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Outline

• Efficiency comparison and projections for 
blue LEDs and laser diodes (LDs).

• White light from LDs.

• LD system benefits.
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Efficiency comparison and projections 
of LEDs and LDs
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LED efficiency and cost over time
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Ultra-
efficient 
SSL ???



Early work on lasers and white light
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S. Saito, et al., “High Efficiency GaN 
Laser Diodes for Solid-State Lighting”, 
IEEE Inter. Semi. Laser Conf. (2008).

Y. Narukawa, et al., “Development of high-
Iuminance white light source using GaN-based 
light emitting devices”, Oyo Butsuri, 74 (2005).

Is there a good reason to use LDs for SSL?

BMW headlight, i8, (2012).



III-nitride blue LEDs vs. LDs

MQWs
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• After threshold LDs are not affected by 
efficiency droop.

• LDs are more efficient at higher input 
power densities. 

J. J. Wierer, Jr., D. S. Sizov, and J. Y. Tsao, “Comparison 
between Blue Laser and Light-Emitting Diodes for Future 
Solid-State Lighting”, Laser and Photonics Review (2013).
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Stimulated vs spontaneous emission

• Recombination processes determine 
efficiency.

• Rtotal= RSHR+RSp+RAuger+Rstim

• LED:

• ηrad=Rsp/(RSRH+Rsp+RAu�er)

• Rstim=0

• LD:

• RSHR+RSp+Rauger are fixed, and Rstim

grows after threshold.

• Method to circumvent efficiency 
droop, and achieve ultra-high 
efficiency!
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LED Efficiencies
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Power conversion efficiency = J inj rad ext

• Power conversion efficiency can be separated into four different efficiencies:
1) Joule efficiency: j

2) Injection efficiency: inj

3) Radiative efficiency: rad

4) Extraction efficiency: ext

• Joule Efficiency, J:
• Fraction of photon energy (h) to 

input energy (VI).
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• Radiative Efficiency, rad:
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• Extraction Efficiency, ext:
• Fraction of produced light that exits 

the semiconductor



State-of-the-art blue LED
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• Injection efficiency: inj

• Function of the 
bandstruture, carrier 
lifetimes, and internal 
and external fields.



Projection of LED improvements
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Increased active layer thickness:

MQWs MQWs
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Reduced series resistance:
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Increased extraction efficiency:

Change crystal orientations:

c-plane



Crystal orientation
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c-plane

W. G. Scheibenzuber et al. PRB, 90, 115320 (2009).
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• We made similar arguments for A and C.



Crystal orientation
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• Efficiency curve is “wider”.

• The increase in A and C limit the peak efficiency improvement.

• Efficiency droop is not fixed but improved.

• At 1kW/cm2: PCE ~ 38% c-plane

PCE ~ 48% for m-plane



LD efficiencies
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Power conversion efficiency = Jinjstimext

• Power conversion efficiency can be separated into four different efficiencies:
1) Joule efficiency: j

2) Injection efficiency: inj

3) Stimulated efficiency: stim

4) Extraction efficiency: ext

• Power conversion efficiency can be separated into four different efficiencies:
1) Joule efficiency: j

2) Injection efficiency: inj

3) Stimulated efficiency: stim

4) Extraction efficiency: ext

• Joule Efficiency, J:
• Fraction of photon energy (h) to 

input energy (VI).
V

I

+ -

h
Rs RD

• Injection Efficiency, inj:
• Fraction of electrons and holes that 

arrive at the QWs.

+ VD

-

e-

h+ p

n

QWs

• Stimulated Efficiency, stim:
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• Power conversion efficiency can be separated into four different efficiencies:
1) Joule efficiency: j

2) Injection efficiency: inj

3) Stimulated efficiency: stim

4) Extraction efficiency: ext



State-of-the-art blue LD
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• Injection efficiency: inj

• Function of the 
bandstruture, carrier 
lifetimes, and internal 
and external fields.



Projection of LD improvements
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Decreasing optical loss:
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Projection of efficiency improvements

16

101 102 103100

Input Power Density (kW/cm2)

10-3 10-2 10-110-4

P
o

w
e

r 
C

o
n

v
e

rs
io

n
 E

ff
ic

ie
n

c
y
 

1.00

0.75

0.50

0.25

0
10-5 101 102 103100

Input Power Density (kW/cm2)

10-3 10-2 10-110-4

P
o

w
e

r 
C

o
n

v
e

rs
io

n
 E

ff
ic

ie
n

c
y
 

1.00

0.75

0.50

0.25

0
10-5

Now Future

# MQWs 3 20

Rs 0.25 0.025

next 83% 96%

orientation c-plane m-plane

LED

Now Future

Rs 1ohm 0.1ohm

Internal loss 6/cm 1.5/cm

modal gain 23.5 94

broadening 30meV 20meV

orientation c-plane m-plane

LD

• Blue LD has the potential to have similar peak efficiencies as LEDs, 
but at much higher output powers.

• We are investigating other methods to improve LD efficiency. 



Ultra-efficient SSL:
two approaches

2 Chip areal cost 
necessary for
CoLcap< CoLope/6

1 Efficiency, and its valley 
of death

3 Heat-sink-
limited chip 
area

4  Heat-sink-
limited white 
light flux  
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J. J. Wierer, Jr., D. S. Sizov, and J. Y. Tsao, “Comparison between Blue Laser and Light-
Emitting Diodes for Future Solid-State Lighting”, Laser and Photonics Review (2013).



