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Motivation

Despite improved algorithms and powerful 
supercomputers, “high-fidelity” models are often too 

expensive for use in a design or analysis setting.

Example applications of interest to Sandia that could 
benefit from ROMs: 

• Complex fluid dynamics problems, e.g., transonic compressible 
flow past a cavity: single LES simulation takes weeks even 
when run in parallel on state-of-the-art supercomputers.

• Climate modeling, e.g., ice flow simulations for sea-level rise 
predictions: Bayesian inference tools cannot handle high-D 
parameter spaces,  MCMC requires thousands of forward 
solves. 

This talk presents a recent paper on ROM stabilization: 

I. Kalashnikova, B.G. van Bloemen Waanders, S. Arunajatesan, M.F. Barone. 
"Stabilization of Projection-Based Reduced Order Models for Linear Time-

Invariant Systems via Optimization-Based Eigenvalue Reassignment". Comput. 
Meth. Appl. Mech. Engng. 272 (2014) 251-270.



Proper Orthogonal Decomposition (POD)/
Galerkin Method to Model Reduction

• Snapshot matrix: � = (��, …, ��) ∈ ℝ���

• SVD: � = ����

• Truncation: �� = (��, … ,��) = � : , 1:�

�	 = # of dofs in high-
fidelity simulation
�	 = # of snapshots
�	 = # of dofs in ROM 
(�	 << 	�, �	 << 	�)

ROM = “Reduced Order Model”
FOM = “Full Order Model”
LTI = “Linear Time Invariant”



Stability Issues of POD/Galerkin ROMs

LTI Full Order Model (FOM)

�̇ � = �� � + �� �
� � = �� �

LTI Reduced Order Model (ROM)

�̇� � = ���� � + ��� �
							�� � = ���� �

• ROM Linear Time-Invariant (LTI) system matrices given by: 

�� = ��
����, 						�� = ��

��,										�� = ���

Problem: � stable ⇏ 	�� stable!

• There is no a priori stability guarantee for 
POD/Galerkin ROMs.  

• Stability of a ROM is commonly evaluated a 
posteriori – RISKY!

• Instability of POD/Galerkin ROMs is a real 
problem in some applications… …e.g., compressible cavity flows, 

high-Reynolds number flows, ... 



1. ROMs which derive a priori a stability-preserving model reduction 
framework (usually specific to an equation set).

• ROMs based on projection in special ‘energy-based’ (not �2) 
inner products, e.g., Rowley et al. (2004), Barone & Kalashnikova 
et al. (2009), Serre et al. (2012).

2.  ROMs which stabilize an unstable ROM through an a posteriori post-
processing stabilization step applied to the algebraic ROM system. 

• ROMs that require solving an optimization problem for a 
modified POD basis, e.g., Bond et al. (2008), Amsallem et al. 
(2012), Balajewicz et al. (2013).

• ROMs with increased numerical stability due to inclusion of 
‘stabilizing’ terms in the ROM equations, e.g., Wang, Borggaard, 
Iliescu et al. (2012).  

Can have
inconsistencies 
between ROM 

and FOM physics

Can have an
intrusive 

implemetation

Stability Preserving ROM Approaches: 
Literature Review

Approaches for building stability-preserving POD/Galerkin
ROMs found in the literature fall into two categories: 



• Attention focused on LTI systems:

ROM Stabilization via Optimization-Based 
Eigenvalue Reassignment*

• Approach falls in 2nd category of stabilization methods, but ensures stabilized ROM 
solution deviates minimally from FOM solution. 

�̇� � = ���� � + ��� �
	�� � = ���� �

*I. Kalashnikova, B.G. van Bloemen Waanders, S. Arunajatesan, M.F. Barone. "Stabilization of 
Projection-Based Reduced Order Models for Linear Time-Invariant Systems via Optimization-
Based Eigenvalue Reassignment". Comput. Meth. Appl. Mech. Engng. 272 (2014) 251-270.

Goal: modify ROM system s.t. �� is stable and discrepancy b/w ROM 
output �� � and FOM output � � is minimal.

�̇� � = ����� � + ��� �
			�� � = ���� �

Goal: replace unstable �� with stable ��� so discrepancy b/w ROM 
output �� � and FOM output � � is minimal.

