SAND2015-2733C

Enabling Advanced Operational Analysis Through Multi-Subsystem Data
Integration on Trinity

J. Brandt*, D. DeBonis*, A. Gentile*, J. LujanT, C. Martinf,
D. Martinez*, S. Olivier*, K. Pedretti*, N. Taeratf, and R. Velardef
*Sandia National Laboratories
Albuquerque, NM

Email:(brandt|ddeboni|gentile|dmart

slolivi|ktpedre) @ sandia.gov

Los Alamos National Laboratory
Los Alamos, NM

Email:(jewel|c_martin

ronv)@lanl.gov

TOpen Grid Computing
Austin, TX
Email:narate@ogc.us

Operations management of the ACES Trinity platform
will rely on data from a variety of sources including System
Environment Data Collections (SEDC); node level infor-
mation, including high speed network (HSN) performance
counters and high fidelity energy measurements; sched-
uler/resource manager; and plant environmental facilities.
The water-cooled Cray XC platform requires a cohesive
way to manage both the facility infrastructure and the
platform due to several critical dependencies. We present
preliminary results from analysis of integrated data on the
Trinity Application Readiness Testbed (ART) systems as it
pertains to enabling advanced operational analysis through
the understanding of operational behaviors, relationships,

and outliers.
Keywords-High Performance Computing; Monitoring

I. INTRODUCTION

High Performance Computing facilities operations at Los
Alamos National Laboratories will be utilizing a combina-
tion of facilities and platform based environmental run-time
data to manage Trinity’s (Cray XC) physical infrastructure.
Historically, HPC platforms (e.g. Road Runner and Cielo)
and the physical plant supporting the platform have been
managed independently. Platform internal environmental
data such as voltages and temperatures had been accessible
to the system administrators, but not facilities personnel.

The collection of a common set of data that includes both
system and plant information becomes more critical with the
water-cooled Cray XC platform. There must be a cohesive
way to manage both the facility infrastructure and the
platform due to several critical dependencies. Additionally,

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

this platform will be the first on which we have the ability
to measure fine-grained energy use at the node level. We are
exploring utilizing this capability to characterize the energy
footprints of applications and dynamically managing our
peak power footprint through power aware scheduling.

In this work we utilize data from a variety of sources
including System Environment Data Collections (SEDC),
node level information, scheduler/resource manager, and
plant environmental facilities. The SEDC data provides
information about voltages, currents, and temperatures of a
variety of components at the cabinet, blade, and node level.
This data also includes water temperature, pressure and
valve position information as well as dew point, humidity
and air velocity. While the system utilizes many of these
measurements to identify out of spec, and hence unhealthy,
components it relies on fixed thresholds being crossed to
trigger knowledge of an unhealthy situation. The node level
information provides high fidelity energy measurements, OS
level counters, and high speed network performance coun-
ters. Scheduler/resource manager information provides time
windows and components associated with user applications.
Plant environmental data provides us with coarse grained
power draw, information about noise on the power feeds,
and water temperatures and flow rates.

This paper describes the data elements, sources, collection
frequencies and mechanisms for collection. It also describes
the tools used and how the information is analyzed and
utilized. We present preliminary analyses of SEDC data
taken in conjunction with energy and application character-
izations to identify the operational behavior of individual
components. This type of analysis provides us with the
ability to identify significant deviation of individual com-
ponents from their particular normal operational behavior.
It also enables identification of the range of operational
behaviors for a component type across a system including

early identification of significant outliers. By tracking the
operational behaviors of systems and components over time
we will be able to evaluate the strength of their correlations
with various failure types (e.g. application, component) and
their causes (e.g. dirty power, aging component, water tem-
perature/flow). High correlation coefficients can be utilized
to identify actionable characteristics and mitigating actions.

II. POWER, THERMAL, AND FACILITY CONSIDERATIONS

Modern HPC systems are comprised of tens of thousands
of compute, network, memory, and storage elements that
must all work together. Understanding the complex interplay
between these elements, system software, and applications
in the face of errors, failures, CPU throttling, and network
congestion is increasingly necessary in order to continue to
realize the increases in performance that is the driver for the
increase in size and complexity.

Such understanding is of increasing importance as we
continue to push the edge of the facilities supporting the
HPC systems. Large scale HPC platforms can have a power
draw in the 20MW range which can in turn stress a facilities
power infrastructure. When the power demand exceeds cer-
tain thresholds the ability to prioritize and manage power
allocations becomes essential. If the power draw drops to
quickly it can cause facility and even site power outages.
Thus active management of a platforms average and peak
power draw through processor frequency management and
power capping techniques has become a high priority for
both HPC facilities and vendors and is currently a hot
research topic. Additionally, the increase in power density
of HPC components has necessitated the use of water based
solutions for heat transport rather than traditional air cooling
solutions. This in turn requires feedback mechanisms to
maintain proper water temperature, pressure, and flow rates
as well as active fan control in the case of hybrid solutions.

In order to maximize the value of delivered comput-
ing under aggregate facility constraints a more integrated
management approach that tightly integrates facilities and
platforms is required. The ability to control facilities in-
frastructure dynamically based on platform job, power, and
environmental information will become necessary as we
move towards exescale computing.

In this work then, we consider advanced operational
analysis through data integration, with a particular eye to
power, thermal, and facilities data.

III. SYSTEM CONFIGURATION AND MONITORING SETUP

Los Alamos National Laboratory (LANL) and Sandia Na-
tional Laboratories (SNL) purchased two identical Applica-
tion Readiness Testbed (ART) systems Trinitite and Mutrino
respectively. While most of the testing and measurements
presented in this paper were performed on Trinitite, we will
present some comparisons between behaviors of the two
in Section VI. In this section we first describe the basic

configuration of our (ART) systems. We also provide insight,
at a high level, about our integrated monitoring philosophy,
what information we are collecting, and our information
aggregation and processing approaches. Finally we discuss
the mechanisms used for transport of data from the various
sources to a common system for processing. Note that this
will become distributed on Trinity.

A. System Configuration

Our ART systems are single cabinet water cooled Cray
XC40’s and are populated with 100 compute nodes and
18 service nodes. The service nodes have the following
functionalities: 1 logins, 6 burst buffer, 2 moms, 2 DVS,
3 Lnet routers, 2 sdb (1 failover) and 2 boot (1 failover).
Additionally linux white boxes are provided for: external
login, System Management Workstation (SMW), and Power
Management Node (PMN). The PMN is currently being
utilized as a Monitor host. All compute nodes and service
nodes utilize the Cray Aries interconnect in a dragonfly
configuration [1]. Each compute node is configured with
dual 16 core Intel Haswell processors running at 2.3GHz and
64GB of memory. The external connections consist of FDR
Infiniband to Lustre storage (Sonexion), and 40/10 Gigabit
Ethernet to SMW, sdb, external login, and PMN. The public
network connections are 10 Gigabit Ethernet.

