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Why Exascale Combustion

e Predict behavior of new fuels in different
combustion scenarios at realistic pressure
and turbulence conditions

— Develop new combustor concepts
— Design new fuels
e Co-design center is focusing on high-fidelity
direct numerical simulation methodologies

— Need to perform simulations with sufficient C%_go
chemical fidelity to differentiate effects of ©
fuels where there is strong coupling with
turbulence

Gasoline Engine HCCI Engine
(spark ignited) (Homogeneous Charge
Compression Ignition|

— Need to address uncertainties in thermo-
chemical properties

— Not addressing complexity of geometry in
engineering design codes
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Fundamental Turbulence-Chemistry Interactions
Motivated by Advanced Engines and Gas Turbines
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Higher fuel efficiency and lower emissions
driving combustion towards more dilute,
o . oy T
fuel lean, partially-premixed conditions ¢
9 Conventional
= Combustion \
. . . 2 1.0 LTC Regime
New mixed-mode combustion regimes ] Combustion s
2 ‘_8" Regime
-l
Strong sensitivities to fuel chemistry
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Preferential diffusion effects — synthes
gases enriched with hydrogen for carbon
capture storage in gas turbines for power
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Motivation: Understanding Stabilization of
Lifted Flames in Heated Coflow

What is the role of ignition in lifted flame stabilization?
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Chemiluminescence from diesel lift-off stabilization for #2 diesel,
ambient 21% O,, 850K, 35 bar courtesy of Lyle Pickett, SNL
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DNS of Lifted Ethylene-air Jet Flame in a Heated
Coflow

e 3D slot burner configuration:

L,xL,xL,=30x 40 x 6 mm?3 with

1.28 billion grid points

High fuel jet velocity (204m/s); coflow
velocity (20m/s)

Nozzle size for fuel jet, H = 2.0mm
Re, = 10,000

Cold fuel jet (18% C,H, + 82% N,) at 550K,
N = 0.27

Detailed C,H,/air chemistry, 22 species 18
global reactions, 201 steps

Hot coflow air at 1,550K
Ethylene-air lifted jet flame at Re=10000

EXCT CENTER FOR EXASCALE SIMULATION OF COMBUSTEION IN TURBULENGCE



Dynamics OI |||tea ”ame staslllzatlon - Loglscalar

dissipation) and Temperature
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Why does this need exascale?

e Turbulent combustion consists of phenomena occurring over
a wide range of scales that are closely coupled

— More grid points needed to resolve larger dynamic range
of scales

— More time steps needed for better statistics and less
dependence on initial condition

e Complex fuels require higher number of equations per grid
point

e |n situ uncertainty quantification with adjoint sensitivity —
reverse causality — uncertainties in chemical inputs

e |n situ analytics/visualization

e Coupled execution (hybrid Eulerian-Lagrangian particle solver,
or lockstep DNS/LES)
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Why do we need to do co-design?

—— 0Old Constraints

Peak clock frequency: as primary .
limiter for performance improvement
Cost: FLOPs are biggest cost for
system: optimize for compute
Concurrency: Modest growth of
parallelism by adding nodes

Locality: MPI+X model (uniform costs
within node & between nodes)
Memory Scaling: maintain byte per flop *
capacity and bandwidth

Uniformity: Assume uniform system
performance .

New Constraints

Power: primary design constraint for
future HPC system design

Cost: Data movement dominates:
optimize to minimize data movement
Concurrency: Exponential growth of
parallelism within chips

Locality: must reason about data
locality and possibly topology
Memory Scaling: Compute growing 2x
faster than capacity or bandwidth, no
global hardware cache coherence
Heterogeneity:Architectural and
performance non-uniformity increase

Future algorithms, programming environments, runtimes, hardware need to:

— Express data locality (sometimes at the expense of FLOPS) and independence

— Allow expression of massive parallelism

— Minimize data movement and reduce synchronization

— Detect and address faults
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ExaCT Vision and Goal

