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Abstract

This paper evaluates the performance of multiphysics coupling algorithms
applied to a light water nuclear reactor core simulation. The simulation cou-
ples the k-eigenvalue form of the neutron transport equation with heat con-
duction and subchannel flow equations. We compare Picard iteration (block
Gauss-Seidel) to Anderson acceleration and multiple variants of precondi-
tioned Jacobian-free Newton-Krylov (JFNK). The performance of the meth-
ods are evaluated over a range of energy group structures and core power
levels. A novel physics-based approximation to a Jacobian-vector product
has been developed to mitigate the impact of expensive on-line cross sec-
tion processing steps. Numerical simulations demonstrating the efficiency
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of JFNK and Anderson acceleration relative to standard Picard iteration
are performed on a 3D model of a nuclear fuel assembly. Both criticality
(k-eigenvalue) and critical boron search problems are considered.

Keywords: multiphysics, Jacobian-free Newton-Krylov, Anderson
acceleration, nuclear reactor analysis

1. Introduction

Determining the steady-state power and temperature distributions within
an operating nuclear reactor is an important component of reactor design and
analysis. This task requires simultaneously solving equations describing the
distribution of neutrons throughout the reactor as well as the transfer of heat
through the fuel and structural materials into fluid coolant regions. Current
core analysis methods rely on the use of a Picard iteration [1, 2, 3, 4, 5, 6, 7],
alternating between solving individual physics components. Although this
approach offers a simple path to coupling different physics codes due to the
minimal code interaction required, there are also significant drawbacks. Pi-
card iteration lacks a global convergence result and, at best, achieves a q-
linear convergence rate [8]. Additionally, user-defined relaxation schemes are
usually required to achieve convergence. Newton-based methods, however,
are shown to be globally convergent with q-quadratic convergence rates. The
downside to Newton-based methods is that the need for residual and sensi-
tivity information requires more invasive access to application codes. While
access to analytical Jacobian matrices is commonly infeasible, Jacobian-free
Newton-Krylov (JFNK) methods [9] can be used to realize many of the ben-
efits of Newton-based methods while only requiring evaluation of nonlinear
functions. While JFNK methods have been successfully applied in many
areas, to date, the application to multiphysics reactor simulations has been
limited to few-group diffusion approximations to the transport equation with
analytic temperature feedback models not suitable for accurate reactor anal-
yses.

In this study, we investigate the performance of Anderson acceleration
and JFNK solvers compared to Picard iteration on multiphysics problems
that couple 3D discretizations of the radiation transport and heat transfer
equations along with a simple subchannel flow model for modeling of pres-
surized water reactors (PWRs). Although Newton and JFNK methods have
been used previously for neutronics-only problems [10, 11, 12] and even for
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multiphysics problems [13, 14, 15, 16, 17], previous studies have used only
few-group nuclear cross sections with analytic temperature variation. In this
study we consider the impact of utilizing many energy groups with on-line
generation of cross section data for use by the neutronics solver. One of
the dominant costs associated with the current model is the on-line genera-
tion of cross sections; a significant contribution of this paper is development
of a low-cost approximate function evaluation for the JFNK approach that
mitigates this cross section processing cost. Another notable contribution is
the design of a JFNK boron search formulation, allowing direct computa-
tion of the critical boron concentration as an alternative to standard indirect
searches. Coupling algorithms are evaluated on both criticality (k-eigenvalue)
and boron search problems.

The remainder of the paper is organized as follows: Section 2 describes
the physics models, Section 3 describes various coupling algorithms, Section
4 contains numerical results for a single PWR fuel assembly, and Section 5
presents conclusions and proposals for future areas of investigation.

2. Physics Models

In this paper, we consider the solution of multiphysics problems involving
coupling between neutron transport and heat transfer. In particular, we focus
on the solution of problems involving light water reactors (LWRs). Most of
the fundamental ideas described here are applicable to a wide range of reactor
types, but certain aspects of the problem, such as geometric features, are
particular to LWRs (and possibly PWRs in particular). For nuclear reactor
problems, the standard formulation of the neutron transport equation is the
k-eigenvalue problem

Ω̂ · ∇ψ(~r, E, Ω̂) + σ(~r, E, T )ψ(~r, E, Ω̂) =

1

4π

∫ ∞
0

dE ′
∫
4π

dΩ̂′ σs(~r, E
′ → E, Ω̂′ → Ω̂, T )ψ(~r, E ′, Ω̂′) +

1

4πk
χ(~r, E)