• Objective function (to be minimized): ∑ ||�� − ��
�||2

2�
���

• Constraints: �� satisfies (1), ��� stable in Lyapunov sense

																																								⟹ �� � ��� < 0

⟹	Optimization Problem

Problem: � stable ⇏ 	�� stable!
(1)



ROM Stabilization via Optimization-Based 
Eigenvalue Reassignment (continued)

ROM Stabilization Optimization Problem 
(Constrained Nonlinear Least Squares): 

���
��
�
�||�� − ��

�||2
2

�

���

																											�. �. 	�� ��
� < 0

• ��
� = unstable eigenvalues of original ROM matrix ��.  

• ��	 = �(��) = snapshot output at ��.

• ��
� = �� �� = ROM output at ��.

• For general (nonlinear) systems: (2) would have ODE constraints.

• For LTI systems: the solution to (1) for the ROM output at �� can be derived analytically! 

(2) Replace unstable
�� with stable ���.

�� � = exp ��� �� 0 + � exp{ � − � ��}��� � ��
�

�

⇒ �� � = �� exp ��� �� 0 + � exp{ � − � ��}��� � ��
�

�

�̇� � = ���� � + ��� �
			�� � = ���� �



ROM Stabilization via Optimization-Based 
Eigenvalue Reassignment (continued)

• ��
� = unstable eigenvalues of original ROM matrix ��.  

• ��	 = �(��) = snapshot output at ��.

• ��
� = �� exp ���� �� 0 + ∫ exp{ �� − � ��}��� � ��

��
�

	 =	ROM output at ��.

• ROM stabilization optimization problem is small: < �(�).

• ROM stabilization optimization problem can be solved by standard optimization algorithms, 
e.g., interior point method.  

• We use fmincon function in MATLAB’s optimization toolbox.

• We implement ROM stabilization optimization problem in characteristic variables
��(�) = ��

−1��(�) where �� = ������
−1.

ROM Stabilization Optimization Problem 
(Constrained Nonlinear Least Squares): 

���
��
�
�||�� − ��

�||2
2

�

���

																											�. �. 	�� ��
� < 0

Replace unstable
�� with stable ���.

�̇� � = ���� � + ��� �
			�� � = ���� �

(2)



ROM Stabilization via Optimization-Based 
Eigenvalue Reassignment (continued)

Algorithm

• Diagonalize the ROM matrix ��: �� = ������
−1.

• Initialize a diagonal � ×� matrix ���.  Set � = 1.
• for � = 1 to �

• if ��(��(�, �) < 0), set ���(�, �) = ��(�, �).
• else, set ���(�, �) = ��

�.
• Increment � ← � + 1.
• Solve the optimization problem (2) for the eigenvalues {��

�} using an 
optimization algorithm (e.g., interior point method).

• Evaluate ��� at the solution of the optimization problem (1).
• Return the stabilized ROM system, given by �� ← ��� = �������

−1.

• Existence of solution to (2) cannot be proven in general.  Regularization may help.

• Solution to optimization problem (2) may not be unique.

• Can solve (2) for real or complex-conjugate pair eigenvalues: 
• ��

� ∈ ℝ s.t. constraint ��
� < 0.

• ��
�= ��

�� + � ��
��, �� + 1

�= ��
�� − � ��

�� ∈ ℂ	where ��
��, ��

�� ∈ ℝ	 s.t. constraint 
��
�� < 0.



Consistency? 

• One can show that ��� from the algorithm on the previous slide is given by:

��� = �� − ����

for a specific �� and �� (Kalashnikova et al. 2014).

• Modifying system as �� ← ��� can be viewed as adding a linear “controller” 
to the system: 

�̇� � = ���� � + ��� � + ���� �
																			�� � = ���� �

where ��(�) = −����(�).

• Approach does yield an inconsistent ROM, but one that can nonetheless be 
accurate. 

Ongoing work is to formulate ROM 
stabilization approaches that maintain 

consistency (last slide)



Numerical Results #1: International 
Space Station (ISS) Benchmark

• FOM: structural model of component 1r of the International Space Station (ISS). 

• �,�	matrices defining FOM downloaded from NICONET ROM benchmark repository*.

• No inputs (unforced), 1 output; FOM is stable.

