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Outline

e Dielectric Resonators as Metamaterials
e Optical Magnetism

e Directional Emission, Fano Resonances, and Third-
Harmonic Generation
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The Promise of 3D Metamaterials

* Engineer ¢ and p everywhere in space using deep
subwavelength structures (usually resonators)
* Then light will do wonderful things
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Sir John Pendry David Smith, Duke

* For RF (*3GHz), A~Ccm
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Issue 1: Fabrication
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Dielectric Resonators for Metamaterials

THE ELECTRICAL CONSTANTS OF A MATERIAL LOADED WITH
SPHERICAL PARTICLES*

By L. LEWIN.}
(The paper was first received 4th March, and in revised form 27th September, 1946.)
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. .
e Dielectric Resonators

magnetic dipole resonance
electric dipole resonance

Electric Magnetic

Intensity (a.u.)

Images: A. Miroshnichenko

Magnetic dipole resonance: tailor p T T T TP
Electric dipole resonance: tailor ¢ Wavelength (nm)

Magnetic Electric

* Cubes work fine too

* Introducing “cuts” in cube
can move relative positions
of resonances
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Full Wave Simulation of Propagation
Through Split Cube Array

£=32, edge = 1.53 um, gap = 100 nm H, at top of unit cell (z=1.3 um)
Incident waves
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What is a mirror?

“Regular” mirrors invert the phase of the reflected wave
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Dipoles Close to Surfaces

Electric dipole on top of a

perfect electric conductor IMAGE THEORY
(PEC)
E I g
<

Because of boundary condition of the PEC surface, the electric field at the
dashed plane has to be zero
This means that the radiation of an electric dipole close to PEC is quenched

Electric dipole on top of a

perfect magnetic conductor IMAGE THEORY
(PMC)
E I 2
—_—

This means that the radiation of an electric dipole on a PMC is enhanced
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Magnetic Dipoles

However, a perfect magnetic conductor does not exist in nature

Array of magnetic dipoles

Because the magnetic dipole responds in phase with the electric field, this
represents an artificial magnetic conductor

Dielectric Spheres

Magnetic
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Refractive Index

5.20

Dielectric Resonator IR Metamasurface: )&=

—=— Refractive Index o
—a— Absorption Coefficient &*

Wavelength (um)

Magnetic

Te/BaF,

a0 uondiosqy

Electric
1.0
0.5
1.53x1.53x1.7mm3
- 10 deg wall slope

11 Phys. Rev. Lett. 108, 097402 (2012)



@ Dielectric Resonator IR Metasurface; @&z

(I

Te/BaF,

0.8

0.6

0.4

0.2

Reflection Transmission

Magnetic

0

National

Experiments

Te on BaF2: Full Reflection/Transmission
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Phys. Rev. Lett. 108, 097402 (2012)
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Proving Optical Magnetism:
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Measure Absolute Phase of Reflected Wave

1.0

CDMM transmission (a.u.)

0.0

Wavelength (pm)

Appl. Phys. Lett. 103, 181111 (2013)

68 72 76 80 84 88 92 96

/s mid-IR spectrum (a.u.)

Phase-locked Time Domain Spectroscopy

GaSe

DM

13

1350 nm 1550 nm

~

L

Gate: 15 fs,

1050 nm

A 4
V GaSe
250 fs,
mid-IR
M

(started by Daniel Bender)

L L

Optica (2014)
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Experimental Demonstration of “Optical
Magnetism”

1 [pimee = w i N

Reflection on gold mirror - - . | Reflection on gold mirror
Reflection on OMM | | . Reflection on OMM
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) Radiative Decay Rate of a Transverse Electric
Dipole Near Au and OMM Surfaces

=) 50

E’ 40 - —=&— On Top of Gold

= —e— On top of OMM ?

