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e Efficiency comparison and projections for
blue LEDs and laser diodes (LDs).

* White light from LDs.
e LD system benefits.
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Efficiency comparison and projections
of LEDs and LDs
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LED efficiency and cost over time @
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Early work on lasers and white light @
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Y. Narukawa, et al., “Development of high- S. Saito, et al., “High Efficiency GaN BMW headlight, i8, (2012).
luminance white light source using GaN-based | Laser Diodes for Solid-State Lighting”,
light emitting devices”, Oyo Butsuri, 74 (2005). | |EEE Inter. Semi. Laser Conf. (2008).
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llI-nitride blue LEDs vs. LDs
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J. J. Wierer, Jr., D. S. Sizov, and J. Y. Tsao, “Comparison
between Blue Laser and Light-Emitting Diodes for Future
Solid-State Lighting”, Laser and Photonics Review (2013).

e After threshold LDs are not affected by
efficiency droop.
LDs are more efficient at higher input

power densities.
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Stimulated vs spontaneous emission 0.
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LED Efficiencies

Power conversion efficency =, i g en
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- Paveeredtfiersimy efficiency can be separated into fofftsdiffeent gfficiencies:
- Pratide effftietsyenergy (hv) to 4’\/\/\—»,7)
inplyeskegyeflicjency: n;, N ]

3) Radiative efficiency: n,,, V
4) Extraction efficiency: n,; +V,
* Injection Efficiency, n;,: h P
 Fraction of electrons and holes that *
arrive at the QWs. e o .
.
- Radiative Efficiency, n,,4: e
» Fraction of electrons and holes that e
participate in light emission
h+
E,— -
f %_ n,~1.5

 Extraction Efficiency, 1,
» Fraction of produced light that exits

the semiconductor
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State-of-the-art blue LED

* Joule Efficiency: 1y

* my=hv/qV
- V=V, +IR,.
— o KT, (L
« Vp=mn p In (Io)
0.26 (ohms)
9x1026 (A)
1.62

* Injection efficiency: n,

* Function of the
bandstruture, carrier
lifetimes, and internal
and external fields.

Tinj 0.97

* Radiative efficiency: 1,

« p—__Bn®
Mr = An+Bn2+Cn3
n
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Y- n+ Bn? + Cn3
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3.15x1031 (cm6b/s)
2.2x10"° (1/cm3)
3x2.5nm
b'% SSLS
| [SERS

Extraction efficiency: 1,,¢
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Projection of LED improvements (@i
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Crystal orlentatlon )
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Crystal orientation ) .
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Efficiency curve is “wider”.

The increase in A and C limit the peak efficiency improvement.

Efficiency droop is not fixed but improved.
At 1kW/cm?: PCE ~ 38% c-plane

“ﬁ gﬁ%—g PCE ~ 48% for m-plane 12




LD efficiencies )
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State-of-the-art blue LD

* Joule Efficiency: 7,

© my=hv/qV
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PrOJectlon of LD improvements 1) .
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Projection of efficiency improvement® .
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* Blue LD has the potential to have similar peak efficiencies as LEDs,
but at much higher output powers.

* We are investigating other methods to improve LD efficiency.
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Ultra-efficient SSL:
two approaches
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J. J. Wierer, Jr., D. S. Sizov, and J. Y. Tsao, “Comparison between Blue Laser and Light-
Emitting Diodes for Future Solid-State Lighting”, Laser and Photonics Review (2013).



White light from LDs
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White options in LED-based SSL ) ..

Blue LEDs + yellow phosphor D
* Blue LED + yellow phosphor Combined

Spectrum 4
Spectrum

\

* Simple

* Decent color rendering (R, ~ 75)
ot S

470 525 590 630 (nm)

e Stokes-shift loss - blue — yellow

UV LED + RGB phosphors

UVLED
Spectrum

e UV LED + RGB phosphors
* White determined by phosphors

Combmed
Spectrum

Phosphor
Emission

* Excellent color rendering
e Stokes-shift UV — visible colors

= z
710 = 0 mm)

* Direct — RGB LEDs
e Potentially highest efficacy
* Very large color range

; e Most efficient — tunable white

¥ ===

Blue Peak Red Peak

470 525 590 630 (nm)
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Phosphor converted LD (PC-LD) whit@J.

40.45
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Blue LD + phosphor plate e ] O c
CCT = 4600 K Bl =
|
0.04 | CRIRa =70 v
— - :
3 003 1
£ - current topics in solid state physics
8
- 0.02 |
g
= The potential of lli-nitride laser diodes for solld-state lighting
Jonathan J. Wierer, Jr., Jeffrey Y. Tsao, and Dmitry S. Sizov
0.01
0 1 1 1
400 450 500 550 600 650

Wavelength (nm)

 Commercial blue LD + ceramic phosphor.

* Color temperature and rendering are
comparable to PC-LED.

* Blue LDs can be used to produce white
light.
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High Luminous efficacies of radiation @
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=  Spiky sources give highest luminous efficacies of radiation (Im/W)
= Red/yellow power varied to give CCT=3800, Ra=85




Direct emitters to produce white = @&

LEDs LDs

High-power (= 1 Watt input) visible-spectrum LEDs
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S so%] & ‘@ w30 1
g o S
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= i [=
S 20% : S
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T,=25°C g 25°C 2 \
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Krames, et al., IEEE J. Display Tech., June 2007 J. Wierer & J. Tsao., PSSA, 2015.

 Both LEDs and LDs suffer from the “green gap” problem.

