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The complexity of digital systems makes them @
unanalyzable in general
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m Just because we designed and built a digital system, and it
operates perfectly as a mathematical engine, doesn't mean we

. Security and
understand everything it can do Reefiiﬁitﬁtjnof
. . Complex
m Digital systems are an exemplar of complex systems: engineered Systems
or evolved systems that behave as large-scale information
networks
m Turing's halting problem: the behavioral properties of such an
information network cannot be predicted in the general case
m Safety and security requirements (what the system must not do)
cannot be verified by testing
m Unforeseen vulnerabilities are routinely found in deployed
hardware and software
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Formal methods can prove behavioral properties of
specific digital designs

m Formal methods apply automated logical reasoning to
exhaustively analyze a mathematical model of a system

m To get around the halting problem, the system design must be
expressible in a modeling language that is suitably constrained to
be analyzable

m Two main kinds of formal tools exist

m Theorem provers: proving requirements with general logical
reasoning and human guidance

m Model checkers: exhaustively checking requirements in all
reachable states using reduction heuristics

@

Digital System
Robustness
via Design
Constraints

Security and
Reliability of
Complex
Systems

Mayo et al.

3/14



Broader principles support robustness in @
complex systems
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H H H H Security and

[ Bplggmal and soa.al complex systems typically are not fgrmally Reliabillty of
verified, but show impressive robustness to unforeseen failures gomplex
ystems

m Why? They have inherent stability constraints from their origins
in adaptation and selection

m Our hypothesis: Digital designs constrained by formal methods
also exhibit enhanced robustness to unforeseen failures by a
similar mechanism
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Digital system properties directly proven by formal
methods are limited

m Guarantees are limited to requirements explicitly encoded by the
developer

m The developer must formally describe the specific “undesired
behaviors” in advance

m A formal tool can then verify the absence of such behaviors over
a vast state space (when tractable)

m Guarantees are valid only within the semantics of the system
model

m There may be vulnerabilities in the real system not accounted for
in the model (e.g., physical attacks)
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Yet, systems designed using formal methods appear
more robust, even beyond what is proven

m The SMACCMPilot project (Hickey et al. 2014) developed
control software for a drone in the lvory domain-specific
programming language (DSL)

m lvory constrains against some unexpected behavior by enforcing
basic memory safety properties

m The resulting drone software was dubbed “unhackable” after
extensive red-teaming

m The Compcert C compiler (Leroy 2009) was developed in the
Coq theorem prover, tantamount to a restricted programming
language

m Extensive randomly generated tests (“fuzzing”) uncovered
hundreds of errors in mainstream C compilers but none in
Compcert's core (Yang et al. 2011)

@

Digital System
Robustness
via Design
Constraints

Benefits of
Formally
Informed
Design

Mayo et al.

6/14



Outsize benefits of up-front formal modeling have @
been noted in practice
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m Key observation: design for analysis yields increased robustness,
regardless of when or even whether the analysis is performed

m Faults and vulnerabilities are reduced if the developer starts with
a high-level formal model — even if no further verification is done
and even if the implementation is not explicitly constrained

(Woodcock et al. 2009) Benefits of
Formally
m This supports our hypothesis that robustness is conferred Informed
. L. Design
because of design characteristics promoted by the formal
modeling process
m By contrast, formal verification after the fact does not increase
robustness more broadly, if the design was not formally informed
m Example: the LLVM compiler infrastructure has undergone some
formal analysis, but fuzzing suggests it is no more robust than
other compilers
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Adaptive dynamical systems offer a useful
perspective on hardware and software

m As dynamical systems, today's typical digital designs are chaotic

m Formal methods, by contrast, enforce bounded behavior, similar
to that seen in complex systems adapted to their environments

m To be useful (engineering) or viable (evolution), an adaptive
dynamical system must show a coherent response, neither
strongly overdamped /inert nor profoundly chaotic/random

m At the “edge of chaos” (critical) or somewhat below it
(subcritical), broad robustness to perturbations is obtained

m Subcriticality or “smoothness” generalizes the constraints
imposed by formal analyzability

m Restricted programming models also extend the power of testing

m New programming models with intrinsic smoothness could enable
more confident generalization of correctness to untested inputs

m Empirically, incidence of vulnerabilities does differ measurably
based on programming language
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Abstract models of computation suggest
approaches to improve robustness

m Theory and practice indicate that restricted models (a la DSLs)
enable more powerful reasoning about behavior

m Increasing analyzability:
Turing machines — pushdown automata — finite-state machines

m Whereas the conventional model (Turing machine) is “uniform”
(algorithm independent of data size), "non-uniform” models
with bounded capacity are both more tractable to formal
methods and more prototypical of adaptive systems

m To concretely explore the potential for robustness from
non-uniform computation, we consider an idealized programming
model with adjustable stability properties: Boolean networks
(Glass & Kauffman 1973)
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Boolean networks provide a simple representation
of digital logic

m Originally investigated in biology, Boolean networks (BNs)
correspond closely to hardware sequential logic gates

m Each node in the directed graph has two possible states, 0 and 1

m A node's state transition at each discrete time step is

determined from its input connections by a “transfer function”

m Create BNs that add two 1-bit numbers (half-adder function),
by random sampling and selection

This function is very simple, but we seek BNs representative of
more complex implementations

BN ensembles differ in average inputs per node (k)

Select 20-node BNs that compute the correct result for all inputs
when operating nominally, and then introduce 1% bit errors to
evaluate robustness

Cascading errors are outlined in red
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Boolean network “programs”
k < 2 and chaos for k > 2

exhibit quiescence for @
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Ensemble simulations indicate systematic relations

of design parameters to robustness
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Formal verification confirms insights from
dynamical systems theory

m While BN stability is relevant well beyond the reach of
exhaustive verification, the example half-adder BNs are simple
enough to check directly with formal methods

m With the NuSMV model checker, we exhaustively prove/disprove
correct function of these two BNs in the presence of bit errors

m Using a nondeterministic model that allows any single bit error
during a range of time steps

m Example correctness requirement for carry bit:
LTLSPEC F ((clock=20) & (n18 = (n00&n01)))

m NuSMV results: chaotic BN is susceptible to corruption from
any time step, whereas quiescent BN can be corrupted only in
the last 5 of 20 time steps and is self-healing otherwise
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Summary: Formal modeling appears to constrain
digital designs in ways that increase robustness

m Requiring subcriticality is a constraint that generally makes a
digital design more difficult to create but confers valuable
predictability on behavior

m This is analogous to what is seen in the more specific approach
of formal methods: formally informed designs exhibit robustness
well beyond what is directly proven

m Boolean networks provide an idealized setting in which
robustness benefits can be quantified

m We look forward to more data regarding real-world results of
formally informed design of complex digital systems
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