B. Data Integration

As described in Section I our HPC platforms, both current
and past, have had stove-piped monitoring operations where
information rarely, if ever, crossed the boundaries of respon-
sibility (e.g. facilities monitored power and cooling at a plant
level and HPC system administrators monitored platform
level variables. Only if it looked like the platform environ-
ment was causing problems would there be communications
between the two groups about their respective data and how
it was pertinent. This lack of communications is largely due
to the relatively small adverse impact a platforms operational
parameters have on the physical plant. As described in
Section II upcoming pre- and exescale platforms will have
the potential to incur large monitary cost and even cause site
wide disruption to power if operated blindly. Additionally,
with increasing scale is also coming greater heterogeneity in
computational, storage, and networking technologies. The
amount of information is becoming overwhelming and it
will become impossible to efficiently manage these plat-
forms without tools that perform run-time analysis on all
available data continiously and take appropriate mitigating
acction as soon as problems are detected. An example of
the complex interplay that advanced analysis tools can be
used to aid in understanding is variation in application
performance due to any of: network congestion, contention
for shared parallel file system bandwidth, contention for
burst buffer bandwidth, automatic power capping, uninten-
tional failure of power capping changes leaving some nodes

2.5 MB image

2.0 MB memory
~10k nodes
SMW - T | ey, || s Sy SR R 1 sec sampling:

(e sampie) (EFETSTHED) | 6,530, core
- 1KB/sec network
rsyslog
y

sysiog Monitor \\ 0
and linux white box) "y
other

|event logs

g
(Crawegation)

power, cooling, temps

Figure 1. High Level Monitoring Diagram showing ART related informa-
tion sources and their data feeds to a Monitor host

in a different state, thermally related CPU throttling, and
working but faulty hardware/firmware. Any or all of the
above mentioned conditions can cause wide variation in
application performance but without simultaneous access to
monitored system data, system logs, console logs, event logs,
etc. correct diagnosis and problem resolution will be difficult
if not impossible and manual exploration of this mass of
information will become impossible.

Beyond just day to day problem analysis and resolution
is the reality that we don’t really understand the ageing
process of many of the platform elements. Monitoring and
archiving the data will enable us to discover how these
elements age with use and how that process differs with
differing environmental conditons.

C. Monitoring Setup

Figure 1 depicts the current platform components in the
colored band and physical plant monitors all sending their
data to a Monitor host that takes care of data aggregation,
analysis, and both short and long term storage of the data.
This scenario will change with the full system in that
there will be several Monitor hosts for both scalability
and redundancy with the 10K nodes depicted in the figure
being an upper bound on what a Monitor host would be
expected to process. As shown all monitored data will be
aggregated to a set of Monitor hosts which will serve as
data aggregation, storage, and both run-time analysis and
post processing. This is the approach we have taken with
data gathering for this paper where the Monitor box here
is represented by the PMN block in Figure 2. The exceptions
were that our facilities monitoring was performed out-of-
band as described in Section IV-E and we supplimented the
SEDC and power data as described in Sections IV-B and
IV-C.

LDMS samplers are shown in Figure 2 running on every
host (including login). Aggregators for this information run
on service nodes (a login node in this case) and collect
data at regular time intervals using RDMA to minimize
compute node CPU overhead. Aggregators running on the
Monitor hosts collect this data from the aggregators
running on the service nodes and store the data. The

LDMS

samplers 10 GigE switch
= 1
(‘Aries boot - SMW
fabric ')
Ry Gigabit Ethernet
CN's and Service S sdb / (Log forwarding)
N\
lGE gy PN
Idmsd agg \
10 Gigabit Ethernet
(LDMS traffic)
Figure 2. Application Readiness Testbed (ART) Connectivity Diagram

showing how the major components of the platforms are interconnected

aggregators running on the Monitor hosts are also capable
of doing analysis on the data as it is streaming through
and will ultimately be able to provide notification of outlier
behavior. Note that the out-of-band Hardware Supervisory
System (HSS) network exists but is not shown. All log files
and SEDC data are forwarded to the Monitor from the
SMW. On the full Trinity platform each Monitor will
be receiving a fraction of the SEDC data with appropriate
redundancy for failure mitigation.

IV. DATA SOURCES

This section describes the data sources we are currently
collecting information from, how frequently it is being
collected, where it is being aggregated, and how it is being
stored.

A. Logs

Logging when errors or meaningful transistions occur to
files is used by many subsystems as a means of providing
system administrators and troubleshooters with diagnostic
information. On the Cray XC system there are many sources
of log information: syslog, console, power_management,
smw, event, alps, and more. All of these logs are forwarded
from various components to the SMW and placed in ap-
propriate directories. In order to make them available for
analysis in conjunction with the rest of the data we are
collecting, we forward all log files to our Monitor host
using rsyslog. This data path is depicted in Figure 1.

B. System Environmental Data Collections (SEDC)

Cray’s System Environment Data Collections (SEDC) [2]
provides a rich source of environmental data for many low
level system components such as CPUs, memory, power
supplies, nodes, blades, and more. The beauty of this infor-
mation is that it is completely out-of-band with respect to

Power API
CORE FEATURES

System Description Daemon Device Plugin
XML Config XML RPC XTPM
U—U
XML hwioc
saL

’

Powerlnsight RAPL XTPM

WattsUp PowerGadget

Figure 3. Framework of the Power API Prototype

node level computation and network communication. While
the typical (default) configuration is to push the SEDC
data to an aggregation point (the SMW) over the Hardware
Supervisory System (HSS) network at 60 second intervals,
we configured it to be pushed at 1 second intervals and
configured rsyslog on the SMW to forward it to our
Monitor host. One of the problems we see with the current
configuration is that independent of platform size, all SEDC
data is configured to go directly to the SMW. This presents
a bottleneck to parallelizing the processing of this data.
Ultimately we would like the ability to incorporate other
devices, such as our Monitor hosts, into the HSS network
and have the SEDC data distributed across them. When
analyzing this data we discovered that data related to water
(e.g., temperatures, pressures, flow rates) were missing from
the SEDC stream. Upon inquiry it turns out that this is a
known bug with a fix coming in CLE7.2UP03 [3].

C. Power API

We use the Power API prototype, which is a reference
implementation of the Power API specification version
1.0[4] released to the HPC community in September of
2014, to collect node level data at 10Hz. The Power API
specification describes a comprehensive system software
API for interfacing with power measurement and control
hardware. The specification defines the system model, theory
of operations, and features exposed, covering the facility
level down to low level software / hardware interfaces. The
prototype supports most core features of the Power API
specification. The prototype is a layered architecture that
conforms to the specification and provides rich descriptive
system configuration semantics, supports runtime plugins for
a variety of devices and resources, and enables distributed
communication for remote invocations of capabilities (see
Figure 3).

