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Sandia’s Z Machine is a unique platform for multi-mission
research on high energy density (HED) environments
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Inertial Confinement Fusion

X-ray power > 250 TW
X-ray energy > 2 MJ




Dynamic compression experiments on Z can probe ) e,
large regions of a material’s equation-of-state surface o
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Isentropic compression and shock wave experiments
map different regions of phase space

Sample
P >4 Mbar

Isentropic Compression Experiments:

gradual pressure rise in sample
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Flyer Plate
v > 40 km/s

Sample
P > 20 Mbar

Shock Hugoniot Experiments:

shock wave in sample on impact




Outline: A variety of Z experiments provide broad coverag
of material phase space

= Hugoniot experiments

=  Examples of Hugoniot experiment results
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= Quasi-Isentropic Compression Experiments (ICE) experiments

= Examples of ICE experiment results

Shock-Ramp experiments

= Example of shock-ramp experiment results

Strength Experiments

= Examples of strength experiment results




It is possible to measure shock velocities in xenon, deuterium, and
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other transparent materials with sub-percent accuracy
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Deuterium equation of state is an active area of research
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M. D. Knudson et al., Phys. Rev. Lett. 87, 225501 (2001)
M. P. Desjarlais, Phys. Rev. B 68, 064204 (2003)

Newer AIMD based EOS, e.g. Holst et al., PRB 2008; Caillabet et al., PRB 2011; Morales et al., HEDP 2012, are in good agreement with Z data
e



We have performed experiments and simulations ) i,
for xenon at high pressures
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Re-shock states in H,0 approximate isentropic compression
and are relevant to planetary interiors
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roor e Re-shock results validate
00l isentropic compression results
obtained from DFT

g 500}
°© e Data along planetary isentropes
2 400 for Neptune and hot exoplanets
& like GJ436b
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Probing the interiors of the ice giants: Shock compression of water to 700 GPa and

3.8 g/cc, Knudson, Desjarlais, Lemke, Mattsson, French, Nettelmann, and Redmer,
Phys. Rev. Lett. 108, 091102 (2012).




Recent work has explored the Hugoniot of CO,

Hugoniot measured to 5.5 Mbar — consistent with DFT results

between the two impedance standards

Experiments show a less compressible Hugoniot after dissociation

Christine Wu (LLNL) utilized the DFT and Z results to build EOS 2274
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Data determined using quartz and sapphire impedance matching — consistent results

LEOS 2272 is too compressible and SESAME 5212 too stiff at intermediate pressures
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We have also obtained data on reshock states of CO, A Natona
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* Reshock state determined from quartz
shock velocity
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Magnetic compression on Z produces smooth ramp@
loading to ultra-high pressures

shorting cap
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* pulse of electric current through
experimental load (shorted at one end)
induces magnetic field

« J“B magnetic force transferred to
electrode material

cathode

anode/sample

stress
wave
front

undisturbed material

plasma — gas — liquid — solid
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Quasi-isentrope of Al6061-T6 was measured to 240 GPa ) e,
with 5% uncertainty
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The Shock-Ramp technique probes between the principal ) i,
Laboratories
Hugoniot and isentrope
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Flight gaps and pulseshape designed to
Ramp compression from a Hugoniot enable impact at nearly constant velocity

state results in intermediate

temperatures at high compression. This velocity plateau also generates a

“hold” in the shock state



Liquid tin equation of state measured with the shock-ramp () fm,
technique
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Strength can be inferred from velocities in ramp-release
experiments on Z using the self-consistent method
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= Pulse shaping used to create

Particle Velocity (u)
A

ramp release loading

= Assumptions

= Simple wave propagation

= Uniaxial strain results in
simplified coupling:
o.(e)=P(e) +§T(8)

%:%pO[Cezxp _sza]
> T, — T _%PO 2[Cexp2 Cé ]%

Lagrangian Wavespeed (c)

Particle Velocity (u)

1 = J2 plasticity (Von-Mises yield)




Z experiments on tantalum at strain rates of e,
10°/s reveal higher than predicted shear stress
near 200 GPa

Cathode

12 - Eu- """
ho)
élO' L]
10 - % 8 Copper VISAR
B Shielding
S
T8 2l
9 =
> 6
S
©) QL e
o ks-wallac€ = | iF windows are used
o .
for both sample and
5 drive measurements
©Z Data - JAP 2014 = |t's important to
# Z Data- Nonlinear LiF Model correctly model its
0 4 . T . . ] mechanical and
0 50 100 150 200 250 optical properties

Pressure (GPa)
18

Brown et al., JAP 115, 043530, 2014



Z experiments on beryllium at strain rates of G e,
10°/s reveal higher than predicted shear stress
near 100 GPa
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Brown et al., JAP 116, 033502, 2014




The Z Fundamental Science Program has created ) s,
strategic partnership with leading institutions
Resources/shots on Z since 2010
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= Science with significant impact
@@ . cuperionic /A0 = Bailey et al, Nature (2015)

S C ° gl = Kraus et al, Nature Geoscience
' (2015)

= 1PRL, 3 PoP,1PRA, 1PRB
= 8 other peer-reviewed publications

Popular outreach

= National Public Radio, “All things
considered”, Joe Palca 3/6/2014

= MIT Technology review, 10/4/2012
= Discover Magazine, 9/16/2012

Students and postdocs
= 4 M.Sc. Exam, 2 Ph.D. exams
= 5 postdocs
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Earth and super earths Jovian Planets
Properties of minerals and metals Water and hydrogen

Stellar physics Photo-ionized plasmas
Fe opacity and H spectra Range of ionization param. { = 7 and Sandia is a part of the
international HED community




Pulse Power enables unique dynamic materia@ s
science investigations
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= Pulsed Power is a very effective driver for HED dynamic
materials experiment

= The Z facility supports tailored delivery of very high currents

= A combination of load designs and pulse shaping enables
experiments which reach many interesting regions of material
phase space

= Precise, high pressure measurements are producing new
insights in how materials behave under extreme conditions




