
Legion as a Programming Model for
Combustion Simulation at the Exascale

Jacqueline Chen
Sandia National Laboratories

Livermore, CA
jhchen@sandia.gov

www.exactcodesign.org

Mini-Symposium: Towards Exascale Simulation of
Turbulent Combustion
NC15 April 19-22, 2015

Avignon, France

SAND2015-2855C

mailto:jhchen@sandia.gov
mailto:jhchen@sandia.gov

Why Exascale Combustion

• Predict behavior of new fuels in different
combustion scenarios at realistic pressure
and turbulence conditions

– Develop new combustor concepts

– Design new fuels

• Co-design center is focusing on high-fidelity
direct numerical simulation methodologies

– Need to perform simulations with sufficient
chemical fidelity to differentiate effects of
fuels where there is strong coupling with
turbulence

– Need to address uncertainties in thermo-
chemical properties

– Not addressing complexity of geometry in
engineering design codes

Fundamental Turbulence-Chemistry Interactions
Motivated by Advanced Engines and Gas Turbines

• Higher fuel efficiency and lower emissions
driving combustion towards more dilute,
fuel lean, partially-premixed conditions

• New mixed-mode combustion regimes

• Strong sensitivities to fuel chemistry

• Preferential diffusion effects – synthesis
gases enriched with hydrogen for carbon
capture storage in gas turbines for power

Motivation: Understanding Stabilization of
Lifted Flames in Heated Coflow

Chemiluminescence from diesel lift-off stabilization for #2 diesel,
ambient 21% O2, 850K, 35 bar courtesy of Lyle Pickett, SNL

What is the role of ignition in lifted flame stabilization?

DNS of Lifted Ethylene-air Jet Flame in a Heated
Coflow

• 3D slot burner configuration:

– Lx  Ly  Lz = 30  40  6 mm3 with

– 1.28 billion grid points

– High fuel jet velocity (204m/s); coflow

velocity (20m/s)

– Nozzle size for fuel jet, H = 2.0mm

– Rejet = 10,000

– Cold fuel jet (18% C2H4 + 82% N2) at 550K,

ηst ≈ 0.27

– Detailed C2H4/air chemistry, 22 species 18
global reactions, 201 steps

– Hot coflow air at 1,550K

Ethylene-air lifted jet flame at Re=10000

Dynamics of lifted flame stabilization – Log(scalar
dissipation) and Temperature

Why does this need exascale?

• Turbulent combustion consists of phenomena occurring over
a wide range of scales that are closely coupled

– More grid points needed to resolve larger dynamic range
of scales

– More time steps needed for better statistics and less
dependence on initial condition

• Complex fuels require higher number of equations per grid
point

• In situ uncertainty quantification with adjoint sensitivity –
reverse causality – uncertainties in chemical inputs

• In situ analytics/visualization

• Coupled execution (hybrid Eulerian-Lagrangian particle solver,
or lockstep DNS/LES)

• Future algorithms, programming environments, runtimes, hardware need to:

– Express data locality (sometimes at the expense of FLOPS) and independence

– Allow expression of massive parallelism

– Minimize data movement and reduce synchronization

– Detect and address faults

Why do we need to do co-design?

• Peak clock frequency: as primary
limiter for performance improvement

• Cost: FLOPs are biggest cost for
system: optimize for compute

• Concurrency: Modest growth of
parallelism by adding nodes

• Locality: MPI+X model (uniform costs
within node & between nodes)

• Memory Scaling: maintain byte per flop
capacity and bandwidth

• Uniformity: Assume uniform system
performance

• Power: primary design constraint for
future HPC system design

• Cost: Data movement dominates:
optimize to minimize data movement

• Concurrency: Exponential growth of
parallelism within chips

• Locality: must reason about data
locality and possibly topology

• Memory Scaling: Compute growing 2x
faster than capacity or bandwidth, no
global hardware cache coherence

• Heterogeneity:Architectural and
performance non-uniformity increase

Old Constraints New Constraints

ExaCT Vision and Goal

• Goal of combustion exascale co-design is to consider all aspects of the
combustion simulation process from formulation and basic algorithms
to programming environments to hardware characteristics needed to
enable combustion simulations on exascale architectures

– Interact with vendors to help define hardware requirements, computer
scientists on requirements for programming environment and software
stack, and applied mathematics community locality-aware algorithms for
PDE’s, UQ, and analytics

• Combustion is a surrogate for a much broader range of multiphysics
computational science areas

Petascale codes provide starting point for co-design process

• S3D
– Compressible formulation
– Eighth-order finite difference discretization
– Fourth-order Runge-Kutta temporal integrator
– Detailed kinetics and transport
– Hybrid parallel model with MPI + OpenMP
– MPI+ OpenACC (directives for GPU’s)
– Legion (deferred execution hides latencies)

• LMC
– Low Mach Number model that exploits separation of

scales between acoustic wave speed and fluid motion
– Second-order projection formulation
– Detailed kinetics and transport
– Block-structure adaptive mesh refinement
– Hybrid parallel model with MPI + OpenMP

Expectation is that exascale will require new code
base

LMC simulation
of NOx emissions
from a low swirl
injector

S3D simulation
of HO2 ignition
marker in
lifted flame

Laboratory scale
flames

S3D MPI Parallelism

• 3D domain decomposition.

