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The Finite Difference Method in

Electronic Structure Calculations

Definition

The Finite Difference method is a numerical technique to calculate approximately the

derivatives of a function given by its values on a discrete mesh.

Overview

Since the development of quantum mechanics, we know the equations describing the

behavior of atoms and electrons at the microscopic level. The Schroedinger equation

[Schroedinger equation for chemistry] is however too difficult to solve for more than a

few particles because of the high dimensional space of the solution — 3N for N particles.

So various simplified models have been developed. The first simplification usually in-

troduced is the Born-Oppenheimer approximation [Born-Oppenheimer approximation]

in which atomic nuclei are treated as classical particles surrounded by quantum elec-

trons. But many more approximations can be introduced, all the way up to classical

molecular dynamics models where interacting atoms are simply described by parame-

terized potentials depending only on the respective atomic positions. The choice of an
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appropriate model depends on the expected accuracy and the physical phenomena of

interest.

For phenomena involving tens or hundreds of atoms and for which a quantum

description of the electronic structure is needed —to properly describe chemical bonds

making/breaking, or hydrogen bonds for instance— a very popular model is Density

Functional Theory (DFT). [Density Functional Theory] In DFT, the 3N-dimensional

Schroedinger problem is reduced to an eigenvalue problem in a 3-dimensional space,

the Kohn-Sham (KS) equations. The electronic structure is described by N electronic

wave functions (orbitals) which are the eigenfunctions corresponding to the N lowest

eigenvalues of a non-linear effective Hamiltonian HKS.

Another simplification often introduced in DFT is the use of so-called pseudopo-

tentials (see e.g. [12]). These are effective potentials modeling the core of an atom, that

is the nuclei and the core electrons which do not participate to chemical bonds, assum-

ing these core electrons do not depend on the chemical environment. Beside reducing

the number of electronic wave functions to compute, the benefit of using pseudopoten-

tials is to remove the singularity 1/r of the Coulomb potential associated to a nuclei.

Indeed these potentials are built in such a way that the potential felt by valence elec-

trons is as smooth as possible. This opens the way for various numerical methods to

discretize DFT equations, in particular the Finite Difference (FD) method which is the

object of this article.

The FD method (see e.g. [4]) started being used in the 1990’s as an alternative

to the traditional Plane Waves(PW) (or pseudo-spectral) method used in the physics

and material sciences communities [3; 1]. The PW method had been a very success-

ful approach to deal with DFT calculations of periodic solids. Besides being a good

basis set to describe free electrons or almost free electrons as encountered in metal-

lic systems and being a natural discretization for periodic systems, its mathematical
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properties of spectral convergence helped reduce the size of the basis set in practical

calculations. With growing computer power, researchers in the field started exploring

real-space discretizations in order to facilitate distributed computing on large parallel

computers. A simple domain decomposition leads to natural parallelism in real-space:

for p processors, the domain Ω is split into a set of p spatial sub-domains of equal

sizes and shapes, and each sub-domain is associated to a processor. Each processor is

responsible to evaluate operations associated to the local mesh points and ghosts values

are exchanged between neighboring sub-domains to enable FD stencil evaluations at

sub-domains boundaries. [1]

In a FD approach, it is also easy and natural to impose various boundary con-

ditions beside the typical periodic boundary conditions. It can be advantageous to use

Dirichlet boundary conditions for the Coulomb potential for charged systems or polar-

ized systems in lower dimension. The value at the boundary can be set by a multipole

expansion of the finite system. This cancels out Coulomb interactions between periodic

images A real-space discretization also open the door to replacing the simple Coulomb

interaction with more complicated equations which model for example the presence

of an external polarizable continuum, such as continuum solvation models [6]. Local

mesh refinement techniques can also be used to improve numerical accuracy [5].

Like PW, a FD approach provides an unbiased discretization and accuracy can

be systematically improved be reducing mesh spacing. Many of the advantages of real-

space algorithms can be translated in some way into PW approaches. But doing so is

not always natural, appropriate, or computationally interesting. It appears that one of

the greatest potential for real-space methods is in O(N) complexity algorithms.

The discussion in this article is restricted to parallelepiped domains. This is ap-

propriate to treat most solid state applications where the computational domain has to

coincide with a cell invariant under the crystal structure symmetry. For finite systems
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surrounded by vacuum, this is also a valid approach as long as the domain is large

enough so that boundary conditions do not affect the results. From a computational

point of view, parallelepiped domains allow for the use of structured meshes which fa-

cilitates code implementation and improves numerical efficiency, allowing in particular

FD discretizations and matrix-free implementations.