Component 1r

*NICONET ROM benchmark repository: www.icm.tu-bs.de/NICONET/benchmodred.html.

http://www.icm.tu-bs.de/NICONET/benchmodred.html
http://www.icm.tu-bs.de/NICONET/benchmodred.html
http://www.icm.tu-bs.de/NICONET/benchmodred.html
http://www.icm.tu-bs.de/NICONET/benchmodred.html


Numerical Results #1 : ISS Benchmark
(continued)

• � = 20 POD/Galerkin ROM constructed from � = 2000		snapshots up to time � = 0.1.  

• � = 20 POD/Galerkin ROM has 4 unstable eigenvalues: 2 real, 2 complex

• Two options for ROM stabilization optimization problem: 

Option 1: Solve for �1, �2, �3, �4 ∈ ℝ s.t. the constraint �1, �2, �3, �4 < 0.

Option 2: Solve for �1+ �2�, �1− �2� ∈ 	ℂ, �3, �4 ∈ ℝ s.t. the constraint �1, �3, �4 < 0.

• Initial guess for fmincon interior point method: �1 = �2 = �3 = �4 = −1.

ROM

∑ | ��	 − ��
� |2

�
���

2

∑ | �� |2
�
���

2

Unstabilized POD 1737.8

Optimization Stabilized 
POD (Real Poles)

0.0259

Optimization Stabilized 
POD (Complex-Conjugate 
Poles)

0.0252



Numerical Results #2: Electrostatically 
Actuated Beam Benchmark

• FOM = 1D model of electrostatically actuated beam.

• Application of model: microelectromechanical
systems (MEMS) devices such as electromechanical 
radio frequency (RF) filters.

• 1 input corresponding to periodic on/off switching, 1 
output, initial condition �(0) = ��.

• Second order linear semi-discrete system of the 
form: 

��̈ � + ��̇ � + �� � = �� �
	� � = �� �

• Matrices �, �, �, �, � specifying the problem 
downloaded from the Oberwolfach ROM      
repository*. 

• 2nd order linear system re-written as 1st order LTI 
system for purpose of analysis/model reduction. • FOM is stable.

* Oberwolfach ROM benchmark repository: http://simulation.uni-freiburg.de/downloads/benchmark.

http://simulation.uni-freiburg.de/downloads/benchmark
http://simulation.uni-freiburg.de/downloads/benchmark
http://simulation.uni-freiburg.de/downloads/benchmark


• � = 17 POD/Galerkin ROM constructed from � = 1000		snapshots up to time � = 0.05.  

• � = 17 POD/Galerkin ROM has 4 unstable eigenvalues (all real).

• Two options for ROM stabilization optimization problem: 

Option 1: Solve for �1, �2, �3, �4 ∈ ℝ s.t. the constraint �1, �2, �3, �4 < 0.

Option 2: Solve for �1+ �2�, �1− �2�, �3 + �4�,	�3−�4� ∈ ℂ s.t. the constraint 
�1, �3 < 0.

• Initial guess for fmincon interior point method: �1 = �2 = �3 = �4 = −1.

ROM

∑ | ��	 − ��
� |2

�
���

2

∑ | �� |2
�
���

2

Unstabilized POD ���

Optimization Stabilized 
POD (Real Poles)

0.0194

Optimization Stabilized 
POD (Complex-Conjugate 
Poles)

0.0205

Balanced Truncation 1.37� − 6

Numerical Results #2: Electrostatically 
Actuated Beam Benchmark (continued)



Ongoing Work: ROM Stabilization for 
Nonlinear Problems (with M. Balajewicz)

• Development of ROM stabilization approach for nonlinear systems of the form:

�̇ � = � + �� � + � � ��(�)� � …�(�)��(�)�(�) �

(e.g., �-form of compressible Navier-Stokes equations).

• Stabilization includes modification of linear operator	� ← �� .

• To avoid losing consistency: solve for orthonormal transformation matrix � that rotates �
into more dissipative regime (addresses “mode truncation instability”)

�� = 	��		 ⟹ 	�� = ����

• Minimization problem: 

• Paper in preparation: M. Balajewicz, I.K. Tezaur, E. Dowell, “Minimal subspace rotation on 
Stiefel manifold forstabilization and fine-tuning of projection-based ROMs of the 
compressible Navier-Stokes equations”, in prep. for CMAME.

• Upcoming talk at ICIAM 2015: August 2015, Beijing, China.