– Each MPI process is in charge of a piece of the 3D
domain.

• All MPI processes have the same number of grid
points and the same computational load

• Inter-processor communication is only between
nearest neighbors in 3D topology

– Large message sizes. Non-blocking sends and
receives

• All-to-all communications are only required for
monitoring and synchronization ahead of I/O

• Good parallel scaling on Titan

1

N

1
N

What happens in the main solver?

• Computes rate of change of N conserved quantities at every grid
point

– d/dt (Qk) = (Advection) + (Diffusion) + (Source)

– Sum of all the terms that contribute to the time derivative is called
the RHS

• d/dt (Qk) is integrated explicitly in time through Runge-Kutta

• RHS contains multiple terms that are functions of Qk, variables
derived from Qk

• Advection and diffusion require finite differencing and MPI

• Source terms are point-wise functions

• Thermodynamic, chemical and molecular transport properties are
point-wise functions of Qk

Source term is the most compute intensive kernel

• Called as ckwyp or getrates

• Chemical reaction rate computed using Arrhenius model

– A + B  C + D

– Forward reaction rate = C*[A]*[B]*Taexp(-Ta/T)

– Equilibrium constant gives reverse reaction rates

– More terms for third body efficiency, collision efficiency, pressure
corrections …

• The source term for a species is the sum of the rates of all reactions
in which it participates

• The kernel uses exp/log heavily

In Situ Uncertainty Quantification Guided by Analytics

• Topological Segmentation and Tracking

 Topological segmentation and tracking

 Distance field (level set)

• Statistics

 Filtering and averaging (spatial and temporal)

 Statistical moments (conditional)

 Statistical dimensionality reduction (joint PDFS)

 Spectra (scalar, velocity, coherency)

 Chemical Explosive Mode

• Uncertainty in reaction rates characterizing ignition/extinction
events that control fuel efficiency and emissions with respect to
uncertainties in input chemical and transport parameters

• Solve adjoint equations backward in time: need the primal state at
all times

• Exploit space-time locality guided by analytics to bound regions of
interest

• I/O bandwidth constraint make it infeasible to save all
raw simulation data to persistent storage
Workflow must integrate simulation , UQ and
analysis !!!!

• Challenge: co-design a workflow that supports smart
placement of solver + UQ, and analytics, reducing
checkpointing size with in-situ and in-transit analytics

Petascale Workflow Model Won’t Scale

O(1B)
cores

O(1 PB)/dump every
30 min (1 min)

O(1-10
EB)/run

Synchronous
I/O

Synchronous I/O combustion
simulation

• Analysis
• Visualization

Performing the simulation is not enough – need to analyze results

Programming Environment Critical to Performance

Effective use of exascale hardware will require programming
environment that effectively maps algorithms to hardware

• Driven by programmability of combustion applications and
characterization of algorithms on different designs of
architectures

– Simplify programming to express locality and independence

– Simplify programming of block-structured PDE’s, analytics, UQ
for performance, scalability & portability on heterogeneous
architectures with high variability and still maintain readability

Legion Approach

• Capture the structure of program data

• Decouple specification from mapping

• Automate data movement, parallelism discovery, synchronization,
hiding long latency

Goal: A performance-oriented programming model with
a raised abstraction for productivity and portability.

(Bauer, Treichler, Slaughter, Aiken – Structure Slicing: Extending Logical Regions
with Fields, Thursday Nov 20 1:30-2:00, Rm 388-390)

http://legion.stanford.edu

What is Legion?

• A programming model for

• Expressing both task and data parallelism

• For hierarchical, heterogeneous machines

• In a portable way

18

f0 f1
p0
p1
p2
p3
p4
p5

Describing Data

• Logical regions (array of
objects):

– Have no implied layout

– Have no implied location

• Described by:

– Index space (set of keys)

– Field space (set of fields)

• Operations include:

– Partitioning into subregions

– Slicing by fields

19

Field Space

In
d

e
x

S
p

a
ce

p6
p7
p8
p9

p10
p11

f2 f3

B

Legion Tasks

• Hierarchical Tree of Tasks

• Legion tasks specify:

– Region usage

– Field usage

– Access modes

• Legion runtime:

– Infers data dependences

– Inserts copies

20

Task 1
Region R
Field A

Read-Write

Task 2
Region R
Field B

Read-Only

Node 0 Node 1

Copy

Legion Mapping

• Mapping happens at runtime:

– Assign task to processors

– Assign regions to memories

• With mapping API, programmer
selects:

– Where tasks run

– Where data is placed

21

t1

t2

t3

t4
t5

rc

rw

rw1 rw2

rn

rn1 rn2

$

$

$

$

N
U
M
A

N
U
M
A

FB

D
R
A
M

x86

CUDA

x86

x86

x86

Application: S3D

• Current state-of-the-art combustion DNS simulation

– Written in 200K lines of Fortran

– Direct numerical solver using explicit methods

– Many phases, lots of parallelism

11/05/1322  ξ OH HO2
CH2O

S3D Task Parallelism

• One call to Right-Hand-Side-Function (RHSF) as seen by the Legion
runtime

– Called 6 times per time step by Runge-Kutta solver

– Width == task parallelism

– H2 mechanism (only 9 species)

– Heptane (52 species) is significantly wider

• Manual task scheduling would be difficult!

