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Liquid hydrogen stations have been found to be
more economically favorable than gaseous stations

As compared to gaseous stations,

liquid storage stations have:

Larger storage capacity

Lower costs for product
Similar positive cash flow year
Higher potential profit

Larger return on investment
(although more investment is
required)

Brown et al., IJHE 2013
160

140}
2 120}
7 100f
80

total H, dispensed
[kg x 10°]

of H, [2011 $/kg]
[aYa i lsT. Yo LNENT. )
olowmowo

average costs
el
=
o

positive cash
flow year

total potential
profit [$ = 10°]

financial support
required [$ x 10°]

0
10 20 30 40 50 60 70 80 90 100
rate of adoption (% of historic HEV sales)




o 8Hydrogen and Fuel Cells Program

Standoff distances in NFPA 2 for liquid hydrogen
stations are often prohibitively large
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A California Road Map: The Commercialization of Hydrogen Fuel Cell Vehicles, CalFCP, July 2014
fouipment Dimensions
15 ft Diameter,
3500 -15000 gallon, LH2 tank

Gasoline Tanks
(Fill and Vent)

Note: Equipment dimension used Is a
vertical tank with a small diameter,
Vertical tanks are not common in US
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Previous modeling of releases from gaseous
hydrogen storage have informed the fire code

v .
=. ' Dispersion Characteristics .
- Laminar Flow
- Turbulent jet
- Volumetric rupture

- Enclosure Accumulation Iqmt.lc.)n Probabll.ltv
T8 1 - Ignition mechanism

: - Mixture ignitability
o . - Ignition delay/locati
- Sustained light-up
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Hazard Characteristics
- Flame radiation

=L I - Overpressure (deflagration/detonation)
f- « - O, dilution/depletion
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Cold hydrogen behavior experiments for model
development/validation

Objective:

e The primary objective of the low-temperature H, delivery
system is to study flow and flame characteristics that result
from cryogenic hydrogen jets.
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« Zone 0: accelerating flow

« Zone 1: underexpanded jet

« Zone 2: initial entrainment and heating
* Zone 3: flow establishment Winters, SAND Report 2009-0035
+ Zone 4: self-similar, established flow Winters & Houf, UHE, 2011

O < Winters, |JHE, 2013
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Model results compare favorably to experiments from
Karlsruhe Institute of Technology

Measured & Calculated H2 Centerline Concentration

Reservoir | Reservoir Leak
pressure |temperature| diameter
Case [MPa] [K] [mm]
1 1.7 298 2 x
2 6.85 298 1 -
3 0.825 80 2
4 3.2 80 1

0 500 1000 1800 2000 2500

+
Xiao et al, JHE, 2011 (s+s,)D,

Houf & Winters, IJHE, 2013

However, no well-controlled validation data is available at lower




Regardless of leak size, heavy jet faIIs towards the ground

» Storage pressure = 180 psi

* Release (saturation)
temperature = 20 K

* Release angle = 0°

* Release height = 25 ft
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Clear need to develop jet-impingement model to account for spread

along the ground
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Multi-phase behavior is important—particlarly for high-
humidity conditions

Liquid and vapor phases have different velocities due to density differences —
slip models have captured these effects in CFD simulations.
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Substantial differences in model results suggest 2-phase
effects cannot be neglected for LH2 releases

Experiments had poor control of release and environmental boundary
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Description of Work

The approach will follow the template used previously to
characterize high--pressure gaseous hydrogen releases. The
concept is to integrate a novel two-stage cooler into the existing
Turbulent Combustion Laboratory infrastructure to reduce the
temperature of gaseous hydrogen to the desired value,
potentially creating mixed--phase flows, with the hydrogen
exiting through a custom nozzle. High-fidelity Rayleigh scatter
imaging and Raman diagnostics will be used to measure relevant
statistics of release phenomena. These data will then be used to
develop reduced-order engineering models that can predict
unintended release characteristics from liquid hydrogen storage
systems due to equipment failures.
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Schedule

e 2015: Construct and test cold hydrogen vapor releases platform;
vertical orientation (target temperature: 30 K)

e 2016:

