
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin 
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

State of Health Monitoring using Chirped 
Fiber-Optic Bragg Grating Sensing Technology

Garth Rohr, Roger Rasberry, Allen Roach

SAND2015-2803C



Detection of Weak Bonds

Yang, S.; Gu, L.; Gibson, R. F. Compos. Struct. 2001, 51, 63.
Nagy, P. B. Journal of Nondestructive Evaluation 1992, 11, 127.
Kumar, R. L. V.; Bhat, M. R.; Murthy, C. R. L. Int. J. Adhes. Adhes. 2013, 42, 60.
Vine, K.; Cawley, P.; Kinloch, A. J. J. Adhes. 2001, 77, 125.

• Debonds and adhesive failures at critical material interfaces are poorly 
characterized or identifiable

• Adhesive integrity between epoxy and alumina is not very well understood 
but essential to meeting breakdown strength requirements
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NDI Inspection Methods
 Time Domain Ultrasonics: Monitor the ultrasonic echoes in the time domain.

 If a defect exists, the local reflection coefficient will be changed. And so is the ultrasonic echo. 

 Ultrasonic Impedance and Spectroscopy: Measures the characteristics of through-thickness vibration of 
a bonded structure.

 Any changes in adhesive or adherend will result in amplitudes  and resonance that are different 
from the undamaged structure.

 Sonic Vibration:  Monitor vibration properties of a bonded structure.

 Any defect will cause a local change in stiffness and thus vibration behavior to the whole structure.

 Vibrothermography:  Monitor the surface temperature of a component as it is cyclically stressed.

 A defect will cause a local rise in temperature due to either frictional heating at its internal surfaces 
or hysteretic energy dissipation.  Use infrared thermal imaging camera.

 Thermography:  Measure the response of the specimen to thermal transients created by an external 
heat source.

 For example, heat the back surface of the structure and defects can be found by measuring 
temperature changes at front since defective areas are cooler due to the lower conduction through 
defects.

Hart-Smith, L. J. J. Compos. Technol. Res. 2002, 24, 133.
Yang, S.; Gu, L.; Gibson, R. F. Compos. Struct. 2001, 51, 63.

Many advantages, however the ability to reliably detect weak bonds is debatable!!!



Fiber Bragg Grating Sensor Design

Grating spacing changes as the fiber goes through any tension or compression

Advantages: 1) Inexpensive, 2) Facile, 3) Spatial dimension, 4) Regions/Area, 5) Continuous
Udd, Eric. Review of Multi-Parameter Fiber Grating Sensors. Columbia Gorge Research,  LLC.



Grating Type

Fiber Bragg Gratings are periodic whereas chirped gratings are graduated and 
exhibit broadband reflectance. 

Wang, Y.; Han, B.; Kim, D. W.; Bar-Cohen, A.; Joseph, P. Exp. Mech. 2008, 48, 107.
Udd, E.; Benterou, J.; May, C.; Mihailov, S. J.; Lu, P. In Fiber Optic Sensors and Applications Vii; Mendez, A., Du, H. H., Wang, A., Udd, E., Mihailov, S. J., 
Eds.; Spie-Int Soc Optical Engineering: Bellingham, 2010; Vol. 7677.
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Tension or compression are expressed in 
microstrain (µε)

�� = 2�Λ

Basic Principle: Monitor the shift in wavelength of the reflected “Bragg” signal with 
the changes in strain or temperature.
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Rule-of-thumb (when �� = 0):

n: effective index of the core
Λ: grating pitch

Kersey, A. D.; Davis, M. A.; Patrick, H. J.; LeBlanc, M.; Koo, K. P.; Askins, C. G.; Putnam, M. A.; Friebele, E. J. J. Lightwave Technol. 1997, 15, 1442.
Cusano, A.; Capoluongo, P.; Cutolo, A.; Giordano, M. IEEE Sens. J. 2006, 6, 111.
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Experimental Setup

 Basic FBG testing system  Our current FBG system setup

I-MON 512E-USB 2.0

Micron Optics si255



Embedded Fibers

Rasberry, R. D.; Udd, E.; Rohr, G. D.; Miller, W. D.; Calkins D.; McElhanon, J. R. In Prep.
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Poor and Good Adhesion on Aluminum  
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Good Adhesion on Alumina 
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Artificial Areas of Poor Adhesion
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Half and Half Epoxy Body
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Attaching Fiber to Cone Geometry

Fixture Design

FBG epoxied to cone

FBG threaded through 
mounting fixture

Fixture is placed on top of the 
cone



FBG Attached to a Cone Geometry
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Chirped FBG Cone Geometry
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Chirped FBG Cone Geometry Filled
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Chirped FBG Cone Geometry
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Thermal Cycling
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Aging
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 Advantages

 Facile

 Spatial Information

 Regions/area of good 
adhesion

 Continuous/Real-time

 Inexpensive and mobile

 Future Variables

 Contaminate potted cone 
with mold release

 Statistical study

 Further aging
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 Silica (cristoballite) hydroxyls = 4.6 OH/nm2

 Alumina (alpha) hydroxyls = 2.4-4.2 OH/nm2
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