For our study, we describe our system using a node
level XML configuration file and utilize a plugin specifically
created for the Cray platform which gains us access to the
power management features of the system. The combination
of the configuration file and XTPM plugin allow us to ab-
stract the mechanisms of measurement and control from the

specifics of the platform by mapping Power API attributes
to the underlying plugin sysfs exposed parameters. We
gathered data at a sample rate of 10Hz for each node of the
system using this facility. In this case data was saved to a
shared file system for post processing. In the future we will
use LDMS (Section IV-D) to transport this data directly to
the Monitor for run-time processing.

Note that while Cray provides power monitoring capabil-
ities and a power management database (PMDB) for storing
and querying power utilization data, these are inadequate
for our purposes. The power monitoring capability collects
at lower frequencies than we are interested in investigating,
and even when higher frequency data can be obtained, it
is limitedin its ability to collect for large number of nodes
and long periods [5]. Additionally, the power database is
located on the SMW, which has inherent limitations in
access and size, while we seek to enable continuous, near-
indefinate runtime and historical analysis integrated with
other data sources. For these reasons, we do not include
power management database as source of data in this work.
For convenience, however, we do use RUR output for some
general, relative, overall application energy utilization.

D. Lightweight Distributed Metric Service (LDMS)

We use LDMS [6] for node level data collection and
transport via the High Speed Network (HSN). This informa-
tion, collected at 1Hz, includes HSN performance counters,
Lustre client activity, application memory utilization, and
other counters exposed by the OS. As of this writing
LDMS collects node level energy data from the sysfs
interface at 1Hz. The LDMS energy sampler plugin will be
upgraded to collect 10Hz power/energy data via the Power
API (see Section IV-C) thus making this full fidelity (10Hz)
data available at 1Hz across the whole system. Use of the
PowerAPI will enable LDMS to use the same power data
collection mechanism independent of platform which will
translate into needing to support fewer plugins and easier
configuration.

The HSN performance counter data collection relies on
Cray’s gpcdr kernel module to expose this data via the
sysfs interface. While this interface has been utilized for
over a year on NCSA’s Blue Waters platform (Cray XE/XK),
this is our first use of it on a Cray XC. This exposed a
small problem with the default gpcdr configuration which
exposed all 160 counters via a single sysfs file. While this
configuration is fine when the counter values are small, it
causes the aggregate size to exceed the 4KB limit imposed
on sysfs entries as the values become large. The author
at Cray quickly diagnosed the root cause of our apparent
counter corruption and gave us the fix which was to break
the set into 4 smaller sets based on information type (traffic,
stalls, receive link status, and send link status). This required
only a slight change to the gpcdr configuration file and a
reload of the kernel module. After the change we were able

Lesdlag |7
Loantag [

Ve Outpt Add Vilue

= Vatse Quiput DIT Sub Velue

¢ Uagy — |

|+ 663 F m

UseLocol Seipoints Vew
DT Sotpoint Local Biph 350 Pul
Do Sorpoint Trocor St 55 Spt: |

Procoss Wirter Supply Stot: [

Figure 4. The Underfloor Pipe Diagram for Trinitite.

Trinitite Heat Exchangers and Pumps

Figure 5.

to gather the following HSN data at 1Hz on a per-node basis:
traffic, stalls, receive link status, send link status.

In addition, we collect the following non-HSN data via
LDMS:

o Lustre file system counters

e CPU load averages

o Current free memory

o LNet traffic counters

o ipogif counters

o power and energy metrics via sysfs

E. Facilities

The facilities infrastructure that provides the cooling to
Trinite is composed of two main loops: the primary loop
and the secondary loop, these are separated by the heat
exchangers. The primary loop consists of four cooling towers
and three pumps. The secondary loop consists of the three
heat exchangers and three pumps on variable frequency
drives (VFD).

The facility water supply temperature is 45 degrees inlet
to the heat exchangers The secondary loop water supply
temperature to the machine and preconditioner is 75 degrees.

The building automation system that controls and mon-
itors the facility cooling equipment is Trane. The Trinitite

system and associated facility infrastructure installation was
substantially completed in February and testing began in
March. Not all of the building automation systems were
operational for this testing time frame.

The facilities data collected for these tests were limited
to power. Facilities power data was collected at five second
intervals from the compute rack feeder breaker using a fluke
meter 1730 Energy Logger.

F. EnvScript

Because the SEDC data stream currently does not con-
tain the majority of the cooling water related data (see
Section IV-B we have augmented our data collection using
the envdata [7] script. From the SMW this script collects
water-related data directly from the cabinet. Currently, We
are calling the script at 10 second intervals and storing the
output to disk for post processing. Note that this is a stop-
gap solution which will be discontinued once this data is
included in the SEDC stream.

V. WORKLOAD DESCRIPTION

For this work, we developed a work package that would
exercise the machine under a variety of conditions. Multiple
iterations of single and multiple node runs of a combustion
code, hpl, and hpcg were run as a group. This group was
first run normally, and then in turbo mode. These repeated
cases we refer to as a Series. This Series was then run
3 times, once under each of the following conditions: 1) no
power capping (415 Watts), 2) 50 percent node-level power
capping (322 Watts), and 3) O percent node level power
capping (230 Watts).

HPL is the MPI implementation of the high performance
Linpack benchmark [8] A highly regular dense LU fac-
torization, HPL is computationally intensive. High Perfor-
mance Conjugate Gradient (HPCG) [9] is a very different
benchmark, by design. HPCG comprises operations such as
sparse matrix-vector products that stress the memory sub-
system and network communications, and its performance
may be uninhibited by modest reductions in CPU resources
or frequency. HPL and HPCG represent extremes in the
spectrum of applications, from compute-bound to memory-
bound, with orders-of-magnitude differences in Flops. In
June 2014, Tianhe-2 reported the top numbers in both
benchmarks, with 33.9 Pflops on HPL but only 0.58 Pflops
on HPCG [10]. In addition to these benchmarks, we also
included in our system evaluation an application code for
direct numerical simulations of turbulent combustion. Its
uses an explicit Runga-Kutta method with mostly nearest
neighbor communications.

An idea of these 3 run Series and their time line can
be gotten from Figure 7 (top). Each of the three Series
and their power cap status is marked. A Series runs for
2-3 hours. Within a Series, it can be seen that there is

generally similar behavior repeated in the set. More details
of the timeline within a set is marked in Figure 15(top).

VI. ANALYSIS AND RESULTS

In this section we first present the analysis methodologies
used in this work and planned. We then present both
visual and analytic results of interest derived from data
taken over a two day period while running the workload
described in Section V. The results section first discusses
power related understanding obtained in our testing thus
far. We then present cooling related information from the
machine perspective only as our facilities data collection
system is still being installed. Finally we show traffic and
congestion related metrics and briefly discuss their utility in
understanding performance variation as we move to larger
scale systems.

In this work we combine information from log and
numeric data sources from both facilities and our ART
platforms to accentuate issues facing all large scale HPC
host sites as we move to pre- and exascale platforms.

A. Analysis Methodologies

Our ultimate goal is to understand sub-systems and their
relationships and characterize system behavior in order to
more optimally use the machine and to diagnose issues.