∫ ∞
0

dE ′
∫
4π

dΩ̂′ νσf (~r, E
′, T )ψ(~r, E ′, Ω̂′) , (1)

where ~r is the coordinate vector, Ω̂ is the direction of particle travel, E is
the particle energy, T is the temperature of the background material, σ is
the total cross section, σs is the scattering cross section, νσf is the neutron
production cross section, and χ is the fission spectrum. The goal for solving
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this equation is to find the largest value of the eigenvalue k and the corre-
sponding eigenvector ψ. Because Eq. (1) represents an eigenvalue problem,
the vector ψ has no explicit magnitude. We choose a natural normalization
by setting the global heat generation rate (due to nuclear fission occurring
in the fuel) to a pre-defined value, i.e.,

1

4π

∫
dV

∫ ∞
0

dE

∫
4π

dΩ̂κσfψ = P ∗ , (2)

where κ is the heat generated per fission event, and nonlocal energy deposi-
tion (e.g., gamma heating) effects have been ignored.

As noted in Eq. (1), the cross sections are dependent on the temperature
of the media, T . Thus, for a reactor not operating at a constant temperature,
it is also necessary to solve a heat conduction equation within the solid fuel
and clad regions, with fission providing the thermal source, i.e.,

−∇ ·K(T )∇T =
1

4π

∫ ∞
0

dE

∫
4π

dΩ̂κσf (E)ψ(E, Ω̂) , (3)

where K is the material thermal conductivity. Because no fission occurs in
the clad regions, the source in those locations is zero. The exterior surface
of the clad is then coupled to the coolant through the subchannel model
that solves equations describing the conservation of mass, momentum, and
energy,

∂ρ

∂t
+∇ · (ρ~v) = 0 (4)

∂ρvi
∂t

= −∇ · (ρvi~v) + (−∇p+∇ · ~τ)− ~g (5)

∂U

∂t
+∇ · (U~v) = −p∇ · ~v + Φ +∇K(T )∇T + q̇ , (6)

where ρ is the mass density, ~v is the velocity, p is the pressure, ~g is the force
exerted by gravity, ~τ is the viscosity tensor, U is the internal energy density,
Φ is the dissipation function, and q̇ is the thermal source. Note that the
internal energy density is related to the enthalpy density through U = h− p.
We solve these equations using a two-equation approximation in which we
assume that the coolant flow is only in the axial direction and neglect thermal
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diffusion between the channels [18]. Assuming steady-state, this reduces to

∂ρv2z
∂z

+
∂p

∂z
− ∂τ

∂z
= −g (−∇p+∇ · τ)− g , (7)

∂hvz
∂z

= −vz
∂p

∂z
− Φ +

∂

∂z
∇K(T )

∂T

∂z
+ q̇ . (8)

The thermal source consists primarily of convective heat transfer from the
clad and is the primary coupling mechanism with the temperature of the clad
and fuel pellets. The degrees of freedom for the subchannel model are the
enthalpy and pressure.

For notational simplicity, in the remainder of this document we will allow
T to refer to not only the solution of the thermal diffusion equation in the
pellets and clad, but also the solution to the subchannel equations. Our goal
is therefore to find distributions ψ, T and a value k such that Eqs. (1)–(3)
and (7)–(8) are simultaneously satisfied. For ease of notation, we introduce
an operator notation for discretized forms of the preceding equations:

A(T )φ = λBν(T )φ (9)

RSREBκ(T )φ = P ∗ (10)

L(T )T = REBκ(T )φ , (11)

where A represents the streaming, collision, and scattering terms from Eq. (1),
Bν/κ represents the fission integral weighted with ν (as in Eq. (1)) or κ (as in
Eqs. (2)–(3)), respectively, RS and RE are restriction operators in space and
energy, respectively, and L(T ) refers not only to the thermal diffusion equa-
tion (3), but also the subchannel equations of (7)–(8). Here, Eq. (9) has taken
advantage of the fact that only the angle-integrated variable φ (φ ≡

∫
ψ dΩ̂)

must generally be stored rather than the corresponding angle-dependent ψ.
In addition, we have written the eigenvalue as λ ≡ 1

k
.