* This limits the progress in white sources produced from direct
emitters.

22
-



Laser white color rendering ) .

Incandescent : Incand vs P13

4-Color Laser Illuminant

Reference illuminant

= ;\° 20
£ i i
5 0% &
= 40% £
2 a
= 20% @
2 (3
2 ok~
§ 40% %
o 20% c©
)}
3 0% o
o [
o 40% O
o
o 20%
1
() ] i - 0%
400 500 600 700 o g
Wavelength (nm) P =
A. Neumann, J. J. Wierer, Jr., W. Davis, Y. Ohno, S. R. J. Brueck, and J.Y. Tsao, Optics 3 °
Express, 19, A982, 2011. . S =
aser
. . Ref
- Only slight preferences when comparing LD and oplief | TOSTRICE HA
traditional sources.
i LD white is a good color rendering source. Why? ’3
f SSLS
> | [SERS



Laser white color rendering )i

white light object reflectedlight humaneye colorrecognition
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A. Neumann, J. J. Wierer, Jr., W. Davis, Y. Ohno, S. R. J. Brueck, and J.Y.
Tsao, Optics Express, 19, A982, 2011.




Color rendering over large data sets @
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Ra~95 \

\
ra
\

4

lr.\//f \ * Color rendering maps for five
sources and three large data sets.

* Data sets:
* r:real world
e SVD: synthetic/expanded

e MC: Monte Carlo randomly
generated.

* In general, spectra without gaps
have good color rendering over a
wider gamut.

e So does this exclude lasers from
solid-state lighting?

100

T
A. David, “Color fidelity of light sources evaluated over large
sets of reflectance samples”, LEUKQOS, 10, 59, 2014. 25




Violet pumped PC-LD ) .

6.0 -7/ —— Violet LD
lens 3 color - Blue phosphor (F\EC'[ ;72850K )
violet LD phosphors . Red Phosphor a=
R9=90 .-
4.0 ||~ Green Phosphor
— \Nhite
3.0 e Reference
20 +
1.0
0.0 =

380 480 580 680 780
Wavelength (nm)

e Simulation of 415nm LD pumping 3 phosphors
e 450 nm, 518 nm, and 637 nm

e Just like violet PC-LED solution, the violet PC-LD could also
produce high color rending white light.

* Phosphor converted solutions cannot chromaticity tune.

.
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LD system benefits
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LD has superior directionality ).

LED

Source



Radiance of blue LEDs and LDs
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LED
- |e Blue LED Blue LD
Power (W) 1.3 2
Emitting area (cm?) 1.00E-02 1.50E-07
Emitting half angle (°) 45 15
Radiant intensity, |, (W/sr) 0.71 9.34
Irradiance, E_, (W/cm?) 130 1.33E+07
Ee Radiance, L, (W/sr/cm?) 71 6.23E+07

* LD benefits:
 lIrradiance (power density) is much higher in LDs.
* Emission is directional
» Emission is from a small aperture.
« Superior for étendue limited optical systems (i.e. projectors).

» These LD benefits produce a higher radiance source and advantages when

creating a white source.

.
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Luminance of PC-LEDs and PC-LDs (M.

PC-LED PC-LD PC-LED PC-LD
Power (Im) 325 500
Phospho Phosphor emitting area (cm?) 0.09 0.01
PhosphoL apertur
I I 'ens—i Emitting half angle (°) 45 45
fj;'eM Blue Luminous intensity, I, (Im/sr) 180 270
Blue LE LD llluminance, E,, (Im/cm?2) 3600 50000
Luminance, L, (Im/sr/cm?) 1900 27000
0.040 .
s | e PC-LD benefits:
¥ 0030 | SC.LED * Beam can be focused and a much
90025 ¢ smaller phosphor volume can be
° 0.020 |
E 0015 L ——Area LED (cm2) used'
g 010 | —AreatDlem) PC-LD * Smaller phosphor leads to higher
< o
0.005 | / luminance.
0.000 ' | ' * Smaller luminaires.
0 0.05 0.1 0.15 0.2
Area of the phosphor (em2)
~s,
SSLS
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° ° ° ﬁgtqdial
Comparison of LED and LD luminaire§&:.
; Index-matched PC-LED PC-LD

§ hemisphere Power (Im) 325 500
Phosphor emitting area (cm?) 0.09 0.01

Radius of lens (cm) 0.225 0.075

0.16 0.018

Area of the lens (cm?)

% \B
%’) a R Circular
e phosphor plate

r

What are the sizes of luminaires for PC-LD and PC-LED?
Need to avoid total internal reflection from lens (Weierstrass condition):

R>rn, where n is index of the lens.

For the PC-LD
Lens is 9 times smaller: microluminaire!

[ ]
31

 Lumens are 1.5 times larger
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Market waves of solid-state lighting @&

LED Market Share

2000 2010 2020 2030

1995 2005 2015

Time
* Inspired from a slide by Brian Chemel, CTO, Digital Lumens 32
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* LDs are not affected by efficiency droop after threshold.

* LDs have higher efficiencies at higher input powers.
* Modeling suggests LD peak efficiency could match LEDs.

* PC-LDs produce white light with color rendering and temperature
similar to LEDs.

e LDs white sources have higher illuminance.

Work was supported by Sandia’s Solid-State-
Lighting Science Energy Frontier Research
Center, funded by the U.S. Department of
Energy, Office of Basic Energy Sciences.

Thanks to D. Sizov at Corning Inc. for his
contribution on LD efficiency modeling.
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