minimally from FOM solution.

* Attention focused on LTI systems: iy (t) = A,x,(t) + Byu(t)
Problem: A stable # A,, stable! Yu(t) = Cyxy(t)

Goal: replace unstable A4,, with stable ZM so discrepancy b/w ROM
output y,,(t) and FOM output y(t) is minimal.

= Optimization Problem

* Objective function (to be minimized): YX_. ||y* — y,*||,>2

* Constraints: y,, satisfies (1), ZM stable in Lyapunov sense

= Re{A(4,)} <0

*1. Kalashnikova, B.G. van Bloemen Waanders, S. Arunajatesan, M.F. Barone. "Stabilization of
Projection-Based Reduced Order Models for Linear Time-Invariant Systems via Optimization-
Based Eigenvalue Reassignment". Comput. Meth. Appl. Mech. Engng. 272 (2014) 251-270.

(1)
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OM Stabilization via Optimization-Based
Eigenvalue Reassignment (continued)

ROM Stabilization Optimization Problem xy(t) = Ayx,,(t) + Byu(t)
(Constrained Nonlinear Least Squares): yu(t) = Cyx,,(t)
mm Z Y% — y,4]],2 (2) Replace unstable
A,, with stable 4,,.

s.t. Re(/lu) <0

* AM=unstable eigenvalues of original ROM matrix 4.
« yk = y(t,) = snapshot output at ¢,
* yu* = yu(t,) = ROM output at t,.

* For general (nonlinear) systems: (2) would have ODE constraints.

* For LTI systems: the solution to (1) for the ROM output at t; can be derived analytically!

t

2, (t) = exp(tA,) x,,(0) + J exp{(t — 7) A, }B,u(z)dr
0

t

= yu(t) = Cy [eXp(tAM) xy(0) + J exp{(t — 1) Ay }Byu(r)dr
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ROM Stabilization Optimization Problem
(Constrained Nonlinear Least Squares):

"”‘"Z 19 = yt112? (2)

s.t. Re(/lu) <0

* AM=unstable eigenvalues of original ROM matrix 4.

« yk = y(t,) =snapshot output att,

c y,f=C, [exp(tkAM) x,(0) + fot" exp{(t, — 7) AM}BMu(T)dT] = ROM output at t,.

* ROM stabilization optimization problem is small: < O (M).

OM Stabilization via Optimization-Based
Eigenvalue Reassignment (continued)

Xy (t) = Ayx,(t) + Bu(t)

yu(t) = Cyx,,(t)

Replace unstable
A,, with stable 4,,.

 ROM stabilization optimization problem can be solved by standard optimization algorithms,

e.g., interior point method.

* We use fmincon function in MATLAB’s optimization toolbox.

* We implement ROM stabilization optimization problem in characteristic variables

z,(t) = S, x,(t) where A,, = §,,D,,S,, .

i

Sandia
National
Laboratories




M Stabilization via Optimization-Based
Eigenvalue Reassignment (continued)

Algorithm

* Diagonalize the ROM matrix A,;: A, = S,,D ;8,7
* Initialize a diagonal M X M matrix D,,. Setj = 1.
e fori=1toM
 if Re(D,,(i,i) <0),setD,(i,i) = D,(i,1).
« else, set D, (i,i) = A
* Incrementj « j + 1.
* Solve the optimization problem (2) for the eigenvalues {Aju} using an
optimization algorithm (e.g., interior point method).
e Evaluate ﬁM at the solution of the optimization problem (1).
* Return the stabilized ROM system, given by 4,, « A,, = S,,D,,S;, .

» Existence of solution to (2) cannot be proven in general. Regularization may help.
* Solution to optimization problem (2) may not be unique.

* Can solve (2) for real or complex-conjugate pair eigenvalues:
* A" € Rs.t. constraint 4* < 0.

. Aj“= Aj“’” + i Aj“‘—', Aj =AM — i A4 € Cwhere A%, A4 € R s.t. constraint

+ J J J J Sandia

Ajur < O m National

Laboratories




' Consistency?

* One can show that ﬁM from the algorithm on the previous slide is given by:

~

Ay =A4y—-BK,
for a specific B and K (Kalashnikova et al. 2014).

* Modifying system as 4,, « ﬁM can be viewed as adding a linear “controller”
to the system:
Xy (t) = Ayx,,(t) + Bju(t) + B u(t)
yu(t) = Cyx,,(t)

where u,.(t) = —K x,,(t).

* Approach does yield an inconsistent ROM, but one that can nonetheless be
accurate.