In this work we consider several methodologies for the
analysis of data. These are highlighted below, with specific
application in the following sections. It is important to
note that for the material discussed here, the complete
understanding relies on the integration of data from a variety
of sources and from a combination of analysis methods.

1) Log Analysis: Baler [11] is a log message processing
tool that extracts patterns from message streams, where a
pattern is deterministically extracted from each message by
marking pre-defined known words (like words in the English
dictionary) as static fields, and unknown words as variable
fields—representing by Kleen’s star (*)—in the pattern. Baler
differs from other log clustering tools in its determinism
as it does not rely on message population to determine
static/variable fields like many other clustering tools.

We use Baler in this work to process all system logs,
browse for interesting patterns, count the occurrences of pat-
terns in time-node space, and generate plot files for visualiz-
ing where and when events of interest occur. Some patterns
discovered by Baler relevant to this work are presented in
Figure 6. It is interesting to note that pattern 283 (power
budget exceeded), was discovered in the smwmessages log
and not in the power_management log.

In this case there were 1.8 million lines of log files
that Baler distilled into 251 unique patterns. This reduction
enables a system administrator to easily browse or grep
for key issues in a managable list and then drill down on
a time interval or node set for greater understanding. An
example of the use of pattern occurrences in node-time space

Example patterns:

280 » * — — Node x interrupt #*=x, *=%, *=% *x[*x]: * * *
Processor Hot

283 x x — — Node % power budget exceeded! Power=x,
Limit=+, * Correction Time=x

Example messages corresponding to patterns 280
and 283 respectively:

bcsysd 2080 - - Node 2 interrupt IREQ=0x20000,
USRA=0x0, USRB=0x80 USRB[7]: CO_PROCHOT CPU 0
Processor Hot

bcpmd 2140 - - Node 2 power budget exceeded!

Power=340, Limit=322, Max Correction Time=6

Figure 6.
messages.

Example of log message patterns and their corresponding

for visualizing when and where particular events occur is
presented in Figure 10. The visualization is of the example
patterns shown in Figure 6.

2) Numeric and Visual Analysis: In addition to the log
analysis, we use visual intergrations of data and visual and
simple numerical analyses. We examine data time-series in
relation to events in order to get an overview and under-
standing of system and variable behaviors and to discover
and to hone in on situtations of interest. We examine data
in the physical machine layout in order to detect physical
system relationships Finally we consider numerical analysis
in order to determine abnormal behaviors.

B. Perspectives in Power Use and Performance: Facilities
vs. Machine

In order to perform effective power management at a HPC
platform level it is necessary to understand the relation-
ships between the platform view of power draw and that
of the physical plant (facilities). Thus we not only
collected power and energy data from a variety of sources
on Trinitite (our ART platform under test) including in-
band on the compute nodes at 10Hz, via SEDC at 1Hz,
and energy from Cray’s Resource Utilization Reporting
(RUR) facility. But we also collected the facilities
view (what really matters) using the methods described
in Section IV-E. Figure 7 (top) shows a combination of
three power views. PowerS_Total_avg (blue) is plotted as
a time series of 5 second averages of the total for PowerS
(this is the complex sum of PowerS over all three power
phases and represents what the Utility company sees and
bills according to). PowerS_Total_Max (green) represents
the maximum power draw over the past 5 second window.
The platform view of the average power draw over the
previous 1 second window is represented by Rectifier Total
PO (red). The discrepency between average power and peak
power over the time our applications (Section V) were
being run on Trinitite varies as the amount of fluctuation
of power draw by the compute nodes (see Figure 8. As can

55000

Rectifier Total PO
Powers Total max
50000 PowerS Total avg

Feature A

45000
Feature B
40000 —

35000

30000

Power (W)

25000

20000

15000

10000
| N [

N i
]

No Power Cap

L
5000 | 50% Node Level Power Cap 0% Node Level Power Cap

55000
PowerAPI Node Sum
Rectifier Total PO

50000

45000

40000 Ll
35000 % ul

30000 J:E Fﬁ:’* \ “
\
—l ‘2‘ _M \,‘. I

Time (epoch

Power (W)

25000

20000

15000

10000

5000 -

0

000082£Z¥T
000S8LTHT
00006££2¥T
< 000S6LL2vT
000008£Z¥T
000S08£ZHT

Figure 7. Power information from Facilities (greeen, blue), System (red),
and Node Level data (purple)

be seen in the figure the platform’s view of power draw is
about 20% lower than the facilities view. The rectifiers and
powersupplies require power. This power is not recorded in
the SEDC data. This must of course be taken into account
by the power management software. Additionally the power
factor variation can skew this discrepency. Under normal
conditions (85 percent utilization) the power is satifactory;
however if the utilization runs below these parameters then
there impact to platform calculating the appropriate power
cap? while the the system is idle it’s power factor will
decrease which will result in power inefficiencies that must
accounted for on facilities infrastructure.

We call out Features A, B, and C in this figure as time
windows of interest over which we also plot 10Hz power
data taken from the 100 compute nodes during a series of
application runs. The reason for our choice of these regions
is that they are wide enough an stable enough to be able to
discern obvious differences in the behavioral characteristics
of facilities and machine based perspectives on power both
within a region and between similar regions where power
capping is the difference. Additionally the behaviors of the
compute nodes with respect to the power caps for each
region are clear (See Figures 8 and 9).

Figure 7 (bottom) shows compute node power data col-
lected at 10 Hz and summed over all nodes for each 100ms

period (purple) vs. the same Rectifier Total PO (red) plotted
on the top trace. As expected the summed power draw as
seen by the compute nodes is less than the total for the
platform (by about 10%). Note that this system is only
2/3rds populated so that number will change on a fully
populated rack.

In this set of application runs there was a node (nid00176)
that did not change its power cap correctly and remained un-
capped the whole time. Figure 9 shows a plot of nid00176
with another compute node plotted for comparison over
region B. The failure to change caps was reported in the
logs and would need to be taken into account by the resource
manager in order to do appropriate power management on
a large scale system where many such failures would be
expected. While nid00176 was stuck in the no-cap state in
this case, it seems equally probable that a node could get
stuck in a lower power cap state. In such a case, if the
resource manager naively handed the node out to a job that
was running with no-cap the reduced performance of this
node would adversly impact the whole job and could even
cost more energy overall.

The plots in Figure 8 show an overlay of time-history plots
of the 10Hz power data collected, using PowerAPI, over
all compute nodes during time intervals labeled as Feature
A, B, and C in Figure 7. These plots correspond to: 50
percent node level power cap (top) (Feature A in Figure 7
(top)), 0 percent node level power cap (middle) (Feature B
in Figure 7 (top)), no power cap (bottom) (Feature C in
Figure 7 (top)). The maximum power defined by the cap
level is shown as a horizontal yellow line in each figure.
The 10Hz data shows values that exceed the cap. Note that
nid00176, which did not respond to the cap command is not
included in the figures but is shown seperately in Figure 9.
Generally, facilities have to account for the fact that power
capping is not an absolute.