2.1. Cross Section Processing

Problem-independent, evaluated nuclear cross section data is prepared for
use with deterministic transport by collapsing hundreds of thousands of data
points for every potential isotope to create multi-group cross section libraries
applicable to a class of problems, such as thermal-spectrum nuclear reactors
[19]. For each potential reaction (hundreds) of a neutron with every poten-
tial isotope (hundreds) in the multi-group library, the probability of that
interaction occuring (a cross section) has been averaged over many (tens to
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hundreds) neutron-energy groups at room temperature [20]. In addition, the
multi-group libraries contain additional data that enables the extension of
the data to approximate materials at other temperatures using an intermedi-
ate resonance theory approach [21]. In stand-alone neutronics calculations,
such as radiation shielding or criticality safety, this data is often used with a
deterministic transport solver to predict the spatial distribution of neutrons
in a system [22].

For multiphysics applications, such as nuclear reactor analysis, the com-
putational cost of modeling hundreds of energy groups is overly burdensome,
and the accuracy when directly using tens of energy groups is not sufficient.
Therefore, an additional cross section processing step is utilized to collapse
the multi-group cross section library generated for the class of problem (e.g.,
thermal reactor) into a smaller, problem-specific collapsed multi-group li-
brary, which can contain from two to tens of neutron energy groups. In
order for this collapsed multi-group data to accurately represent the energy
spectrum in the problem, it is necessary to compute the averages using a
weighting function that matches the true solution as closely as possible. This
weighting function is usually generated by performing several local multi-
group 1-D (pincell) or 2-D (lattice) transport calculations to capture local
nearest-neighbor contributions to the solution. Such a calculation must be
performed for every unique type of fuel pin in the problem. In addition, the
variation in material temperature on the collapsed data must be taken into
account [21].

The traditional approach is to precompute collapsed multi-group data at
several different temperatures and then interpolate the values to the tem-
perature of interest. A more accurate approach, however, is to perform a
separate cross section processing calculation at every different temperature
under consideration [4]. The latter approach of “on-line” generation of cross
sections is the method considered in this paper.

2.2. Critical Boron Search Formulation

A nuclear reactor operating under normal conditions is always maintained
in a critical state: k ≡ 1. Because of this, rather than compute the value of
k for a given reactor configuration it is sometimes preferred to compute the
value of some parameter which results in a critical configuration. In a PWR,
this parameter is often the concentration of soluble boron in the coolant. In
this case, a second formulation is defined where the eigenvalue is no longer an
unknown, and the matrix A becomes a function of the boron concentration,
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C. Thus Eq. (9) becomes

A(T,C)φ = λtargetBν(T )φ , (12)

where λtarget is the target eigenvalue for the search, which will typically be
unity for full core calculations but may be another value for calculations
involving only a portion of a reactor. Together with Eqs. (10) and (11),
Eq. (12) represents the problem statement for a critical boron search.

We briefly note that other single-parameter critical searches (e.g., control
rod height) can be written in a form similar to (12), with the matrices A and
possibly B depending on the given parameter. Additional critical searches
will not be considered further in this paper.

3. Solution Approaches

The radiation transport and heat transfer systems for the k-eigenvalue
formulation described in Eqs. (9)–(11) can be written as a single system of
coupled equations:

fλ

φλ
T

 =

fφ(φ, λ, T )
fλ(φ, T )
fT (φ, T )

 =

 A(T )φ− λBν(T )φ
RSREBκ(T )φ− P ∗
L(T )T −REBκ(T )φ

 = 0 . (13)

Alternatively, to solve the boron search problem described in Section 2.2, the
system can be written as

fC

φC
T

 =

fφ(φ,C, T )
fC(φ, T )
fT (φ, T )

 =

A(T,C)φ− λtargetBν(T )φ
RSREBκ(T )φ− P ∗
L(T )T −REBκ(T )φ

 = 0 . (14)

In this section we explore strategies for solving these systems of equations.

