

Raman Thermal Conductivity Measurements

Assessing Error & Uncertainty

Purpose:

Raman thermometry increasingly utilized to measure thermal conductivity (κ).

Investigate sources of error & uncertainty within these measurements.

Problem:

Sources of error and uncertainty are convoluted in actual experiments.

It is difficult to systematically assess their presence and significance.

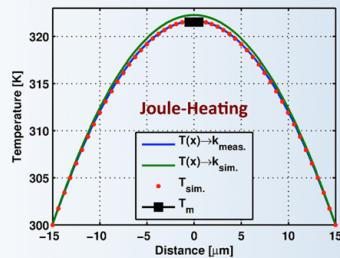
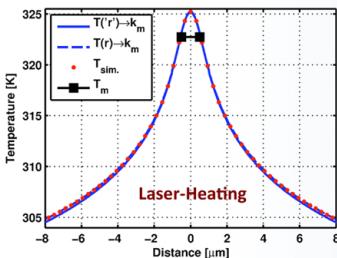
Premise:

Perform a virtual experiment via numerical simulation.

Directly insert sources of error & uncertainty into simulation.

Assess induced alterations in "measured" thermal conductivity.

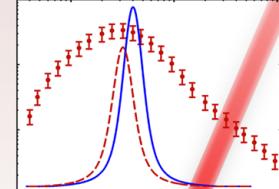
Advantages of Raman

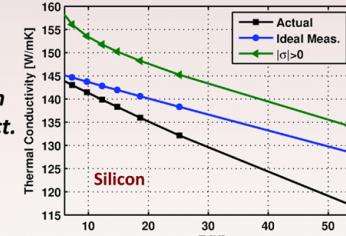


Obtained Information	Material specific	In-plane conductivity	Sensitivity to 2D-materials
Experimental Set-up	Non-contact	<1μm spatial resolution	Minimal sample preparation

Virtual Raman Experiment

Step 1: Simulate Raman thermal conductivity measurement.

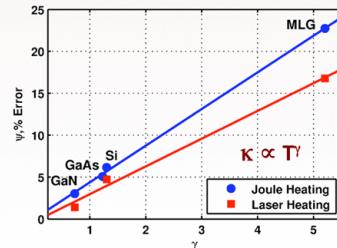
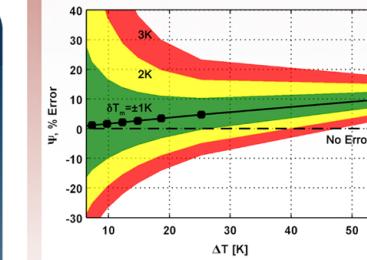
Two experiments:
(left) Laser-heating used to measure 2D-materials.
(right) Joule-heating used to measure nanowires.


Step 2: Fit thermal conductivity within analytical model to match temperature measured using Raman.


Step 3: Compare "measured" thermal conductivity to value used in simulation. Differences between values occur because of error and uncertainty.

Quantifying Error & Uncertainty

Translator: Thermal conductivity is not measured directly. Temperature is translated to κ using thermal model. Model is not perfect → Error

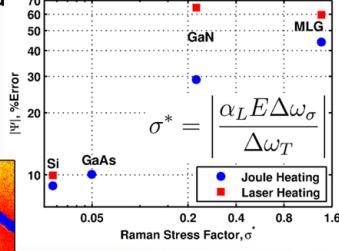
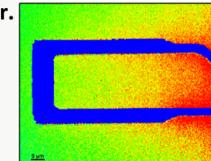
Ideal is not enough:
Error exists even when thermometer is perfect.

Thermal models imperfectly describe experiment.
>10% error from: Interfaces, κ independent of T , Irregular geometries

Goal: Probe error & uncertainty in Raman thermal conductivity measurements.

Uncertainty: κ deduced from measurements of temperature & heat flux having uncertainty → ± κ
Uncertainty comparable to other techniques if $\Delta T > 20K$

Takeaway: Errors of 10% coupled with uncertainties of ±10% achievable in typical experiments. But...technique ineffective for certain materials and ΔT .



Error from Thermomechanical Stress

Problem: Evolution of stress causes error in Raman based temperature measurements → Error in κ

Implication: Error from stress can be >50%. Raman not effective if significant stress develops with heating.

Dependence: Error scales with dimensionless parameter, σ^* , termed the Raman stress factor.

σ^* also provides sensitivity stress based errors for standard Raman thermometry measurements (right).