Ongoing work is to formulate ROM
stabilization approaches that maintain
consistency (last slide)
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Numerical Results #1: International
Space Station (ISS) Benchmark

ISS Configuration

SPDM Dexire Mobde Base Sysiem
European Robosc Arm |

Component 1r ‘
|Canad.ann2J S0Tuss Pl Truss Segment
{0 S1Tss I| ; II Isegmm

\ JEM RMS & Exposed Facity

JEMELM-PS
USLab

EAP 1
E .lopean Lab pm 2 EMPM

- Elements Currently on Orbit
- Elements Pending Russian Proton Lauonch ~~ Staboad S

FOM: structural model of component 1r of the International Space Station (ISS).

A, C matrices defining FOM downloaded from NICONET ROM benchmark repository*.
* No inputs (unforced), 1 output; FOM is stable.

National

*NICONET ROM benchmark repository: www.icm.tu-bs.de/NICONET/benchmodred.html. m Sandia
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http://www.icm.tu-bs.de/NICONET/benchmodred.html
http://www.icm.tu-bs.de/NICONET/benchmodred.html
http://www.icm.tu-bs.de/NICONET/benchmodred.html
http://www.icm.tu-bs.de/NICONET/benchmodred.html

umerical Results #1 : ISS Benchmark
(continued)

« M = 20 POD/Galerkin ROM constructed from K = 2000 snapshots up to time t = 0.1.
« M = 20 POD/Galerkin ROM has 4 unstable eigenvalues: 2 real, 2 complex

* Two options for ROM stabilization optimization problem:
Option 1: Solve for A, 4,, 15,4, € R s.t. the constraint 1, 4,, 15,4, < 0.
Option 2: Solve for A, + A,i, A, — A,i € C, A5, 4, € R s.t. the constraint 1, 45,4, < 0.

* Initial guess for fmincon interior point method: 1, = 4, = 4; = 1, = —1.
0.12
0.1 F .
noef y \/Zk:1||yk — il
0.06 - 7
ROM (E
IS
- 002t/ Unstabilized POD 1737.8
7
0p/ Optimization Stabilized 0.0259
ozt . POD (Real Poles)
FOM
-0.04 - M=20 POD ROM {unstabilized) - Optimization Stabilized 0.0252
006 - ———M=20 POD ROM (stahil?zed, real poles) . } POD (CompIeX-Conjugate
W=20 POD ROM (stabilized, complex conjugate poles)
08 5 Poles)
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Numerical Results #2: Electrostatically
Actuated Beam Benchmark

FOM = 1D model of electrostatically actuated beam.

Application of model: microelectromechanical
systems (MEMS) devices such as electromechanical
radio frequency (RF) filters.

1 input corresponding to periodic on/off switching, 1

output, initial condition x(0) = 0,.

Second order linear semi-discrete system of the
form:

Mx(t) + Ex(t) + Kx(t) = Bu(t)
y(t) = Cx(t)
Matrices M, E, K, B, C specifying the problem

downloaded from the Oberwolfach ROM
repository*.

2" order linear system re-written as 15t order LTI
system for purpose of analysis/model reduction.

FOM is stable.

* Oberwolfach ROM benchmark repository: http://simulation.uni-freiburg.de/downloads/benchmark.

Sandia
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http://simulation.uni-freiburg.de/downloads/benchmark
http://simulation.uni-freiburg.de/downloads/benchmark
http://simulation.uni-freiburg.de/downloads/benchmark

Numerical Results #2: Electrostatically
Actuated Beam Benchmark (continued)

e M = 17 POD/Galerkin ROM constructed from K = 1000 snapshots up to time t = 0.05.

« M = 17 POD/Galerkin ROM has 4 unstable eigenvalues (all real).
Two options for ROM stabilization optimization problem:

Option 1: Solve for A, 4,, A5, 4, € R s.t. the constraint 1, 4,, 15,4, < 0.

Option 2: Solve for A, + A,i, A, — A1, A3 + A0, 43 —A,0 € C s.t. the constraint
A, Ay <O0.

* Initial guess for fmincon interior point method: 1, =1, =1; =1, = —1.

25

145¢

a5

n
1]

— FOM

———MW=17 POD ROM {unstabilized)

———M=17 POD ROM (stabilized, real poles)
W=17 POD ROM (stabilized, complex poles)

———MW=17 BT ROM
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Balanced Truncation

1.37e — 6 mplg
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going Work: ROM Stabilization for

2L

Nonlinear Problems (with M. Balajewicz)

Stabilization & fine-tuning of projection-based ROMs via minimal subspace rotation on the Stiefel manifold

Development of ROM stabilization approach for nonlinear systems of the form:
a(t) = €+ La(t) + [a@®)"QWa(t) ...a(®)’'QMa(d)]”

(e.g., ¢-form of compressible Navier-Stokes equations).

Stabilization includes modification of linear operator L < L .