It is interesting to note that the noisiest of the three
features is A in which there is a 50% power cap and in
which compute nodes regularly exceed the cap by up to 25%.
This can also be seen in Figure 10 which shows many more
“power budget exceeded” log message occurences (red) than
in the 0% cap region. In fact in region A the compute nodes
regularly spike to the same levels seen in region C which has
no cap though Figure 7 (top) clearly shows both the average
and peak from a facilities are higher (and less noisey).

Figure 10 is a heat map of Baler [11] patterns representing
“power budget exceeded” (pattern 283) messages (red) and
“processor hot” (pattern 280) messages (green). The P283
messages are mostly seen during our application runs at a
50% power cap while the P280 messages were all during no-
cap application runs. Note that though the P280 messages
indicate a hot processor, there were no corresponding throttle
events.

We performed single node experiments in order to better
understand the node to node performance variability that

Power (W)

Feature A

Power Cap

0096££LTHT
0086£LLTHT
00008LTHT
00Z08.LZ¥T
00v08LZ¥T
00908££Z¥T
00808421
00078421
00218421

Time (epoch)

Power (W)

Feature B

Power Cap

5 Iy iy N
S S S S
N N N N
N N N Ny
o ° ° o
N b b 2
& =] @ S
3 3 3 3
3 3 3 3

Time (epoch)

B
Y
H
¢ 200
100
Feature C
Power Cap
o Max Power Per Node
g g g g g g g
g g g & g g g
g 2 g g g g g
H g g g g H g
g g g g g g g
Time (epoch)
Figure 8. Plots of compute nodes 10Hz power profiles for the cases of

50% (Feature A), 0% (Feature B), and no (Feature C) power cap from top
to bottom respectively

500

Power (W)

ek b b i Wmmmwmmm
200

100
Feature B
nid00012

nid00176
Power Cap

00SZ6£LTPT
000£6££ZPT
00SE6LLTPT
000v6LLTHT

Time (epoch)

Figure 9. Non-capped behavior of nid00176 vs an arbitary nid with 0%
cap (Feature B) (would have similar general behavior in the other two cases
as well).

Pattern 280 .
Pattern 283

180

m v, T T T
i 3 .
PR b

160 ' : L
. 1
140 L= vl .3 i
120 - i
" Sele .
g 100 ., 1,‘

& a i

° I B

z 80 ! Iy J L

T
60 - i
.t
40 - 4
o
20 g I]
1 L 1L]
0 50% Node Level Power Cap 0% Node Level Power Cap No Power Cap
— - - - - -
N N N N N N
N N N N N N
~N ~N ~N ~N ~N ~N
~N ~N ~N N @ @
@ @ O O o o
o w1 o w1 o w
o o o o o o
o o o o o o
o o o o o o
Time (epoch)
Figure 10. Baler error patterns relating to power (280 - Processor Hot,

283 - power budget exceeded, see Figure 6 for full patterns and example
messages).

occurs when operating under a power cap. Due to part to
part manufacturing variability, the power required to operate
at a given performance level will be different from processor
to processor, and hence node to node. Operating under a
power cap should fix the maximum power used by a node,
at least in theory, while allowing performance to vary. This is
in contrast to setting a P-state, which results in a relatively
fixed performance level across nodes, but with a variable
power usage.

For these experiments, we ran single node instances HPL
and HPCG on each of the 100 compute nodes in Trinitite.

For each run we recorded the performance of the benchmark
as reported in the benchmark’s normal output, as well as the
average power used by the run over its entire execution, as
reported by Cray’s power measurement infrastructure. Each
benchmark was run five times on each node for each of the
three power cap configurations tested, 0%, 50% and 100%.
Additionally, we tested with Intel’s turbo boost feature on
and off for each power cap configuration. For the Intel Xeon
E5-2698 v3 (Haswell) processors used on Trinitite, the base
non-turbo frequency is 2.3 GHz. Enabling turbo boost allows
the processor’s frequency to scale up to 3.6 GHz based on
the number of cores being used and thermal headroom.

Results for these single node experiments are plotted in
Figures 11 and 12, for HPL and HPCG respectively. In these
plots each point represents the averagve value for the five
trials and error bars (on both x and y axis) represent the
minimum and maximum values recorded. HPL in the 100%
power cap configuration (no power cap) results in a node-
to-node performance spread of 767 to 812 GFLOPS and a
power spread of 331 W to 367 W. Since there is no cap in
this configuration, each node is operating at the maximum
speed it is able to, which depends on the energy efficiency of
the processors in the nodes, environmental conditions, and
other factors. In contrast, the 50% and 0% power cap levels
result in a more vertical profile, indicating that the power
cap is being hit. Each node uses as much power as it can,
up to the power cap limit, and achieves a performance level
based on the energy efficiency of the particular processors
used in the node.

HPCG results, shown in Figure 12 show a much narrower
band of performance for the different power cap levels.
The 100% and 50% configurations result in essentially the
same performance levels, indicating that the power cap is
not being reached. The 0% configuration leads to a sharply
vertical profile due to the power cap being reached, and
performance drops by approximately 17% compared to the
other configurations. The HPCG 100% turbo on configu-
ration is interesting because the processor is choosing to
operate at a higher power level, even though it does not result
in improved performance. This indicates that the processor’s
power management policy could be improved for HPCG,
and likely other memory bandwidth bound codes as well
(e.g., operate at the lowest frequency needed to saturate the
memory subsystem).

Figures 13 and 14 show histogram distributions of energy
utilzation over the course of the 0% and no-cap cases
shown just discussed in Figure 12. The number of nodes
is binned by percent of the average per-node energy for the
application run (excluding nid00176 due to problems setting
its cap) with the bin width being 1%. Both distributions
look relatively normal but given the spread, a power aware
resource manager should be able to take advantage of this
when assigning nodes to applications. Knowledge of the
run-time characteristics of an application could increase this

advantage.

850 T T T T T T T T

800 |- “"ﬁ“ A
750 |- % g

$ 700 - b
(o]
o
¢ 650 b
600 - 1
550 100% / 415 Watts ——
50% / 322 Watts ———
0% / 230 Watts
500 | | | | f h
220 240 260 280 300 320 340 360 380 400
Average Power (Watts)
(a) No Turbo
850 T T T T T T T T
800 1
750 b
® 700 f 1
(]
o
¢ 650 - b
600 4
550 100% / 415 Watts ——
50% / 322 Watts ———
0% / 230 Watts
500 | | | | f h

220 240 260 280 300 320 340 360 380 400
Average Power (Watts)

(b) Turbo On

Figure 11. Performance vs. power for HPL with different power caps and
turbo off (top) and turbo on (bottom).

C. Machine Environmental Data and Facilities Interest

In this section we examine the cooling environmental
data associated with the platform. This section delves into
the platform facility information and explores application to
gain facility infrastructure efficiencies.In this section data
has been presented from both Mutrino and Trinitite for
comparison. Time ranges associated with applications during
the work package in the non-turbo phase are marked.