é 20 % 40 Radiative decay rate peaks

S T 2ot around magnetic dipole
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e Oscillatory dependence on distance is shifted by about half a period
* Dipole emission near the magnetic mirror is enhanced even for very small
distances

15 Optica (2014)
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" Scaling Dielectric Resonators to the Near IR:
Silicon Nanostructures

Tellurium: n~5, Size™~1.5um Silicon: n~3.5, Size<200-500nm
A>5um A>1um

16
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Scaling Dielectric Resonators to the Near IR.@ s
Silicon Cylinders (with I. Staude & Y. Kivshar, ANU)

Transmittance (Experiment)
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Changing the aspect ratio of the nanocylinder, changes relative position
of E & H resonances

ACS Nano 2013 7 (9), 7824-7832 .
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Integration with Quantum Dots

With J. Hollingsworth
and F. Darwood, LANL

Dip-pen nanolithography

http://str.linl.gov

QDs in protective polymer
coating selectively deposited
onto the tops of Si
nanoresonators

Many QDs

Towards Single QDs (near-IR g-NQDs)

SEM: C. Sheehan, LANL
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Near Field Imaging of Localized Modes
With Prof. Habteyes, UNM
nanodisk diameter 412 nm,

nanodisk height 140 nm
A=633nm

Calculated near-field amplitudes

TH"

Measurements
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Mostly electric quadrupole
ACS Photonics (2014)
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&> Fano Resonances in All-Dielectric

Nanoparticle Oligomers
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(with I. Staude & Y. Kivshar, ANU)
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All-Dielectric Fano-Resonant 2D Chiral Metasurface@ e

Order of Magnitude Higher Q Than Similar Metallic
Metasurfaces (with G. Shvets, UT Austin)

Cross-polarized transmission T,,

e Ty Silicon pi L20
mmm Silicon pi L18

mmmHigh Q metallic pi SllICO
0w Q) metallic pi

2000 2200 2600
Wavenumber 1/cm

Nature Communications (2014)
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Third Harmonic Generation

(With ANU & Moscow State)

Nano Letters (2015)
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NI ° o o °
bt Dielectric Metamaterials with 111-V’s?

gheng Liu \

GaAs nanocylinders

2 pm

5,18 ym x | 4.8 mm

AlGaAs

Oxidized

mode H HFW
SE | 5.00kV | 5.18 ym

23
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Summary

e Arrays of dielectric resonators were used to
create an “optical magnetic mirror”.

e Proved magnetic mirror behavior using
absolute optical phase measurements

e Through geometry and mode control, high index dielectric resonators
offer a platform to create optical devices and metamaterial
functionality.
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@ Center for Integrated
Nanotechnologies: CINT

mjEe
Center for Nanoscale
Materials
Molecular Foundry Argonne Rgiigggl L-ab. Center for Functional
Lawrence Berkeley National Nanomaterials
Lab. Brookhaven National Lab.
b .
L 'I v ’ » one of five U.S. Dept. of
*\ L r Energy Nanoscience Centers
|y A / - Between 150 and 300 active
‘ user projects

Center for Integrated
Nanotechnologies

Sandia National Labs. Center for Nanophase Materials User faCi I ity: fl"ee tO use

Los Alamos National Sciences
Lab. Oak Ridge National Lab.

http://cint.sandia.gov
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END
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Prior (Difficult) Fabrication

Deposition + Mask + Etching

Undercut

A

27
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Multi-cycle Deposition-etch Process

- »e

Pinch-off

Key: etching rate inside the cavity is
sufficiently lower than that on surface

28
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Multi-cycle Deposition-etch Process

<>

2 Dep-etch
cycles

Single
deposition

29
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Transmission Spectra of Te metamaterial

e Tuning of electric and magnetic resonances

e Overlap of electric and magnetic resonances (potential for negative
index material)

1.0
3
3
=
.g 0.5
= <0 é
- — =
=
=
F a "
Ged u<0 =
0.0 ' : ‘ '
6 9 8 9 10 11
Appl. Phys. Lett. 102, 161905 (2013) Wavelength (um)

30
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) Te Resonators: Electric and Magnetic Mode ) 5.
Overlap

1.00 . - .
measured response
0.75F
C
o
2 0.50
=
-
ju Magnetic resonance of
0.25} smaller resonator
overlaps electric
resonance of larger cube
000 N 1 N 1 N 1 N
6 7 8 9 10

wavelength (um)

Magnetic and Electric resonances can overlap: different size cubes, or

cubes with “cuts”
31
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Te Resonators: Overlapping Electric and
Magnetic Resonances

1.0

—a— | O um
—e—2 3 um
——7 7 um

Transmission (a.u.)
o
'u.

0.0

6 | 3 | 10 | 12
Wavelength (um)

« Side: 1.7 ym, 2.3 ym and 2.7 pym with 50%

duty cycle (height constant at ~1.8 pm).

Te resonators using a
single multiple
deposition & liftoff

process. :
« Shaded areas are the spectral regions

where magnetic and electric resonances
overlap.

