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We report on a study of electron-beam-driven

ionization and conductivity growth .

~70-kV electron beam injected into dry air at 20 mTorr to 20 Torr, and
current densities from <10 A/cm?2 to >300 A/cm?

Highly-sensitive interferometer measured line-integrated electron density
with sensitivity approaching 10> waves

Global net current measured at the cell edge

This work spans a range of conditions from those where ionization is Furely
due to the primary beam to those where ionization is dominated by plasma
currents

These experiments will resume later in 2015, supported by SNL

This work built on, and is synergistic with, an variety of studies of both
electron- and ion-beam-gas interaction at MV energies supported by SNL,
AWE, and JFFI

— Existing, AWE-funded program includes study ~1-MV electron-beam-gas
interaction



An existing Febetron was retrieved, disassembled,

and reconfigured for <100-kV operation Rl
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A small water-line generator could provide a more-tunable pulse 3



Experimental arrangement
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Electrical waveforms for

medium and high current-density conditions Rl
ﬁ

« Reasonable agreement with LSP impedance prediction
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ITS calculates transmitted energy spectrum

Time-integrated energy spectra
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Image-plate distributions for all conditions
fit by same functional form
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Summary
Distance from foil | Current | radius a | Peakj
1cm 1600 A | 3.1cm 50 A/cm?
6 cm (laser) 1600A |44 25
10 cm (collector) | 1600 A | 4.4 25
1 cm, 0.1 Torr 4300 2.4 230
1 cm, 5 Torr 4300 2.5 200
6 cm, 0.1 Torr 4300 2.1 300
6 cm, 5 Torr 4300 3.1 140 7




Collector currents at medium current density show
several pressure-dependent features NRL

® Virtual cathode at low pressure
® Evidence for inductively-driven reverse current early in pulse
® Inductively-driven forward current at end of pulse
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These features become more pronounced
at high current density
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We were not able to measure the magnetic field inside the beam diameter
Current at the cell wall is NOT the same as current in the plasma



High-sensitivity interferometer provides

resolution approaching 10-> waves Rl
ﬁ

® Standard Mach-Zehnder configuration
® Synchronize experiment with zero-crossing of signal (highest sensitivity)

® Use polarization splitting to provide 2, opposite-polarity outputs and use
differential detection

* Amplify differential output ~100x
® Carefully shield system from EM noise
® Once aligned, quite stable and straightforward to operate
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The electron density falls more quickly at higher pressure
At low pressure, high-j, density rise during inductive tail
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Radial profile flattens with time
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Could we use an aperture to produce a well-defined beam shadow?
Measurements outside beam could diagnose non-local effects
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Line density (cm-2)

Peak densities at mid-cell location for different
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At high-current-density, dramatic increase
in density on axis at low pressure

1E15

1E14|

Line density (cm2)

1E13L

il A R
1E-1 1E0
Pressure (Torr)

14



At high current density and/or low pressure, radial

profile of density is narrower than beam NRL

Forward-Abel-transformed beam profiles from image plates compared with peak densities
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Very high ionization fractions inferred at low pressure
(using rough approximation of 4-cm path length) Bl
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Moving up collector should increase axial electric field
by increasing inductance and decreasing cell length

RL

Distance to collector decreased from 11 to 4 or 5 cm

® Inductive field in beam acts to
reduce current at pulse front
and keep current flowing at tail

® Field is strongest on axis

® Inductive currents can connect
to electrodes or just circulate
in plasma

® External circuit inductance will
tend to drive net current
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Density increase at low pressure observed

when collector moved up NRL

Peak densities at different collector and probe locations, high-j
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Time-integrated photographs at different pressures

At low pressure, variation in late-time behavior is seeBL
ﬁ
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Conclusions NRL

® At low current density, ionization is purely collisional, with no plasma current.

® As the current density increases, the inductive electric field begins to drive a
circulating plasma current, and additional ionization results. The increase in
density is greatest on axis, both because the current density is highest there
the inductive field is highest.

® As the beam current density increases still further, the increase in plasma
density on axis becomes more pronounced, and a bright, narrow, luminous
channel is observed, and the plasma conductivity is high enough that even
the very weak inductive field late in time can drive additional plasma current.
This results in very high peak densities, and close to full ionization. In this
regime, the physics is expected to be very different, as electron-neutral
collisions will no longer dominate.

® These results show that at sufficiently high beam current density and/or
sufficiently low pressure, gas dynamics in the cell becomes a more
complicated, coupled 2-D problem that shows dependence on the cell
geometry and material.

® Future experiments will attempt to decouple some aspects of these
dynamics.



Preliminary study showed feasibility of injecting

200-kV beam into NRL Space Chamber NRL

PMT signals in large
chamber, 465 cm from
injection
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« Good propagation observed over 7 meters

« Ample light for spectroscopic measurements

« Possible future space-physics applications
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