Equations

For a molecular system composed of Na atoms located at positions {RI}Na
I=1 in a com-

putational domain Ω, the KS energy functional [Density Functional Theory] can be

written (in atomic units)

EKS [{ψi}Ni=1, {RI}Na
I=1] =

N∑
i=1

fi

∫
Ω
ψ∗
i (r)

(
−1

2
∇2

)
ψi(r)dr

+
1

2

∫
Ω

∫
Ω

ρe(r1)ρe(r2)

|r1 − r2|
dr1dr2 + EXC [ρe] +

∫
Ω
ψ∗
i (r)(Vextψi)(r)dr (1)

+EII [{RI}Na
I=1].

with the orthonormality constraints

∫
Ω
ψ∗
i (r)ψj(r) = δij. (2)

Eq.(??) uses the electronic density ρe defined at each point in space by

ρe(r) =
N∑
i=1

fi|ψi(r)|2 (3)

where fi denotes the occupation of orbital i. In Eq. (1), the first term represents the

kinetic energy of the electrons, the second the electrostatic energy of interaction be-

tween electrons. EXC models the exchange and correlation between electrons. This

term is not known exactly and needs to be approximated. [Density Functional Theory]

Exchange and correlation functional of the type Local Density Approximation (LDA)

or Generalized Gradient Approximation (GGA) are typically easy to implement and

computationally efficient in a FD framework. Vext represents the total potential pro-
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duced by the atomic nuclei and includes any additional external potential. EII is the

energy of interaction between atomic cores.

The ground state of a physical system is represented by the orbitals that min-

imize (1) under the constraints (2). It can be found by solving the associated Euler-

Lagrange equations —Kohn-Sham (KS) equations—

HKSψj =
[
−1

2
∇2 + VH(ρe) + µxc(ρe) + Vext

]
ψj = ϵjψj, (4)

which must be solved for the N lowest eigenvalues ϵj and corresponding eigenfunctions

ψj. The Hartree potential VH represents the Coulomb potential due to the electronic

charge density ρe and is obtained by solving a Poisson problem. µxc = δExc[ρe]/δρe is

the exchange and correlation potential.

From the eigenfunctions ψj, j = 1, . . . , N , one could construct the single-particle

density matrix

ρ̂(r, r′) =
∑
i

fiψi(r)ψ
∗
i (r

′) (5)

For a FD discretization, Eq. (5) become a finite dimensional matrix of dimension M

given by the number of nodes on the mesh. Even if this matrix becomes sparse for

very large problems, the number of non-zero elements is prohibitively large. It is usu-

ally cheaper to compute and store the N eigenfunctions corresponding to occupations

numbers fi > 0 without ever building the single particle density matrix.

Finite differences discretization

Let us introduce a uniform real-space rectangular grid Ωh of mesh spacing h—assumed

to be the same in the all directions for simplicity— that covers the computation do-

main Ω. The wave functions, potentials and electronic densities are represented by

their values at the mesh points rijk. Integrals over Ω are performed using the discrete

summation rule
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Ω
u(r)dr ≈ h3

∑
rijk∈Ωh

u(rijk).

For a function u(r) given by its values on a set of nodes the traditional FD

approximation wi,j,k to the Laplacian of u at a given node ri,j,k is a linear combination

of values of u at the neighboring nodes

wi,j,k =
p∑

n=−p

cn (u(xi + nh, yj, zk) + u(xi, yj + nh, zk)

+ u(xi, yj, zk + nh)) (6)

where the coefficients {cn} can be computed from the Taylor expansion of u near ri,j,k.

Such an approximation has an order of accuracy 2p, that is for a sufficiently smooth

function u, wi,j,k will converge to the exact value of the derivative at the rate O(h2p) as

the mesh spacing h→ 0. High order versions of this scheme have be used in electronic

structure calculations [3].