Goal of combustion exascale co-design is to consider all aspects of the

combustion simulation process from formulation and basic algorithms

to programming environments to hardware characteristics needed to

enable combustion simulations on exascale architectures

— Interact with vendors to help define hardware requirements, computer

scientists on requirements for programming environment and software
stack, and applied mathematics community locality-aware algorithms for
PDE’s, UQ, and analytics

Combustion is a surrogate for a much broader range of multiphysics
computational science areas
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Petascale codes provide starting point for co-design process

e S3D $3D simulation
— Compressible formulation of HO, ignition
— Eighth-order finite difference discretization mfgzefrlgrr;e
— Fourth-order Runge-Kutta temporal integrator
— Detailed kinetics and transport
— Hybrid parallel model with MPI + OpenMP
— MPI+ OpenACC (directives for GPU’s)

— Legion (deferred execution hides latencies) nl i
e |LMC : '

— Low Mach Number model that exploits separation of
scales between acoustic wave speed and fluid motion j h
— Second-order projection formulation ‘ - |
— Detailed kinetics and transport N7
- Block.-structure adaptlvg mesh refinement Léborafory scale B
— Hybrid parallel model with MPI + OpenMP flames
Expectation is that exascale will require new code | \ic<imulation

base of NOx emissions
from a low swirl
injector
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S3D MPI Parallelism

e 3D domain decomposition.

— Each MPI process is in charge of a piece of the 3D
domain.

e All MPI processes have the same number of grid
points and the same computational load

e Inter-processor communication is only between
nearest neighbors in 3D topology

— Large message sizes. Non-blocking sends and
receives

e All-to-all communications are only required for
monitoring and synchronization ahead of I/O

e Good parallel scaling on Titan




What happens in the main solver?

e Computes rate of change of N conserved quantities at every grid
point
— d/dt (Q,) = (Advection) + (Diffusion) + (Source)

— Sum of all the terms that contribute to the time derivative is called
the RHS

e d/dt (Q)) isintegrated explicitly in time through Runge-Kutta

e RHS contains multiple terms that are functions of Q,, variables
derived from Q,

e Advection and diffusion require finite differencing and MPI
e Source terms are point-wise functions

e Thermodynamic, chemical and molecular transport properties are
point-wise functions of Q,
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Source term is the most compute intensive kernel

Called as ckwyp or getrates

Chemical reaction rate computed using Arrhenius model

A+B & C+D
Forward reaction rate = C*[A]*[B]*T?exp(-Ta/T)
Equilibrium constant gives reverse reaction rates

More terms for third body efficiency, collision efficiency, pressure
corrections ...

The source term for a species is the sum of the rates of all reactions
in which it participates

The kernel uses exp/log heavily
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In Situ Uncertainty Quantification Guided by Analytics

® Uncertainty in reaction rates characterizing ignition/extinction
events that control fuel efficiency and emissions with respect to
uncertainties in input chemical and transport parameters

® Solve adjoint equations backward in time: need the primal state at
all times

® Exploit space-time locality guided by analytics to bound regions of
interest

® Topological Segmentation and Tracking
» Topological segmentation and tracking
» Distance field (level set)

® Statistics
» Filtering and averaging (spatial and temporal)
» Statistical moments (conditional)
» Statistical dimensionality reduction (joint PDFS)
» Spectra (scalar, velocity, coherency)
» Chemical Explosive Mode
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Petascale Workflow Model Won’t Scale

Performing the simulation is not enough — need to analyze results

p

y D
Synchronous 1/0O

O(1-10

EB)/run
O(1B) O(1 PB)/dump every Synchronous
cores 30 min (1 min) /0

e Analysis
I/O bandwidth constraint make it infeasible to save all | * Visualization
raw simulation data to persistent storage

=» Workflow must integrate simulation , UQ and
analysis !!!!
Challenge: co-design a workflow that supports smart
placement of solver + UQ, and analytics, reducing
checkpointing size with in-situ and in-transit analytics
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Programming Environment Critical to Performance