Figure 15 Valves open in reponse to the the job (top).
This set of data can be a useful indicator of facility room
conditions. The preconditioner valve position is calculated
based on the inlet ambient temperature and dew point and
the cabinet valve position maintains room neutral discharge
air.

The water line pressure varies during normal operation
(middle). When the valve opens this results in lower pres-
sure. This data can be used to determine pressure differential

nmm +
10.5 | g
10 g
wn
o
S 95t .
[T
(O]
9 | 4
851 100% / 415 Watts ——— |
50% / 322 Watts +~———
6 ‘ ‘ ‘ ‘ 0%/ 230 Watts —

220 240 260 280 300 320 340 360 380 400
Average Power (Watts)

(a) No Turbo

R
105 |- g
10 g
wn
o
S 95t .
[T
(0]
9 L 4
851 100% / 415 Watts ——— |
50% / 322 Watts ——
6 ‘ ‘ ‘ ‘ 0% / 230 Watts —

220 240 260 280 300 320 340 360 380 400
Average Power (Watts)

(b) Turbo On

Figure 12. Performance vs. power for HPGC with different power caps
and turbo off (top) and turbo on (bottom).

control and calculate pump horsepower. This type of infor-
mation could be used as input to facility building automation
systems and drive the variable frequency drive (VFD) that
operate the pumps.

Water outlet temp is lower during the job because of
the valve open (bottom). Facility personnel use these inlet
and outlet temperatures to ensure they 75 degree water
specification has not been exceeded. Monitoring the delta
temperature helps to validate the coil is working effectively.

In a tightly integrated system there is potential for auto-
mated control of pumps based on feedback from the platform
environmental data. Automated control of the facility infras-
tructure based on highly integrated platform and facilities
data would allow for enormous efficiency gains in the plant.

Figures 16 is a comparison Figures for Mutrino, although,
not under the same conditions. This is just going into an HPL
job (started at 8:45), but it does show some differences due
to the water temperatures and differences in the high speed

45

HPCG 0 Percent Node Level Power Cap o
40

35
30
25

20

10
5 | |
0 all n n

o o o
S = 5]

Occurences

90
130
140

Energy Used - Percent off Average

45

HPCG 0 Percent Node Level Power Cap Turbo s
40

35
30
25

20

10
5 | |
0 1L '

Occurences

90

o =} =1
=1 = &

130
140

Energy Used - Percent off Average

Figure 13. Distribution of number of nids vs. energy binned by % of
the average energy (average does not include nid00176) for one set of the
single nid runs hpcg with and w/o turbo and 0% Power capping

=0 HPCG No Power Cap s
45
40
35
30

25

Occurences

20

® 2 o = o © T W ©
@ o o 8 - o o o

94
9
97
9

Energy Used - Percent off Average

40
HPCG No Power Cap Turbo s
35
30
25

20

Occurences

94
95
6

5% 885838383
Energy Used - Percent off Average
Figure 14. Distribution of number of nids vs. energy binned by % of

the average energy (average does not include nid00176) for one set of the
single nid runs hpcg with and w/o turbo and no Power capping

60

50

40

30

20

Position (%) OR Flow Rate (gpm)

10

54

50

48

psig

46

a4

42

40

35

30

deg C

25

20

Figure 15. Trinitite data over the Series: Flow Rates and Valves (top),
Water Line Pressures (middle), Water Outlet Temp (bottom).

Coml

Preconditioner Water Valve Position (%)
Cab Water Valve Position (%)

bustion b conditioner Water Flow Rate (gpm)

on
Series Start Code (8 nids)
| combustion Code (100 nids)

00:0€:6T

00:0€:6T

00:0€:6T

single
ode

n
jobs {f

M

hpl
(100

fi
\ /

|

nids) x|

Cab Water Flow Rate (gpm)

Turbo runs
fl
‘A

M\ 4
! (mj.l\ (
Vm \ J\ H’J

\f/

hpcg (100 nids)

fe— Series End

00:00:02

00:00:0C

00:0€:0Z

Preconditioner Water Line Inlet Pressure (psig) ———
Preconditioner Water Line Outlet Pressure (psig) ———

00:0€:0C

00:00:12

Cab Water Line Outlet Pressure (psig)

WM"’NWW‘MN

00:00:1C

0:0€:1C

1S}

Time

00:00:22

00:0£:22 £

00:00:€T |

Cab Water Line Inlet Pressure (psig)

00:0€:1C

Time

00:00:2T

00:0€:2C

00:00:€T

Preconditioner Water Line Inlet Temp ———
Preconditioner Water Line Outlet Temp ———

Cab Water Line Inlet Temp
Cab Water Line Outlet Temp

00:00:0C

00:0€:0T

00:00:1C

10€:TT

00

Time

00:00:2C

00:0€:2C

00:00:€T

00:0€:€T

00:0€:€T

00:0€:€T

blowers.

In order to compensate for a higher altitude Trinitite was
equiped with high speed fans. This data is used to proactively
predict fan failures. The RPMs decrease as the fan reaches
end of life. As can be seen in Figure 17 the Trinitite fans
are set at constant 75 percent of max speed. Facilities data
also shows that for both Mutrino and the fan power does not
change. The issues seen with Trinitite have been identified
as a software problem.

D. Thermal Irregularities

Thermal issues are of interest for a number of reasons,
including facilities cooling, performance impact, and device
degredation and aging. Issues in the machine and the room
environment may be causes of such irregularities.

Numerical analysis of the SEDC data shows significant
temperature variation across the CPU’s of both systems
when each was independently supposed to be running a
similar workload across the nodes. Visual analysis of the
numeric data in a physical layout gives insight into this issue,
as well as giving rise to further investigation.

They layout on the board is generally as follows. On a
blade, Nodes 2,1,3,0 are in that order, front to back. There
are 2 CPU’s per node, with CPU’s 0/1 alternating left/right
with each node. For clarity, then, Node 2 is in front with
CPU 0 on the left.

Within the rack, chassis are vertically stacked. Two slots
are populated left and right in a chassis.

Note that our ART systems are not fully populated. Fig-
ure 18 shows the layout for the two machines (Trinitite (top),
Mutrino (bottom)). Non-compute nodes and their associated
CPU’s are indicated by XX /XX, with the exception of the
c0-0s12n0, circled in the upper right of each layout.

Maximum temperatures over the workload for each case
are shown. The workloads were not the same for each
machine. For Trinitite, the workload was the entire set of
runs discussed in this work. For Mutrino, the workload
was the entire HPL run (approx 3 hours) pertaining to the
Mutrino figures in Section VI-C. While it is not expected
for the values to be comparable, certain similarity occur in
each.

Overall, there is a significant variation in temperature (25-
30 degrees) which could lead to different temperature-related
aging issues that could affect the lifetime and performance
of the nodes. The hotter nids are seen to be those for which
the left and right slots are both populated. In addition,
c0-0c2s12n0 has issues in both systems: In Mutrino the
node exhibits temperature related throttling, in Trinitite the
SEDC data included error codes for all attempts at collecting
temperature related data for this run and in the log data this
nid was the only nid reporting an error when attempting to
apply the power capping profiles.