3.1. Picard Iteration

One straightforward approach to solving this system of equations is to
alternate between solves of the individual physics in a block Gauss-Seidel
approach. This Picard iteration can be written as shown in Alg. 1. It has
been observed in several studies with various physics approximations and/or
discretizations that this simple iteration scheme applied to LWR problems is
prone to poor convergence and possibly divergence due to oscillations induced
by certain error modes. The standard remedy for this issue is to introduce a
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Algorithm 1 Picard Iteration (Gauss-Seidel) for k-eigenvalue Formulation

Given T0
for m = 0, 1, . . . until converged do

Solve A(Tm)φ̂ = λBν(T
m)φ̂ for φ̂, λ

Set φm+1 = P ∗

RSREBκ(Tm)φ̂
φ̂

Solve L(Tm+1)Tm+1 = REBκ(T
m)φm+1 for Tm+1

end for

Algorithm 2 Damped Picard Iteration for k-eigenvalue Formulation

Given T0
for m = 0, 1, . . . until converged do

Solve A(Tm)φ̂ = λBν(T
m)φ̂ for φ̂, λ

Set φm+1 = P ∗

RSREBκ(Tm)φ̂
φ̂

Solve L(T̂ )T̂ = REBκ(T
m)φm+1 for T̂

Update Tm+1 = ωT̂ + (1− ω)Tm

end for

damping parameter, ω, such that Alg. 1 is replaced by the modified version
given in Alg. 2. Optimal values for the damping parameter are typically
between 0.3 and 0.6 [1, 2, 3]. Note that it is also possible to perform damping
on the scalar flux (or power) instead of temperature.

For the boron search formulation, since Eq. (12) does not represent a
linear eigenvalue problem the way that Eq. (9) does, solving the coupled
system of equations using Picard iteration is slightly more complicated. One
approach is to use a traditional solution approach (e.g., power iteration)
to solve the original eigenvalue problem, but to modify the algorithm so
that the boron concentration is updated instead of the eigenvalue [23, 24].
This approach, however, presents two problems. First, subspace eigenvalue
solvers (e.g., Arnoldi’s method, or a generalized Davidson method) that are
commonly far more efficient than power iteration can no longer be used.
Second, every time the boron concentration is modified, the problem cross
sections must be updated; this can be a significant computational expense
if cross sections are being processed on-line. A more common approach is
to solve the boron search problem indirectly by solving Eqs. (9)–(11), but
adding an extra outer iteration to update the boron concentration such that
the eigenvalue at convergence is unity, resulting in Alg. 3. In this approach,
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Algorithm 3 Damped Picard Iteration for Boron Search Formulation

Given T 0, C0, ∂ρ
∂C

for m = 0, 1, . . . until converged do
Solve A(Tm, Cm)φ̂ = λBν(T

m)φ̂ for φ̂, λ
Set φm+1 = P ∗

RSREBκ(Tm)φ̂
φ̂

Set Cm+1 = Cm − 1
∂ρ
∂C

(λtarget − λ)

Solve L(T̂ )T̂ = REBκ(T
m)φm+1 for T̂

Update Tm+1 = ωT̂ + (1− ω)Tm

end for

Algorithm 4 Anderson Acceleration

Given x0, β and m ≥ 1.
Set x1 = G(x0);F0 = G(x0)− x0.
for k = 1, 2, . . . (until converged) do

Set mk = min{m, k}.
Set Fk = G(xk)− xk.
Minimize ‖

∑mk
j=0 α

k
jFk−mk+j‖ subject to∑mk

j=0 α
k
j = 1.

Set xk+1 = (1− β)
∑mk

j=0 α
k
jxk−mk+j + β

∑mk
j=0 α

k
jG(xk−mk+j).

end for

an estimate for the derivative of the reactivity with respect to the boron
concentration, ∂ρ

∂C
, must be provided.

3.2. Anderson Acceleration

The Picard algorithms described above are an example of fixed-point
iteration

x = G(x). (15)

Recently, a fixed-point acceleration scheme called Anderson acceleration [25]
has garnered much attention and has been shown to be effective on certain
classes of problems [26, 27, 28]. The Anderson acceleration scheme is shown
in Alg. 4. The minimization problem is solved in the `2 norm as described
in Ref. [29].

Anderson acceleration is attractive for multiphysics coupling since it can
be applied with minimal requirements beyond what typical black-box Pi-
card coupling requires (i.e., it is non-invasive). Anderson acceleration builds
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on Picard iteration by storing solutions from previous fixed-point iterations
to accelerate convergence. Fang and Saad [26] have shown that Anderson
is related to quasi-Newton methods (known as a type II Broyden or “bad”
Broyden), while Walker and Ni [29] have shown that for linear systems of
equations, Anderson is “essentially equivalent” to GMRES. Toth and Kelley
[30] have furter characterized the convergence behavior of Anderson acceler-
ation. Lott et. al. [27] have shown, for instance, that Anderson not only
improved the speed of convergence, but also significantly improved the ro-
bustness.