Appl. Phys. Lett. 102, 161905 (2013) 32
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N, Adjusting the Resonance Frequencies:
Perturbation Approach

* One approach to alignment of resonances is to place perturbations within
the resonator volume

High-permittivity Low-permittivity s .ol s i
inclusion E inclusion ! Netal Dipoles

[ 1 [high & inclusions)

lll [P — _IIIIII I',
£ 2 Er _I; -\a'lll|.|-[-.,-_ o hf
a :. N 1o crossing
ol
Dielectric cube ~Metdlic dipole Dielectric cube ©
Frequency downshift Frequency upshift lllustration of resonance
of electric resonance of magnetic shifting using these

resonance methods

Warne et al. PIER B 44, 1 (2012); IEEE Trans. Antennas Propagat. 61, 2130 (2013)
33
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Perturbation theory to control relative
location of electric and magnetic resonances

* Apply perturbation theory to a dielectric cube e.g. by introducing a split
Warne et al. PIER B 44, 1-29 (2012); IEEE Trans. Antennas Propagat. 61, 2130-2141 (2013)

* Retrieve electric and magnetic polarizabilities of single scatterers using full-

wave simulations
Basilio et al. [IEEE Antennas Wireless Propag. Lett. 10, 1567 (2011); Rockstuhl et al. Phys. Rev. B 83, 245119 (2011)

20 20 ‘ 20 :
2 @ hi sz O o | ©
._§ o (7 /(soghd ] . \ I.C-E o H!or]mn/ e ;-;
S 0 ; N 100 8 10
= ! = Vi Toe /(goghd3 ] &
8. 8. ! S
3 B 2
N N 0 N0
£ : £
S S S
Z 10 “ 10 1A 10 ]
8 9 10 11 12 8 9 10 11 12 8 o 10 11 1
Wavelength [pum] Wavelength [pum] Wavelength [pum]

* Electric and magnetic polarizabilities can be easily engineered to overlap at a
given frequency

34
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Scaling Dielectric Resonators to the Near IR

.
Si Ge Te, PbTe !
’ ) Peak of
. . 3.5 S
Design metric for - '
S resonance
1:1 CDR 5 3l
) 3 Peak of E-
metamaterials =
resonance
25 F
PRL 108, 097402 (2012)
2
3.0

Tellurium: n~5, Size™~1.5um Silicon: n~3.5, Size<200-500nm

7\.>5um 35 7\.>1um



Rotating analyzer Stokes polarimetry

[ Polarizer
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Stokes Parameters

*LP->CP conversion by 1 micron thick MS with
high efficiency (50%) at normal incidence

*Experimentally measured quality factor

*Close to 100% Degree of Circular Polarization

4.2 4.4 4.6 4.8 5
Wavelength, microns

Could use a chiral metasurface for developing a CP

thermal emitter

C. Wu et. al., Nature Communication (2014) 36
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Arrays of High € Resonators: Low Loss
Metamaterials

. . Works nice in the RF

(negative g, negative )

Magnetic Electric

Spherical

Cubic

M. B. Sinclair, MRS Fall Meeting, Boston MA, December 2009. 37
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Importance of the Quadrupole Mode

Silicon nanodisks: highly
directional nanoantennas with
giant front-to-back ratio

Electric quadrupole mode
essential to achieve high
directivity
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I. Staude et al., ACS Nano 7, 7824, 2013.
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E. Rusak et al., submitted (2014).
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Proving Optical Magnetism:
Measure Phase of Reflected Wave

Phase-locked Time Domain Spectroscopy
35 f5, 1350 nm

90 /5, 1550 nm
A2

Appl. Phys. Lett. 103, 181111 (2013)
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€<0, u=>0 >0, u=>0
metals, doped most dielectric
semiconductors materials
-
€<0, p<0 e>0, u<0
no natural some ferrites
materials
n = 8}" H}"
(Causality)

Metamaterials: Exotic optical properties
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Negative index,
Negative
refraction

(Snell’s Law)

e Superlensing, Cloaking, Chirality/Optical activity, Perfect absorption

e Enhanced nonlinear interaction, Optical force manipulation, Light
emission control
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Beam Manipulation With Metasurfaces

] . Phase gradient to achieve anomalous
Phase gradient to achieve anomalous

A reflection
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N\ Lin et al. Science 345, 298 (2014)