Effective use of exascale hardware will require programming
environment that effectively maps algorithms to hardware

e Driven by programmability of combustion applications and
characterization of algorithms on different designs of
architectures

— Simplify programming to express locality and independence

— Simplify programming of block-structured PDE’s, analytics, UQ
for performance, scalability & portability on heterogeneous
architectures with high variability and still maintain readability
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Legion Approach

e (Capture the structure of program data

* Decouple specification from mapping

e Automate data movement, parallelism discovery, synchronization,
hiding long latency

Goal: A performance-oriented programming model with
a raised abstraction for productivity and portability.

http://legion.stanford.edu

(Bauer, Treichler, Slaughter, Aiken — Structure Slicing: Extending Logical Regions
with Fields, Thursday Nov 20 1:30-2:00, Rm 388-390)
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- Legion Programming Model

* Applicationlogic expressed as hierarchy of tasks

Application data expressed as hierarchy of logical regions
* Subregions are subset of elements and/or subset of fields

Application mapping computed by mapper object(s)
» Selection of processors, memories, instance layouts

* Legion runtime handles:
» Extraction of parallelism (task--- and data---)
* Resource management and movement of data
* Scheduling of execution on heterogenous processors
* Hiding overhead of all this with use of deferred execution

18
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Describing Data

Field Space
1 2

e Logical regions (array of fO f3
objects): p0
— Have no implied layout p1
— Have no implied location p2

S p3

Q P
e Described by: n P4
— Index space (set of keys) E§ p5
— Field space (set of fields) E p6
p/
e Operations include: p8
— Partitioning into subregions P9
— Slicing by fields p10
p11
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Legion Tasks

e Hierarchical Tree of Tasks Task 1
Region R
: e Field A
Legion tasks specify: Read-Write
— Region usage B
— Field usage 0Py
— Access modes Ta§k 2
Region R
Field B
e Legion runtime: Read-Only

— Infers data dependences
— Inserts copies
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Legion Mapping

e Mapping happens at runtime:

— Assign task to processors

— Assign regions to memories

e With mapping API, programmer
selects:

— Where tasks run
— Where data is placed
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Application: S3D

e Current state-of-the-art combustion DNS simulation
— Written in 200K lines of Fortran
— Direct numerical solver using explicit methods

) X 3 OH H02 CH2Q/05/13
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S3D Task Parallelism

* One call to Right-Hand-Side-Function (RHSF) as seen by the Legion
runtime

— Called 6 times per time step by Runge-Kutta solver
— Width == task parallelism

— H2 mechanism (only 9 species)

— Heptane (52 species) is significantly wider

e Manual task scheduling would be difficult!
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S3D Execution Profile

e Two custom mappers
— Schedule tasks onto CPUs and GPUs
— Prioritize tasks on critical path of RHSf
Legion execution of RHSF on one node

Legion
- Dependence analysis tasks
Runtlme HI I- | I [ I | il m R |l -p [l W[ Miew i I-Illllllll¥lll IHIII [ ([ I°N [Ny 1] -|IIIII
Core — | [/ N R AN RN — | —'ITEITI'ITEI'II'HTI'II =
] | R TR AR AR RN [ 1 IIIII_I_IIIJI_]_-_*HEEI'I'ITITHIWITII (]
| I L P I mﬂm—m—mﬂ [ ERREN
CPU | I e e e e | nm_mm =
Cores_‘ | ZI'I'_I_l'I'I'I'I—FI'I'ITI'i'I'ITI'm (B | IIIIIIIII_I_II_'D'I'I'IFITI'II'I'I_h]I'I_I_H'm (IR RN
1 e AR R R RN I'I_I—_'I'I—Iﬂ_llllllll IIIIIIIII'I [ I
[ T [ ITITA N R ) LU v I e e
| | A (B | [INIAIANIES R el N m n nn ] rrrrrrrrr e
I [ [ [ e I e e (I [ ] O —
GPU’sA
. ;- e ] I N e (.
24 11/05/13