To avoid losing consistency: solve for orthonormal transformation matrix X that rotates @

into more dissipative regime (addresses “mode truncation instability”)

d= X = I1L=X"LX

Minimization problem:

min
o f(X)
s.t. g(X,L)

f(X) = goal-oriented objective, e.g.,

”X — In+p,n||F
g(X,L) = constraints, e.g.,

n <tr(L) <my |la(t) —a*(t)|| <7

Paper in preparation: M. Balajewicz, I.K. Tezaur, E. Dowell, “Minimal subspace rotation on
Stiefel manifold forstabilization and fine-tuning of projection-based ROMs of the
compressible Navier-Stokes equations”, in prep. for CMAME.

Upcoming talk at ICIAM 2015: August 2015, Beijing, China. ) o
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Summary & Acknowledgements
(www.sandia.gov/~ikalash)

A ROM stabilization approach that modifies a posteriori an unstable ROM LTI system by
changing the system’s unstable eigenvalues is proposed.

In the proposed stabilization algorithm, a constrained nonlinear least squares optimization
problem for the ROM eigenvalues is formulated to minimize error in ROM output.

Excellent performance of the proposed algorithm is evaluated on two benchmarks.

Stay tuned for extensions to nonlinear problems!

I. Kalashnikova, B.G. van Bloemen Waanders, S. Arunajatesan, M.F. Barone. "Stabilization of
Projection-Based Reduced Order Models for Linear Time-Invariant Systems via Optimization-
Based Eigenvalue Reassignment". Comput. Meth. Appl. Mech. Engng. 272 (2014) 251-270.

This work was funded by Laboratories’ Directed Research and Development (LDRD)
Program at Sandia National Laboratories.

Special thanks to

* Prof. Lou Cattafesta (Florida State University)
e Prof. Karen Willcox (MIT)

for useful discussions that led to some of the ideas presented here.
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'Appendix: ISS Benchmark (fmincon

Real Poles | Complex-Conjugate Poles
# upper bound 4 3
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# iterations 29 27
# function evaluations 30 30
|VL| at convergence 4.00e-7 5.51e-7
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' Appendix: ISS Benchmark

(CPU Times)

Model Operations CPU time (sec)
FOM Time-Integration 1.71e2
ROM - offline stage Snapshot collection (FOM time- 1.71e2
integration)
Loading of matrices/snapshots 6.99e-2
POD 6.20
Projection 8.18e-3
Optimization 2.28el
ROM - online stage Time-integration 3.77

* To offset total pre-process time of ROM (time required to run FOM to collect
snapshots, calculate the POD basis, perform the Galerkin projection, and solve the
optimization problem (1)), the ROM would need to be run 53 times.

* Solution of optimization problem is very fast: takes < 1 minute to complete.
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%pendix: Electrostatically Actuated Beam
Benchmark (fmincon performance)

f Current Function Value \
Real Poles | Complex-Conjugate Poles bl ‘ ' ' ' '
1600 B
# upper bound 4 2 1}
constraints 1200}
# iterations 60 31 = 1o00r
S ool e
# function evaluations 64 32 " el
1.23598
400 F B
|VL| at convergence 2.27e-7 8.43e-7
15t order optimalit = \/ 1
( i ) 0 ‘“*"*&&eeeeeeeeeeeeeeeeeee
\]/ u] 5 10 15 20 25 30
lteration
/ Current Function Value First-Order Optimality First-Order Optimality
1800 : . . . : 7 : — : : U ' ' ‘ ‘
+ +
16001 6 6
o 1400t . ¢
= 5t
€ 1200} z° =)
5 £ E
5 1000( g4 g4
o 800/ 24 ;;3_
% 600} g E .
O 400l 113229 | 7 2.26927e-07 | 2 8.43228e-07
+
0' +
L J ir 1 §
200 ", \l ’ \1 \L
20 30 40 50 60 Qg o e M MY :

Interation Interation

K
o
§
[=]
4
2
Re
—_
o
n
o
3
3
-
S
=)

s Laboratories



Appendix: Electrostatically Actuated
Beam Benchmark (CPU Times)

Model Operations CPU time (sec)
FOM Time-Integration 7.10e4
ROM - offline stage Snapshot collection (FOM time- 7.10e4
integration)
Loading of matrices/snapshots 5.17
POD 1.09e1l
Projection 2.55el
Optimization 8.79¢l
ROM - online stage Time-integration 6.78

* To offset total pre-process time of ROM (time required to run FOM to collect
snapshots, calculate the POD basis, perform the Galerkin projection, and solve the
optimization problem (1)), the ROM would need to be run 1e4 times (due to large CPU
time of FOM).

* Solution of optimization problem is very fast: takes ~1.5 minute to complete.
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'Appendix: Electrostatically Actuated
Beam Benchmark (Eigenvalues)

| 10
GRS
06F @ M=17 POD ROM (unstahilized) Unstable
A Eigenvalues
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2 o - _._.@ °
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