As an alternative, compact FD schemes (Mehrstellenverfahren [4]) have been

used with success in DFT calculations [1]. For example, a 4th order FD scheme for the

Laplacian is based on the relation

1
6h2

{
24u(r0)− 2

∑
r∈Ωh,

∥r−r0∥=h

u(r)−∑
r∈Ωh,

∥r−r0∥=
√

2h

u(r)

}

= 1
72

{
48(−∇2u)(r0) + 2

∑
r∈Ωh,

∥r−r0∥=h

(−∇2u)(r) +
∑

r∈Ωh,

∥r−r0∥=
√

2h

(−∇2u)(r)

}
(7)

+O(h4),

valid for a sufficiently differentiable function u(r). This FD scheme requires only val-

ues at grid points not further away than
√
2h. Beside its good numerical properties,

the compactness of this scheme reduces the amount of communication in a domain-

decomposition based parallel implementation. In practice, this compact scheme consis-

tently improves the accuracy compared to a standard 4th order scheme.
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Pseudopotentials on a mesh

Accurate calculations can be performed on a uniform mesh by modeling each atomic

core with a pseudopotential. For instance a separable nonlocal Kleinman-Bylander

(KB) potential Vps(r, r
′) in the form

(Vpsψ)(r) = vl(r)ψ(r) +
p∑

i=1

∫
Ω
vnl,i(r)E

KB
i v∗nl,i(r

′)ψ(r′)dr′ (8)

where EKB
i are normalization coefficients. The radial function vl contains the long

range effect and is equal to −Z/r far enough from the core charge Z. The functions

vnl,i(r) are the product of a spherical harmonics Y m
ℓ by a radial function which vanishes

beyond some critical radius.
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Fig. 1. Example of norm-conserving pseudopotential: Chlorine. The local potential (before and after

adding compensating Gaussian charge distribution) is shown as well as the radial parts of the non-local

projectors l = 0, 1

To reduce the local potential vl to a short range potential vsl , we use the ”stan-

dard trick” of adding to each atom a Gaussian charge distribution (with spherical

symmetry, centered at the atomic position) which exactly cancels out the ionic charge.

The sum of the charge distributions added to each atom is then subtracted from the

electronic density used to compute the Hartree potential and leads to an equivalent

problem. The correction added to the local atomic potential makes it short range, while

the integral of the charge used to compute the Hartree potential becomes 0. Since the
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functions vsl and vnl,i are non-zero only in limited regions around their respective atoms,

the evaluation of the dot products between potentials and electronic wave functions on

a mesh can take advantage of this property to reduce computational cost. An example

of pseudopotential is represented in Fig. 1.

With periodic boundary conditions, the total energy of a system should be in-

variant under spatial translations. A finite mesh discretization breaks this invariance.

To reduce energy variations under spatial translations, the pseudopotentials need to be

filtered. Filtering can be done in Fourier space using radial Fourier transforms. [1] Fil-

tering can also be done directly in real-space. In the so-called ”double-grid” method [11],

the potentials are first evaluated on a mesh finer than the one used to discretize the

KS equations before being interpolated onto the KS mesh.

In order to get smoother pseudo-wave functions and increase the mesh spacing

required for a given calculation, one can relax the norm-conserving constraint when

building pseudo-potentials. FD implementations of the Projected Augmented Wave

(PAW) method [10], and the ultrasoft pseudopotentials [9] were proposed. While

these approaches reduce the requirements on the mesh spacing, their implementations

are much more complex than standard norm-conserving pseudo-potentials methods and

they require the use of additional finer grids to represent some core functions within

each atom.

Real-space solvers

Among the various algorithms proposed for solving the KS equations [Fast methods for Large eigenvalues problems for chemistry],

algorithms developed for PW can be adapted and applied to FD discretizations. The

two approaches use similar number of degrees of freedom to represent the wave func-

tions and thus have similar ratios between the number of degrees of freedom and the
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number of wave functions to compute. However some aspects are quite different be-

tween the two approaches and affect in particular their implementation.

PW discretizations make use of the fact that the Laplacian operator is diagonal

in Fourier space not only to solve for the Hartree potential, but also to precondition

steepest descent corrections used to optimize wave functions. For FD, the most scalable

and efficient solver for a Poisson problem is the multigrid method (see e.g. [2]). Solving

a Poisson problem on a mesh composed of O(N) nodes is achieved in O(N) operations

with a very basic multigrid solver.

The multigrid method has also been used as a preconditioner to modify steepest

descent directions and speed up convergence [1; 7]. Preconditioned steepest descent

directions can be used in combination with various solvers, either in self-consistent

iterations or direct energy minimization algorithms [Self-Consistent Field iterations].

The Full Approximation Scheme (FAS), a multigrid approach for solving non-linear

problems, has also been used in FD electronic structure calculations to directly solve

the non-linear KS equations using coarse grid approximations of the full eigenvalue

problem [14].