S3D Execution Profile

• Two custom mappers

– Schedule tasks onto CPUs and GPUs

– Prioritize tasks on critical path of RHSf

Legion execution of RHSF on one node

11/05/1324

GPU’s

CPU
cores

Legion
Runtime
core

Dependence analysis tasks

Leaf Tasks

• Legion treats tasks as black boxes

– Doesn’t care how tasks are written

• Still need fast leaf tasks for
computationally expensive
chemistry, diffusion, viscosity

– For CPUs & GPUs

– For multiple mechanisms

• Singe* is a DSL compiler for
chemistry kernels

Singe Compiler

CHEMKIN TRANSPORT THERMO

SSE AVX CUDA

*Bauer et al. PPoPP’14

Combustion Challenges

• GPU programming models emphasize
data parallelism

– Not always the best choice for
performance

• Large working sets (per point)

– nHeptane chemistry needs 566 double
precision reaction rates (per point)

– GPU register file only store 128 per
thread

• Multi-phase computations

– Fissioned kernels limited by memory
bandwidth, slow

Compute
Reaction Rates

QSSA

Stiffness

Accumulate
Outputs

Warp Specialization

• Leverage knowledge of underlying
hardware

– GPUs execute warps: streams of
32-wide vector instructions

– All threads in warp execute the
same program (data parallel
unit)

• Each warp can run different
computation

– Generate code that specializes
each warp,(leverage task
parallelism)

– Different warps do different
computations on the same data

– Allows much better use of
memory while keeping
processors busy

– Fit large working sets on chip

Program P Input Data

P P P P P P P P P

Warp 0 Warp 1 Warp 2

Partitioned
Program

P0 P1 P2

Input Data

P0 P0 P0 P1 P1 P1 P2 P2 P2

Warp 0 Warp 1 Warp 2

Data parallel

Warp specialization

Singe Warp-Specialized Chemistry Kernel

Chem
Reacs

1

Chem
Reacs

2

Chem
Reacs

3

Chem
Reacs

4

Chem
Reacs

5

Chem
Reacs

6
QSSA QSSA

Stiff Stiff Stiff Stiff

Output
Math

Output
Math

Output
Math

Output
Math

Reaction Rate Exchange through Shared Mem

Reaction Rate Exchange through Shared Mem

Warp 0 Warp 1 Warp 2 Warp 3

QSS
5

QSS
1

QSS
11

QSS
10

QSS
9

QSS
6

QSS
3

QSS
7

QSS
15

QSS
14

QSS
2

Performance Results

• Chemistry Kernel

– All Singe kernels significantly faster than current production versions

– Warp specialized SINGE code is up to 3.75 times faster than previously
optimized data-parallel CUDA kernels

• Multi-Node Heterogeneous Testbeds S3D Legion:

– Keeneland: 128 nodes, 16 Sandy Bridge cores, 3 Fermis

– Titan: 18K nodes, 16 Interlagos cores, 1 K20 GPU

11/05/1329

S3D Performance Comparison

• Compare against MPI+OpenACC code on Titan

– Tuned by Cray and NVIDIA engineers with ORNL/NREL domain experts

• OpenACC runs 483 and 643 for DME and heptane

– Fixed mapping (most compute on GPU)

• Legion runs 483, 643, and 963 for any mechanism (DME, heptane,
PRF)

– Try both All-GPU and mixed CPU+GPU mappings

• Use re-ranking script for runs >= 1024 nodes

Legion S3D Performance on Titan (weak scaling)

N-heptane 52 species

1.71X - 2.33X faster between 1024 and 8192 nodes DME
1.88-2.85X faster between 1024 and 8192 nodes n-heptane (64*3)

Exascale Use Cases: Science at Relevant Conditions

• Homogeneous Charge Compression Ignition (HCCI
engine combustion) – ‘Chemical’ engine with high diesel-
like efficiency without NOx and soot, tailor the charge
stratification to control ignition and burn rate

• Turbulent Jet Flames (Swirl, transverse, cavity) – low-
swirl Injector gas turbines with staged lean premixed
combustion, flame stabilization, emissions

• Lifted Diesel Jet flames –lifted autoignitive diesel jet
flame stabilization with multi-stage ignition fuels

• Need to include UQ with respect to chemistry and
transport properties

• Extrapolation of current capability show that these
cases will require exascale-level resources

mailto:jhchen@sandia.gov

Thanks!

• Questions?

• jhchen@sandia.gov

• www.exactcodesign.org