As a result we seek further understanding of the common
positional dependence of the problem nid, of the overall

Preconditioner Water Valve Position (%)
Cab Water Valve Position (%)
Preconditioner Water Flow Rate (gpm)
Cab Water Flow Rate (gpm)

35
. 1 1y Tl
U N
30 Jii
g 25
2
2
&
20
2
= Al
o« i I i |
> 1 L m iy
S 45| — 1L ‘ 1.}.\“‘
g ol lndi il
< | I
2 !
g 10 (AR
4 Y i
| Il | Wl | (i
5 N
‘ |1 L
1
0 I
o 2 2 = = I . I I - -
& o) ° 153 =) = = N N o o
w =Y 5 =3 W ° w ° W ° W
s 3 S 3 S S S S S S S
o ° ° o ° ° o ° ° = °
S S s S S S S S) S S
Time
Preconditioner Water Line Inlet Pressure (psig) —
Preconditioner Water Line Outlet Pressure (psig) -
Cab Water Line Inlet Pressure (psig)
Cab Water Line Outlet Pressure (psig)
71
70
69
68
g o7
a
66
65
64
63
o 2 2 = = I = = I - -
& 8 ° 153) = = N N @ @
w S W o W S w = W ° W
S S S S S S S S S S S
=3 =3 S o S S o o S ° =y
S S) S S) S S) S S
Time
Preconditioner Water Line Inlet Temp ———
Preconditioner Water Line Outlet Temp ———
Cab Water Line Inlet Temp
Cab Water Line Outlet Temp
24
22
20
18
[¢)
=
34
°
16
14
e,
I . T
R s e M
10
o 2 2 I = I - = I I -
& 3] 5) = = N S = @
w ° W =3 W =) w ° W ° W
S S S S S S S S S S S
o o ° ° o ° ° o ° o o
S S s S s S S S) S S
Time
Figure 16. Mutrino data for comparison, going into an HPL job: Flow

Rates and Valves. Preconditioner water valve position is always 0.

Blower 0 Fan Speed (rpm) ——
Blower 1 Fan Speed (rpm) ———
Blower 2 Fan Speed (rpm)
Blower 3 Fan Speed (rpm)
Blower 4 Fan Speed (rpm)
Blower 5 Fan Speed (rpm) ———

3335
| I
“ H ()
[l Ll
3330 | |
(I
§ 335
3320
3315
= N N N N N N N N
© S S = = N N @ @
w ° W =3 W o W ° W
S S S S S S S S S
o o o o o o o o =3
S) s S S S 3 s 3
Time
Blower 0 Fan Speed (rpm)
Blower 1 Fan Speed (rpm)
Blower 2 Fan Speed (rpm)
Blower 3 Fan Speed (rpm)
Blower 4 Fan Speed (rpm)
Blower 5 Fan Speed (rpm)
2820
i i (i
d e ! ik
2810 - |l it
il
2800

2790

,pm
%
%
=
i
&
®
Ei
p
i

2780 |
2770
y b
7780 ‘ ﬁ;m Ty
i _ i bl
i kT
2750 - c
S s s = = = & e & s -
@ o o e < iy i N N W w
g 2 £ 2 8 5 & & & & &
e e < < < 2 2 < < < <
S 2 2 3 & & 2 2 & 3 3
S 2 5 & & g8 &8 8 & & 3
Time

Figure 17. Blower Speed: Trinitite data over the Series (top). Mutrino
going into an HPL job(bottom)

expectations of temperature within the partially populated
racks, and of how we can expect the results to extrapolate
to fully populated systems.

E. Network

While the workload did not target investigation of network
performance and Aries enviromental data profiling, under-
standing when contention for network resources (congestion)
is affecting performance can aid in root cause analysis
of performance variability and help in optimization of job
placement that minimizes congestion. We briefly present a
first look at this data in the form of link bandwidth used and
associated stalls (a measure of congestion).

Figure 19 plots network traffic (top) and stalls (middle)
data for each of the 40 Aries router tiles. This data was
gathered from the gpcdr interface via LDMS (Section IV-D)
during the course of the same application runs previously
presented. As expected there are no traffic or stall values
during the single node jobs and highest values occur during

CPUs Max TEMP Over A1l Runs

XX/XX XX/XX XX/XX XX/XX
XX/XX XX/XX XX/XX XX/XX

76/79 75/77 71/70 78/84

XX/XX XX/XX XX/XX XX/XX
XX/XX XX/XX XX/XX XX/XX

80/86 81/82 76/75 GX/XX)