Forces, geometry optimization and molecular dynamics

Calculating the ground state electronic structure of a molecular system is usually only

the first step towards calculating other physical properties of interest. For instance to

optimize the geometry of a molecular system [Molecular optimization] or to simulate

thermodynamic properties by molecular dynamics [Calculation of ensemble averages]

the electronic structure is just a tool to calculate the forces acting on atoms in a

particular configuration.

Knowing the ground state electronic structure for a given atomic configuration

{R}Na
I=1, one can compute the force acting on the ion I by evaluating the derivative of
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the total energy with respect to the atomic coordinates RI . Using the property that

the set {ψi}Ni=1 minimizes the functional E, one shows that

FI = −∇RI
EKS({ψi}Ni=1, {R}Na

I=1) = − ∂

∂RI

EKS({ψi}Ni=1, {R}Na
I=1) (9)

(Hellmann-Feynman forces, [8]). Since the mesh is independent of the atomic positions,

the wave functions do not depend explicitly on the atomic positions and the only

quantities that explicitly depend on RI are the atomic potentials. Thus in practice,

the force on atom I can be computed by adding small variations to RI in the x, y,

and z directions, and computing finite differences between the values of EKS evaluated

for shifted potentials but with the electronic structure that minimizes EKS at RI , i.e.

without recomputing the wave functions.
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Fig. 2. Energies and forces for Cl2 molecule as function of the distance between the two atoms for

two different meshes.

The FD method is not variational: the energy does not systematically decreases

when one refines the discretization mesh. Energy can converge from below (see Fig. 2).

Usually the energy does not need to be converged to high precision in DFT calculations.

One typically rely on systematic errors introduced by discretization which only shifts

the energy up or down. As illustrated in Fig. 2 for the case of a Cl2 molecule, other
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physical quantities of interest can be converged, such as force in this case, can converge

before the energy.

By repeating the process of calculating the electronic structure, deriving the

forces and moving atoms according to Newton’s equation for many steps, one can gen-

erate molecular dynamics trajectories. As an alternative to computing the ground state

electronic structure at every step, the Car-Parrinello molecular dynamics approach can

be used. It was also implemented for a FD discretization [13]

O(N) complexity algorithms

Probably the main advantage of FD over PW is the ability to truncate electronic wave

functions in real-space to obtain O(N) complexity algorithms. [Linear scaling methods]

Typical implementation of DFT solvers require O(N3) operations for N electronic

orbitals, while memory requirements grow as O(N2). The O(N2) growth comes from the

fact that the number of degrees of freedom per electronic wave function is proportional

to the computational domain size— one degree of freedom per mesh point— since

quantum wave function live in the whole domain. The O(N3) scaling of the solver is

due to the fact that each function needs to be orthogonal to all the others.

The first step to reduce scaling is to rewrite Eq.(1) in terms of non-orthogonal

electronic wave functions

EKS [{ϕi}Ni=1, {RI}Na
I=1] =

N∑
i,j=1

2
∫
Ω
S−1
ij ϕ

∗
j(r)

(
−1

2
∇2

)
ϕi(r)dr

+
1

2

∫
Ω

∫
Ω

ρe(r1)ρe(r2)

|r1 − r2|
dr1dr2 + EXC [ρe] +

N∑
i,j=1

∫
Ω
S−1
ij ϕ

∗
j(r)(Vextϕi)(r)dr.(10)

with

ρe(r) = 2
N∑

i,j=1

S−1
ij ϕ

∗
j(r)ϕi(r) (11)

and Sij =
∫
Ω ϕ

∗
j(r)ϕi(r). Here we assume that all the orbitals are occupied with two

electrons.
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This formulation does not reduce computational complexity since for instance

the cost of orthonormalization is just shifted into a more complex calculation of the

residuals for the eigenvalue problem. However the flexibility gained by removing or-

thogonality constraints on the wave functions enables the possibility of adding locality

constraints: one can impose a priori that each orbital is non-zero only inside a sphere

of limited radius and appropriately located [7]. This is quite natural to impose on a

real-space mesh and lead to O(N) degrees of freedom for the electronic structure. This

approach is justified by the Maximally Localized Wannier functions representation of

the electronic structure [Linear scaling methods]. Cutoff radii of 10 Bohr or less leads to

practical accuracy for insulating system (with a finite band gap). While other ingredi-

ents are necessary to obtain a truly O(N) complexity algorithm, real-space truncation

of orbitals is the key to reduce computational complexity in mesh-based calculations.
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