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Great Interest in RMI as Source of
Ejecta from Metal Shells

W. T. Buttler et al., J. Fluid Mech. 2012
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area of active algorithm and code
development in ASCI-IC Lagrangian
Applications Project.

G. Dimonte et al., J. App. Phys. 2013
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PHELIX Offers Precise, Reproducible Variable Driver for Hydro
and Material Physics Diagnoses with Proton Radiography

Z-Pinch Liner-on-Target Configuration

Llner

Drive is continuously variable (1 <1, <5 MA,
dt ~ 10 us) and highly reproducible.

P ~(I/R)? allows scaling to smaller diameters
at lower energies (300 kJ stored).

Current multiplying transformer technology
enables portable platform.

Converging geometry with diagnostic access.
0.5 <V,,., < 3 km/s for shocked and quasi-
isentropic target configurations.

pRad gives the highest imaging data rate per
experiment of a pulsed-power hydro facility.

Other Target Configurations
— Linear flyer (rail-gun) configuration is possible (v ~
1 km/s with a 30 g flyer).
— Sandia ICE strip-line configuration (r ~ 1-10 mm)
could yield P .. ~ 4-40 GPa.



Crenulation-1 Target Designed to
Image RMI Growth/Saturation

LANL SESAME for Tin
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Calculations Show Expected Convergent

Geometry Effects (Melt-on-Release)
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converging effects.

asymptotic theory. Shows finite shell thickness and
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Cren-1 Shocked to Melt on Release and Data
Agrees Well with Calculations

Single-mode peak-to-
valley shows linear
growth

Converging Geometry

— Higher shock
pressure

— Higher spike velocity
Finite target thickness

— Pull-back of Free
Surface and Bubble

— Cavitation

Proton Radiogra
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Next Crenulation Experiments will Examine Single
Mode RMI Growth/Saturation in Mixed and Solid State

Mixed Phase Release (1= 0.8X)

e Scale the Measured Current
(1=0.9X—0.5X) as input to
Simulations

e ASC Multi-phase EOS and
Phase aware Strength Predict

— Saturation due to refreeze for
mixed state release
— Growth/Decay for solid phase
release.
Scale Liner Velocity | V_shockin Tin | P_shock in Tin
Factor (km/s) (km/s) (Gpa)

1 2.9 1 38

0.9 2.1 0.9 29

0.8 15 0.8 20

0.7 13 0.65 14

0.6 1 0.4 9.5

0.5 0.74 0.3 7.3
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Propose 2 Experiments in 1 Week of
Prad Time

Experiments
— |~ 0.8X — shock to mixed state
— | ~ 0.6X —shock to solid state

Loads

— 1 “on-the-shelf”

— 1 would need to be fabricated

Would benefit from X7 magnifier

— Working on PHELIX/magnifier interface

Scheduling PHELIX after a maintenance week
simplifies operations
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Upgrade of Damage Mitigation and

Confinement
Video feed from inside PHELIX box D‘r:;,if;‘c’zﬂ{,ﬁﬁg“"

Direct coupling of load to beam
pipes
— Flexible bellows needed for
alignment.
— Eliminates
* Upstream/downstream air gaps
* 25 mil Kapton windows

— Glass/Al windows 10 m upstream/

down.Stream o . Simulated Proton Images with Axial Rods
1 mm axial rod inside the tin Test Objec w <ompetods Wit coppet
cylinder | i

— Inhibit jet formation = 0

— Calculations show it doesn’t affect
image quality




Multi Phase Strength Model of Tin
with ASC- Flag (Sanity Check)

Time = 9.07012 Cavitation

SES 2061
SG Strength
for each phase*

*T. Canfield and T. Carney

SES 2061
SG Strength

density

10.00
7.50
5.00
2.50

0.00

Virtually Identical Results

PHELIX Cren-1 (Pure Melt-on-Release)



SESAME 2161
Phase Aware
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Single Strength
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Movies: Cren-1 (I = 1.0X)

Time = 7.5513

density

8.500e+00
6.375e+00
4.250e+00
2.125e+00

0.000e+00




Movies: Cren-2-3 (1 = 0.8X, 0.6X)

Time = 10.011 Time = 15.000572
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