White light from LDs
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White options in LED-based SSL

• UV LED + RGB phosphors

• White determined by phosphors

• Excellent color rendering

• Stokes-shift  UV  visible colors

• Blue LED + yellow phosphor

• Simple

• Decent color rendering (Ra ~ 75)

• Stokes-shift loss - blue  yellow

• Direct – RGB LEDs

• Potentially highest efficacy 

• Very large color range

• Most efficient – tunable white



Phosphor converted LD (PC-LD) white

• Commercial blue LD + ceramic phosphor.

• Color temperature and rendering are 
comparable to PC-LED.

• Blue LDs can be used to produce white 
light.

20



High Luminous efficacies of radiation

 Spiky sources give highest luminous efficacies of radiation (lm/W)

 Red/yellow power varied to give CCT=3800, Ra=85

21

FWHM=100nmFWHM=50nmFWHM=10nmFWHM=2nm



Direct emitters to produce white
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Krames, et al., IEEE J. Display Tech., June 2007
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• Both LEDs and LDs suffer from the “green gap” problem.

• This limits the progress in white sources produced from direct 
emitters. 

J. Wierer & J. Tsao., PSSA, 2015.



Laser white color rendering
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A. Neumann, J. J. Wierer, Jr., W. Davis, Y. Ohno, S. R. J. Brueck, and J.Y. Tsao, Optics 
Express, 19, A982, 2011. 

• Only slight preferences when comparing LD and 
traditional sources.

• LD white is a good color rendering source. Why?
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A. Neumann, J. J. Wierer, Jr., W. Davis, Y. Ohno, S. R. J. Brueck, and J.Y. 
Tsao, Optics Express, 19, A982, 2011. 

Laser white color rendering



Color rendering over large data sets

• Color rendering maps for five 
sources and three large data sets.

• Data sets:

• r: real world

• SVD: synthetic/expanded

• MC: Monte Carlo randomly 
generated.

• In general, spectra without gaps 
have good color rendering over a 
wider gamut.

• So does this exclude lasers from 
solid-state lighting?

25
A. David, “Color fidelity of light sources evaluated over large 
sets of reflectance samples”, LEUKOS, 10, 59, 2014.



Violet pumped PC-LD

• Simulation of 415nm LD pumping 3 phosphors
• 450 nm, 518 nm, and 637 nm

• Just like violet PC-LED solution, the violet PC-LD could also 
produce high color rending white light.

• Phosphor converted solutions cannot chromaticity tune.
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LD system benefits
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LD has superior directionality

LED

Source 
area


Useful

flux

Wasted
flux

laser diode 
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flux

No wasted
flux!
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Radiance of blue LEDs and LDs
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LED LD
Blue LED Blue LD

Power (W) 1.3 2

Emitting area (cm2) 1.00E-02 1.50E-07

Emitting half angle (°) 45 15

Radiant intensity, Ie, (W/sr) 0.71 9.34

Irradiance, Ee, (W/cm2) 130 1.33E+07

Radiance, Le, (W/sr/cm2) 71 6.23E+07

• LD benefits:
• Irradiance (power density) is much higher in LDs.
• Emission is directional
• Emission is from a small aperture.
• Superior for ètendue limited optical systems (i.e. projectors).

• These LD benefits produce a higher radiance source and advantages when 
creating a white source. 

Ee

Ie



Luminance of PC-LEDs and PC-LDs
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PC-LED PC-LD

Power (lm) 325 500

Phosphor emitting area (cm2) 0.09 0.01

Emitting half angle (°) 45 45

Luminous intensity, Iv,  (lm/sr) 180 270

Illuminance, Ev,  (lm/cm2) 3600 50000

Luminance, Lv (lm/sr/cm2) 1900 27000

• PC-LD benefits:
• Beam can be focused and a much 

smaller phosphor volume can be 
used.

• Smaller phosphor leads to higher 
luminance.

• Smaller luminaires.

PC-LED

Blue LED

Reflector 
cup

Phosphor

PC-LD

Blue 
LD

lens

Phosphor
aperture

PC-LD

PC-LED



Comparison of LED and LD luminaires

• What are the sizes of luminaires for PC-LD and PC-LED?

• Need to avoid total internal reflection from lens (Weierstrass condition):

• R>rn, where n is index of the lens.

• For the PC-LD

• Lens is 9 times smaller: microluminaire!

• Lumens are 1.5 times larger

31

PC-LED PC-LD

Power (lm) 325 500

Phosphor emitting area (cm2) 0.09 0.01

Radius of lens (cm) 0.225 0.075

Area of the lens (cm2) 0.16 0.018



Market waves of solid-state lighting
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Conclusion

33

Work was supported by Sandia’s Solid-State-
Lighting Science Energy Frontier Research 
Center, funded by the U.S. Department of 
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Thanks to D. Sizov at Corning Inc. for his 
contribution on LD efficiency modeling.

• LDs are not affected by efficiency droop after threshold.

• LDs have higher efficiencies at higher input powers.

• Modeling suggests LD peak efficiency could match LEDs.

• PC-LDs produce white light with color rendering and temperature 
similar to LEDs.

• LDs white sources have higher illuminance.


