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The complexity of digital systems makes them
unanalyzable in general

Just because we designed and built a digital system, and it
operates perfectly as a mathematical engine, doesn’t mean we
understand everything it can do

Digital systems are an exemplar of complex systems: engineered
or evolved systems that behave as large-scale information
networks

Turing’s halting problem: the behavioral properties of such an
information network cannot be predicted in the general case

Safety and security requirements (what the system must not do)
cannot be verified by testing

Unforeseen vulnerabilities are routinely found in deployed
hardware and software
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Formal methods can prove behavioral properties of
specific digital designs

Formal methods apply automated logical reasoning to
exhaustively analyze a mathematical model of a system

To get around the halting problem, the system design must be
expressible in a modeling language that is suitably constrained to
be analyzable

Two main kinds of formal tools exist

Theorem provers: proving requirements with general logical
reasoning and human guidance

Model checkers: exhaustively checking requirements in all
reachable states using reduction heuristics
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Broader principles support robustness in
complex systems

Biological and social complex systems typically are not formally
verified, but show impressive robustness to unforeseen failures

Why? They have inherent stability constraints from their origins
in adaptation and selection

Our hypothesis: Digital designs constrained by formal methods
also exhibit enhanced robustness to unforeseen failures by a
similar mechanism
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Digital system properties directly proven by formal
methods are limited

Guarantees are limited to requirements explicitly encoded by the
developer

The developer must formally describe the specific “undesired
behaviors” in advance

A formal tool can then verify the absence of such behaviors over
a vast state space (when tractable)

Guarantees are valid only within the semantics of the system
model

There may be vulnerabilities in the real system not accounted for
in the model (e.g., physical attacks)
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Yet, systems designed using formal methods appear
more robust, even beyond what is proven

The SMACCMPilot project (Hickey et al. 2014) developed
control software for a drone in the Ivory domain-specific
programming language (DSL)

Ivory constrains against some unexpected behavior by enforcing
basic memory safety properties

The resulting drone software was dubbed “unhackable” after
extensive red-teaming

The Compcert C compiler (Leroy 2009) was developed in the
Coq theorem prover, tantamount to a restricted programming
language

Extensive randomly generated tests (“fuzzing”) uncovered
hundreds of errors in mainstream C compilers but none in
Compcert’s core (Yang et al. 2011)
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Outsize benefits of up-front formal modeling have
been noted in practice

Key observation: design for analysis yields increased robustness,
regardless of when or even whether the analysis is performed

Faults and vulnerabilities are reduced if the developer starts with
a high-level formal model – even if no further verification is done
and even if the implementation is not explicitly constrained
(Woodcock et al. 2009)

This supports our hypothesis that robustness is conferred
because of design characteristics promoted by the formal
modeling process

By contrast, formal verification after the fact does not increase
robustness more broadly, if the design was not formally informed

Example: the LLVM compiler infrastructure has undergone some
formal analysis, but fuzzing suggests it is no more robust than
other compilers
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Adaptive dynamical systems offer a useful
perspective on hardware and software

As dynamical systems, today’s typical digital designs are chaotic

Formal methods, by contrast, enforce bounded behavior, similar
to that seen in complex systems adapted to their environments

To be useful (engineering) or viable (evolution), an adaptive
dynamical system must show a coherent response, neither
strongly overdamped/inert nor profoundly chaotic/random

At the “edge of chaos” (critical) or somewhat below it
(subcritical), broad robustness to perturbations is obtained

Subcriticality or “smoothness” generalizes the constraints
imposed by formal analyzability

Restricted programming models also extend the power of testing

New programming models with intrinsic smoothness could enable
more confident generalization of correctness to untested inputs

Empirically, incidence of vulnerabilities does differ measurably
based on programming language
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Abstract models of computation suggest
approaches to improve robustness

Theory and practice indicate that restricted models (à la DSLs)
enable more powerful reasoning about behavior

Increasing analyzability:
Turing machines → pushdown automata → finite-state machines

Whereas the conventional model (Turing machine) is “uniform”
(algorithm independent of data size), “non-uniform” models
with bounded capacity are both more tractable to formal
methods and more prototypical of adaptive systems

To concretely explore the potential for robustness from
non-uniform computation, we consider an idealized programming
model with adjustable stability properties: Boolean networks
(Glass & Kauffman 1973)
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Boolean networks provide a simple representation
of digital logic

Originally investigated in biology, Boolean networks (BNs)
correspond closely to hardware sequential logic gates

Each node in the directed graph has two possible states, 0 and 1

A node’s state transition at each discrete time step is
determined from its input connections by a “transfer function”

Create BNs that add two 1-bit numbers (half-adder function),
by random sampling and selection

This function is very simple, but we seek BNs representative of
more complex implementations

BN ensembles differ in average inputs per node (k)

Select 20-node BNs that compute the correct result for all inputs
when operating nominally, and then introduce 1% bit errors to
evaluate robustness

Cascading errors are outlined in red
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Boolean network “programs” exhibit quiescence for
k < 2 and chaos for k > 2
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Ensemble simulations indicate systematic relations
of design parameters to robustness
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Formal verification confirms insights from
dynamical systems theory

While BN stability is relevant well beyond the reach of
exhaustive verification, the example half-adder BNs are simple
enough to check directly with formal methods

With the NuSMV model checker, we exhaustively prove/disprove
correct function of these two BNs in the presence of bit errors

Using a nondeterministic model that allows any single bit error
during a range of time steps

Example correctness requirement for carry bit:
LTLSPEC F ((clock=20) & (n18 = (n00&n01)))

NuSMV results: chaotic BN is susceptible to corruption from
any time step, whereas quiescent BN can be corrupted only in
the last 5 of 20 time steps and is self-healing otherwise
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Summary: Formal modeling appears to constrain
digital designs in ways that increase robustness

Requiring subcriticality is a constraint that generally makes a
digital design more difficult to create but confers valuable
predictability on behavior

This is analogous to what is seen in the more specific approach
of formal methods: formally informed designs exhibit robustness
well beyond what is directly proven

Boolean networks provide an idealized setting in which
robustness benefits can be quantified

We look forward to more data regarding real-world results of
formally informed design of complex digital systems
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