Although it is possible to apply Anderson acceleration directly to the
monolithic residual set of Eq. (13) (e.g., Fk = fλ), preliminary studies in-
dicate that this approach exhibits very poor convergence behavior for the
problem of interest and is unlikely to be competitive without significant work
to develop appropriate preconditioning techniques (Fk = M−1fλ, where M−1

is the preconditioning operator). Note that an approach similar to this was
used for the stand-alone neutronics k-eigenvalue problem in Ref. [28] with
some success, though the absence of multiphysics feedback and the differing
solution algorithms used for comparison make it difficult to draw substantive
comparisons to our current problem. A more effective approach is to use
Anderson acceleration to accelerate and/or stabilize Picard iteration. Based
on Alg. 1, we can define two fixed-point maps. First we define a mapping,
P = g(T ), that computes a power distribution from a known temperature
distribution, i.e.,

P = P ∗
REBκ(T )φ

RSREBκ(T )φ
, (16)

where φ is the solution to the eigenvalue problem

A(T )φ = λBν(T )φ. (17)

Next we define a second mapping, T = h(P ), that is given by solving the
nonlinear equation

L(T )T = P. (18)

With this notation, the Picard iteration scheme described by Alg. 1 can be
written as the fixed-point mapping

T j+1 = h
(
g(T j)

)
, (19)

which can be solved using Anderson acceleration. Alternative mappings are
also possible, such as the reverse mapping that acts on the power unknowns,
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Algorithm 5 Inexact Newton Method [31]

Given x0 and η ∈ [0, 1)
for m = 0, 1, . . . until converged do

Solve (approximately) J(xm)δx = −f(xm) for δx such that
‖f(xm) + J(xm)δx‖ ≤ η‖f(xm)‖.
Set xm+1 = δx+ xm.

end for

i.e.
P j+1 = g

(
h(P j)

)
, (20)

or even a mapping the allows acceleration of all unknowns, i.e.

xj+1 =

(
T j+1

P j+1

)
=

(
g(T j)
h(P j)

)
. (21)

In this work, we apply Anderson acceleration to the fixed-point mapping
in Eq. (19); the mappings of Eqs. (20) and (21) were tested and produced
similar results.

3.3. Jacobian-Free Newton-Krylov

An alternative approach for solving Eq. (13) is to use an Inexact Newton
method [31] (Alg. 5). Computation of the Jacobian matrix, J = ∂f

∂x
, is

generally not possible because the temperature dependence of nuclear data
is not available in closed form, but is rather the result of solving numerous
local transport problems as described in Section 2.1. The availability of a
nonlinear function but difficulty in formulating the corresponding Jacobian
matrix suggests that the use of Jacobian-free Newton Krylov (JFNK) meth-
ods might be appropriate [9, 32]. JFNK methods are based on two primary
ideas. First, if the Newton correction equation is solved using a Krylov sub-
space method, then access to the full Jacobian matrix is not necessary; only
the action of the Jacobian applied to a vector is required. The second idea
is that the product of the Jacobian and a given vector can be approximated
using a finite difference approach, e.g.,

J(um)v ≈ f(um + εv)− f(um)

ε
. (22)

Note that second (or higher) order approximations are possible (as is the use
of automatic differentiation to approximate Jv), but the form in Eq. (22) is
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far more common because it requires only a single function evaluation per
Jacobian-vector product. This is because the value of f(um) can be computed
and stored once per Newton iteration so that each subsequent Jacobian-
vector product requires only the evaluation of f(um+εv). The JFNK method
therefore allows an approximate Newton method to be performed using only
evaluations of the nonlinear function. Discussions on the selection of ε can
be found in Ref. [9].