— Cold plume release data (2 nozzles, 6 pressures, 6 temperatures)

— Develop/validate reduced-order cold-plume model for integration into
QRA framework

e Future Work:

— Test model performance for larger scale releases that are representative
of “real-world” scenarios

— Follow-on large-scale testing of controlled release of cryogenic vapor and
liquid phase hydrogen at an outdoor test facility

— Horizontal plume, impingement studies (plume interaction with surfaces,
such as ground and barrier walls), ignition of cold plumes, bulk storage
behavior in an exposure fire, large-scale validation experiments




Only a single vacuum line W|th 2 smaII quantity of
cryogenic hydrogen penetrates into the lab
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Turbulent Combustion Labory
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TCL: 906/161 Main Work Area
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Backup




Accelerating flow (leak) develops from saturated storage

conditions

- conserved enthalpy from the gas or

liquid space.

Winters, SAND 2001-8422
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Pseudo source models are used to account for choked
behavior in Zone 1

Several source models have been developed to
predict the mass weighted effective diameter,
(i.e., the critical scaling parameter): d* =

(-vessel wall

deff\/peff/pamb

Source Model m

Ruggles & Ekoto, IJHE, 2012

Birch et al. (1984) 0.947
T Ewan & Moodie (1986)  0.993 Neglects Mach Disk
I < A Birch et al. (1987) 0.790 (i-e., fully supersonic)

Region  Mach Disk
M>>1 . Barrel

Harstad & Bellan (2006)

Shock Molkov (2008)

1.440
0.993

Assumes all flow goes through
Mach disk (i.e., fully subsonic)

—
SNL Data (2011)

*All models updated w/ Able-Noble EOS

0.867

Reality is that fluid is split
between the slip and
Mach disk regions

Ongoing work to develop validated two-zone source model that accounts for the
fluid split ratio between the slip region & Mach disk regions
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Plug flow assumption invoked for Zone 2

unknowns
malT
N assumed value
Mass My, — —> | 1z =y, + Mgir

(-vessel wall

ar
0
leak

Momentum my,Vy —> < —> | m3Vz = my,Vy,

Mairh amb

Winters, SAND Report 2009-0035

State modeling by NIST H, EOS: | /3 = f (Vs 3, Pamb. T3)

Species conservation used to s = iy, 23
. 2
close system of equations: Vi3
Turbulent jet entrainment rate w4 . R —
H . = am _ Mair _ Mgy _ H, PH,VH
used to estimate zone length: | Emom = —— ¢~ —— === 53 = —" —, wWhere Emom = o, (—4 z—pambz)




Zone 3 treated as discrete region w/ boundary conditions
specified from self-similar profiles at Zone 4
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Zone 4 modeled with previous SNL 1D integral jet/plume
models that invoke self-similarity - FY08

rvessel wall air S

Entrainment due to buoyancy
& momentum
F;: Jet Froude length

2n
a,: Buoyancy entrainment coefficient Mass — f f pVrdrdg = pampE
. . . aS

a,: Momentum entrainment coefficient

g: Gravity constant

0 27
o x-Mom ﬁf f pV?%cosOrdrdp =0
Epuoy = 5~ (21V, B) sin 6 0 "0

L 1 0 2T o0 2w oo
D2 pV?\2 y-Mom ﬁf f pV?sin@rdrd¢ = f f (Pamp — p)grdrde
Emom = 0y (— > 0 0 0 0
4 P 2w oo
V2 = Species 9 f f pVYrdrdep =0
E = CLPexit as 0
L

9B (pamp — PcL)




Scalar field to be measured via Rayleigh scatter imaging in
established flow zone to validate LH2 release model

P1XIS 400B low noise CCD Camera

« 2 x 2 binning for high signal-to-noise (~400:1)
» Multiple interrogation regions to image full jet
* Multiple images for converged statistics

Air co-flow & barriers to minimize Nd:YAG injection seeded laser
impact of room currents (1 J/pulse @ 532 nm)
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Quantitative measurement w/ good—"= PGSR &
accuracy
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