81/77 74/75 71/71 75/78

80/85 80/81 75/77 80783 |

XX/XX XX/XX XX/XX XX/XX

65/69 63/70 64/67 63/69

XX/XX XX/XX XX/XX XX/XX 63/66 65/68 65/69 62/69 1.6x10°
XX/XX XX/XX XX/XX XX/XX 63/67 63/67 63/66 62/68 /hpcg[lof) nids)
76/73 72/73 73/75 70/70 XX/XX XX/XX XX/XX XX/XX hipl (100 nids)
73/73 73/72 74/74 73/77 XX/XX XX/XX XX/XX XX/XX 14)(109 L Single node jobs resume
76/77 73/77 72/72 79/80 XX/XX XX/XX XX/XX XX/XX N N -
76/75 75/77 70/70 76/78 __ XX/XX XX/XX_XX/XX_XX/XX Combustion Code (100 nids) T4
[B1/8T 76/79 72/75 80/81 83786 79/81 75/79 85/84 | Combustion Code (8 nids) =3
XX/XX XX/XX XX/XX XX/XX 65/69 65/69 64/68 64/72 9
XX/XX XX/XX XX/XX XX/XX 66/69 64/68 63/66 65/70 1.2x10
XX/XX XX/XX XX/XX XX/XX 65/69 63/66 62/63 62/64
Single node jobs
76/71 72/72 75/74 72/72 XX/XX XX/XX XX/XX XX/XX
73/71 70/71 69/70 71/72 XX/XX XX/XX XX/XX XX/XX 1)(109
75/75 75/75 71/70 77/76 XX/XX XX/XX XX/XX XX/XX
79/79 77/78 69/71 78/79 XX/ XX XX/ XX _XX/XX_XX/XX ~
Q
XX/XX XX/XX XX/XX XX/ XX 63/69 62/68 62/67 63/68 E/ 8
XX/XX XX/XX XX/XX XX/XX 65/68 64/67 62/66 62/68 o 8x10
XX/XX XX/XX XX/XX XX/XX 69/70 63/69 64/68 64/67 b=
FRONT ————-: > BACK FRONT -----—-> BACK ',_"_’
LEFT ————mmmmm—mmme———————> RIGHT 6x108
CPUs Max TEMP Running HPL
XX/XX XX/XX XX/XX XX/XX XX/XX XX/XX XX/XX XX/XX 4X108
XX/XX XX/XX XX/XX XX/XX XX/XX XX/XX XX/XX XX/XX
74/77 73/78 73/74 76/88 83/87 84/85 77/79@6/9T)
79/78 72/75 72/71 76/80 82/88 81/84 76/81 86/8
XX/XX XX/XX XX/XX XX/XX 64/69 66/69 62/70 67/72 2X108
XX/XX XX/XX XX/XX XX/XX 62/67 64/68 63/68 62/68
XX/XX XX/XX XX/XX XX/XX 64/68 65/66 64/74 63/76
77/73 73/73 73/73 74/70 XX/XX XX/XX XX/XX XX/XX
73/70 69/71 68/68 69/74 XX/XX XX/XX XX/XX XX/XX 0 M .
74/72 74/74 68/66 76/78 XX/XX XX/XX XX/XX XX/XX SXIOS
73/74 72/77 69/70 75/80 XX/XX XX/XX XX/XX XX/XX
75/77 73/79 70/70 81/82 81/84 81/84 75/80 86/89 I
XX/XX XX/XX XX/ XX XX/XX 63/67 61/66 65/67 66/69
XX/XX XX/XX XX/XX XX/XX 62/65 63/67 64/69 64/69
XX/XX XX/XX XX/XX XX/XX 62/69 63/68 64/66 63/66 7)(108
72/71 70/68 74/72 71/72 XX/XX XX/XX XX/XX XX/XX
70/69 68/72 67/74 68/72 XX/XX XX/XX XX/XX XX/XX
74/75 74/73 68/70 76/75 XX/XX XX/XX XX/XX XX/XX GXIOS
73/76 71/75 69/69 72/75 XX/XX_XX/XX_XX/XX_XX/XX
5/78 73/76 71/71 79/82 82/85 81/83 78/78 85/86
XX/XX XX/XX XX/ XX XX/ XX 65/69 66/68 65/66 62/69
XX/XX XX/XX XX/XX XX/XX 63/68 64/65 62/67 65/67 8
XX/XX XX/XX XX/XX XX/XX ~ 60/66 62/65 62/64 63/66 5x10
FRONT ————-: > BACK FRONT ————--: > BACK —
LEFT == > RIGHT g
© 4x108
T
Figure 18. Thermal distributions on Trinitite (top) and Mutrino (bottom) @
shown in the layout of the rack. Temperatures are markedly higher when 3x108
the left and right slots are both populated (marked with rectangles) . c0-
0c2s12n0 (circled) is a problem node in both systems. 2x108
1x108
the 100 node combustion code run. (Only the times in the
first set of runs in the Series (non-turbo) are marked.) The 0
bottom figure shows related SEDC environmental data on 45
the Aries associated with the entire slot for that node. Note 40
all four nodes of a slot share an Aries rounter and the data B ']
. 30 J— T oMl D i
shown here, though collected by one node, is for all traffic s . ©
. . . . - ries temp —_— A
and stalls associated its Aries router. For this workload, there Aries VDD vcore volts(V)
. . . 20 - Aries vcore current (centiA) 1
is only a slight, but noticable, effect on the current (bottom) s |
during the runs. Future work involves consideration of more 10l J
communication heavy workloads. 5
0
- - - - - - - -
VII. CONCLUSION 8 8 8 8 8 8 8 8
@ @ @ @ @ @ @ @
. . . IS I R & & < I 3
Integration of data from a variety of sources is necessary 3 S 3 S 3 8 3]
. . : o o o o o o o o
for system understanding, improving system performance, Time
and problem diagnosis. This becomes increasingly necessary
Figure 19. Traffic (top), stalls (middle) nid00012 during the no capping

as we continue to push the edge of the facilities supporting
HPC systems.

In this work we have considered information integration
and analysis functionalities currently deployed and under
development on the ACES ART systems for Trinity. We

case. Aries SEDC values for the slot for nid 12 (bottom)

presented actual cases of data integration and analysis in
regard to power, thermal, and facilities data; and how
those cases require consideration as we move to the Trinity
system.

ACKNOWLEDGEMENTS

The authors would like to thank Joshi Fullop (NCSA) and
Victor Kuhns (Cray) for useful discussions on the forwarding
of SEDC and log data; Eloy Romero (LANL) and Alynna
Montoya-Wuiff (LANL) for access to facilities data; and
Adam DeConinck (LANL), Kathleen Kelly (LANL), Jason
Repik (SNL), and Jim Williams (LANL) who administer the
platforms and facilitated the runs used in this work.

REFERENCES

[1]1 J. Kim, W. J. Dally, S. Scott, and D. Abts,
“Technology-driven, highly-scalable dragonfly topology,”
SIGARCH Comput. Archit. News, vol. 36, no. 3,
pp. 77-88, Jun. 2008. [Online]. Available: http:
//doi.acm.org/10.1145/1394608.1382129

[2] “Using and Configuring System Environment Data
Collections (SEDC) Cray Doc S-2491-7001,” 2012.
[Online]. Available: http://docs.cray.com/books/S-2491-7001/
S-2491-7001.pdf

[3] P. Falde, private communication.

[4] J. Laros, D. DeBonis, R. Grant, S. Kelly, M. Levenhagen,
S. Olivier, and K. Pedretti, “High Performance Computing -
Power Application Programming INterface Specification, Ver-
sion 1.0,” Sandia National Laboratories, Albuquerque, New
Mexico 87185 and Livermore, California 94550, Technical
report SAND2014-17061, 2014.

[5] “Monitoring and Managing Power Consumption on
the Cray XC System Cray Doc S-0043-7202,” 2014.
[Online]. Available: http://docs.cray.com/books/S-0043-7202/
S-0043-7202.pdf

[6] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos,
J. Fullop, A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden,
M. Rajan, M. Showerman, J. Stevenson, N. Taerat, and
T. Tucker, “Lightweight Distributed Metric Service: A Scal-
able Infrastructure for Continuous Monitoring of Large Scale
Computing Systems and Applications,” in Proc. IEEE/ACM
International Conference for High Performance Storage, Net-
working, and Analysis (SC14), 2014.

[7] C. McMurtrie, L. Gilly, and T. Belotti, “Cray Hybrid XC30
Installation - Facilities Level Overview,” in Cray User’s

Group, 2014.

[8] “hpl” [Online]. Available: http://www.netlib.org/benchmark/
hpl/

[9] “hpcg.” [Online]. Available: http://www.hpcg-benchmark.org

[10] “HPCG Performance.” [Online]. Available: https://software.
sandia.gov/hpcg/2014-06-hpcg-list.pdf

[11] N. Taerat, J. Brandt, A. Gentile, M. Wong, and
C. Leangsuksun, “Baler: deterministic, lossless log message
clustering tool,” Computer Science - Research and
Development, vol. 26, no. 3-4, pp. 285-295, 2011. [Online].
Available: http://dx.doi.org/10.1007/s00450-011-0155-3