CENTER FOR EXASCALE SIMULATION OF COMBUSTEON IN TURBULENGCE



e
Leaf Tasks

e Legion treats tasks as black boxes
— Doesn’t care how tasks are written

CHEMKIN || TRANSPORT || THERMO

e Still need fast leaf tasks for
computationally expensive
chemistry, diffusion, viscosity

— For CPUs & GPUs

— For multiple mechanisms

Singe Compiler

SSE AVX CUDA

e Singe™* is a DSL compiler for
chemistry kernels

*Bauer et al. PPoPP’14
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Combustion Challenges

e GPU programming models emphasize
data parallelism

— Not always the best choice for

performance
Compute
, , Reactlon Rates
e Large working sets (per point)
— nHeptane chemistry needs 566 double
precision reaction rates (per point) [ QSSA ]
— GPU register file only store 128 per
thread
e Multi-phase computations [ Stiffness ]
— Fissioned kernels limited by memory
bandwidth, slow
Accumulate
Outputs

CENTER FOR EXASCALE SIMULATION OF COMBUSTEON IN TURBULENGCE



Warp Specialization

* Leverage knowledge of underlying programp  Input Data

hardware

— GPUs execute warps: streams of
32-wide vector instructions

— All threads in warp execute the
same program (data parallel
unit)

e Each warp can run different
computation

— Generate code that specializes
each warp,(leverage task
parallelism)

— Different warps do different
computations on the same data

— Allows much better use of
memory while keeping
processors busy

— Fit large working sets on chip

v v v v v Vv v Vv W
PIPIP|P|P|P|P|P|P
Warp 0 Warp 1 Warp 2
Partitioned Data para”el
Program

Po
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Py Py
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Warp 0 Warp 1
Warp specialization
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Singe Warp-Specialized Chemistry Kernel
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Performance Results

e Chemistry Kernel
— All Singe kernels significantly faster than current production versions

— Warp specialized SINGE code is up to 3.75 times faster than previously
optimized data-parallel CUDA kernels

e Multi-Node Heterogeneous Testbeds S3D Legion:

— Keeneland: 128 nodes, 16 Sandy Bridge cores, 3 Fermis
— Titan: 18K nodes, 16 Interlagos cores, 1 K20 GPU

29 11/05/13
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S3D Performance Comparison

e Compare against MPI+OpenACC code on Titan
— Tuned by Cray and NVIDIA engineers with ORNL/NREL domain experts

e OpenACC runs 483 and 643 for DME and heptane
— Fixed mapping (most compute on GPU)

e Legion runs 483, 643, and 963 for any mechanism (DME, heptane,
PRF)

— Try both All-GPU and mixed CPU+GPU mappings

e Use re-ranking script for runs >= 1024 nodes
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Legion S3D Performance on Titan (weak scaling)

N-heptane 52 species
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1.71X - 2.33X faster between 1024 and 8192 nodes DME
1.88-2.85X faster between 1024 and 8192 nodes n-heptane (64*3)
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Exascale Use Cases: Science at Relevant Conditions

e Homogeneous Charge Compression Ignition (HCCI
engine combustion) — ‘Chemical’ engine with high diesel-
like efficiency without NOx and soot, tailor the charge
stratification to control ignition and burn rate

e Turbulent Jet Flames (Swirl, transverse, cavity) — low-
swirl Injector gas turbines with staged lean premixed
combustion, flame stabilization, emissions

e Lifted Diesel Jet flames —lifted autoignitive diesel jet
flame stabilization with multi-stage ignition fuels DiesolEngine  GasalneEngne HCCH Engine

(spark ignited) (

e Need to include UQ with respect to chemistry and
transport properties

e Extrapolation of current capability show that these
cases will require exascale-level resources
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Thanks!

e (Questions?

e jhchen@sandia.gov

e www.exactcodesign.org
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