Stabilization & fine-tuning of projection-based ROMs via minimal subspace rotation on the Stiefel manifold

���
�

	
�(�)

		�. �. 	�(�, �)

�(�) 	= goal-oriented objective, e.g., 
||� − ����,�||�
�(�, �) 	=	constraints, e.g.,
�1 < �� � < �2, ||�(�) − �

∗(�)|| < �



Summary & Acknowledgements

• A ROM stabilization approach that modifies a posteriori an unstable ROM LTI system by 
changing the system’s unstable eigenvalues is proposed. 

• In the proposed stabilization algorithm, a constrained nonlinear least squares optimization 
problem for the ROM eigenvalues is formulated to minimize error in ROM output.

• Excellent performance of the proposed algorithm is evaluated on two benchmarks.

• Stay tuned for extensions to nonlinear problems!

• This work was funded by Laboratories’ Directed Research and Development (LDRD) 
Program at Sandia National Laboratories. 

• Special thanks to

• Prof. Lou Cattafesta (Florida State University)
• Prof. Karen Willcox (MIT)

for useful discussions that led to some of the ideas presented here.

I. Kalashnikova, B.G. van Bloemen Waanders, S. Arunajatesan, M.F. Barone. "Stabilization of 
Projection-Based Reduced Order Models for Linear Time-Invariant Systems via Optimization-

Based Eigenvalue Reassignment". Comput. Meth. Appl. Mech. Engng. 272 (2014) 251-270.

(www.sandia.gov/~ikalash)
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Appendix: ISS Benchmark (fmincon
performance)

Real Poles Complex-Conjugate Poles

# upper bound 
constraints

4 3

# iterations 29 27

# function evaluations 30 30

|��| at convergence 
(1st order optimality)

4.00e-7 5.51e-7

Current Function Value

Current Function Value

First-Order Optimality

0.00640948

5.50885e-07
0.00683859 4.00842e-07

First-Order Optimality



Appendix: ISS Benchmark 
(CPU Times)

Model Operations CPU time (sec)

FOM Time-Integration 1.71e2

ROM – offline stage Snapshot collection (FOM time-
integration)

1.71e2

Loading of matrices/snapshots 6.99e-2

POD 6.20

Projection 8.18e-3

Optimization 2.28e1

ROM – online stage Time-integration 3.77

• To offset total pre-process time of ROM (time required to run FOM to collect 
snapshots, calculate the POD basis, perform the Galerkin projection, and solve the 
optimization problem (1)), the ROM would need to be run 53 times.

• Solution of optimization problem is very fast: takes < 1 minute to complete. 



Appendix: Electrostatically Actuated Beam 
Benchmark (fmincon performance)

Real Poles Complex-Conjugate Poles

# upper bound 
constraints

4 2

# iterations 60 31

# function evaluations 64 32

|��| at convergence 
(1st order optimality)

2.27e-7 8.43e-7

Current Function Value

Current Function Value

First-Order Optimality First-Order Optimality

1.23598

8.43228e-072.26927e-071.13229



Appendix: Electrostatically Actuated 
Beam  Benchmark (CPU Times)

Model Operations CPU time (sec)

FOM Time-Integration 7.10e4

ROM – offline stage Snapshot collection (FOM time-
integration)

7.10e4

Loading of matrices/snapshots 5.17

POD 1.09e1

Projection 2.55e1

Optimization 8.79e1

ROM – online stage Time-integration 6.78

• To offset total pre-process time of ROM (time required to run FOM to collect 
snapshots, calculate the POD basis, perform the Galerkin projection, and solve the 
optimization problem (1)), the ROM would need to be run 1e4 times (due to large CPU 
time of FOM).

• Solution of optimization problem is very fast: takes ~1.5 minute to complete. 



Unstable
Eigenvalues

�6 = 16,053

�12 = 48.985

�14 = 12.650

�17 = 0.05202

Stabilized Eigenvalues
(Real)

Stabilized Eigenvalues 
(Complex Conjugates)

�6 = −7,043,505 �6 = −106,976 + 551.77�

�12 = −35.364 �12 = −106,976 − 551.77

�14 = −153,033 �14 = −2954.1 − 1244.7�

�17 = −99,175 �17 = −2954.1 + 1244.7�

Appendix: Electrostatically Actuated 
Beam Benchmark (Eigenvalues)