JFNK methods have been used previously to solve the k-eigenvalue prob-
lem by itself [10, 11, 12], as well as time-dependent multiphysics problems
involving radiation transport coupled with thermal-hydraulics [14, 15]. Ad-
ditionally, steady-state coupling between neutron diffusion and thermal hy-
draulics using Newton’s method (not JFNK) was studied in Refs. [13] and
[16]. A significant distinguishing feature between these studies and the cur-
rent work is that all of the previous studies used nuclear cross sections that
were either fixed or allowed to vary in a prescribed, analytic manner. In this
study, we consider “on-line” cross section processing in which the methods
described in Section 2.1 are applied during the course of the calculation. Fur-
thermore, the cited studies all use a very small number of energy groups (no
more than seven groups were used in any of these studies, and two-group cross
sections were used in all cases considering multiphysics problems), while the
current study considers the use of as many as 23 energy groups with cross
section processing using up to 252 groups. This approach is necessary to
achieve the accuracy required for typical reactor physics analyses [4, 5, 33].
Finally, we are aware of no study that provides a direct comparison of the
computational efficiency of Picard iteration and any Newton-based method
for coupled neutronics problems. As we will see in Section 4, a straightfor-
ward application of JFNK does not result in a viable solution approach when
on-line cross section processing is performed.

3.3.1. JFNK Preconditioning

In order for JFNK to be competitive with other solution approaches, it
is necessary to efficiently solve the Newton correction equation. Because
a Krylov method is used to solve the linear system involving the Jacobian
matrix, the development of effective preconditioning strategies is vital. Al-
though the use of JFNK eliminates the need to explicitly form or store the
Jacobian matrix, some knowledge about the Jacobian is still beneficial in the
construction of a preconditioner. The true Jacobian corresponding to the
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k-eigenvalue formulation defined by (13) can be written as

Jλ

φλ
T

 =


A(T )− λBν(T ) −Bν(T )φ

∂(A(T )φ− λBν(T )φ)

∂T

RSREBκ(T ) 0
∂(RSREBκ(T )φ)

∂T

−REBκ(T ) 0
∂(L(T )T −REBκ(T )φ)

∂T


, (23)

where the entries in the last column of this block matrix are left as par-
tial derivatives with respect to temperature to indicate that these terms are
generally not available in closed form due to the dependence on material
properties. Similarly, the Jacobian matrix corresponding to the boron search
formulation in (14) can be written as

JC

φC
T

 =


A(T )− λtargetBν(T )

∂ (A(T )φ)

∂C

∂(A(T )φ− λBν(T )φ)

∂T

RSREBκ(T ) 0
∂(RSREBκ(T )φ)

∂T

−REBκ(T ) 0
∂(L(T )T −REBκ(T )φ)

∂T


.

(24)
A simple approach to preconditioning a linear system involving (23) or

(24) is a block diagonal approach in which preconditioners for each physics
are applied independently, i.e.,

M =

Â− λB̂ν 0 0
0 1 0

0 0 L̂

 , (25)

where (̂·) indicates that some approximation of the operator is used in the pre-
conditioner. Possible choices for this approximation include incomplete fac-
torizations, algebraic multigrid methods, or physics-based approximations.
This preconditioner selection has the advantages of being relatively simple to
construct and inexpensive to apply (assuming the approximations to the in-
dividual physics operators are inexpensive). Additionally, the block diagonal
structure of this preconditioner means that the different physics components
can be applied independently and simultaneously, allowing for the possibility
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to treat the physics domains simultaneously in parallel. Neglecting all terms
in the Jacobian that correspond to coupling between different physics com-
ponents may lead to a reduction in the effectiveness of the preconditioner.
Therefore, it may be beneficial to capture some of the off-diagonal terms
from the true Jacobian. Possible approaches for moving beyond block-Jacobi
preconditioning include Schur complement and operator splitting based tech-
niques, such as those considered in Ref. [34] for coupled radiation diffusion
problems, but are not considered further in this work. Development of pre-
conditioning strategies that account for coupling behavior between physics
components has the potential to significantly improve the convergence be-
havior of the JFNK approach and the development of such techniques is an
attractive area of research for future investigations.

3.3.2. Approximate Jacobian-Vector Products

As noted in Section 2, the cross section data in Eq. (1) is dependent on
the material temperature, resulting in the temperature dependence of the
matrices A and B. Generating data suitable for use in a deterministic radi-
ation transport solver generally involves performing a large number of small
(1-D or 2-D) radiation transport calculations involving many energy groups,
as described in Section 2.1. Because the tabulated data used in these small
calculations is temperature dependent, a new calculation must be performed
for every region in the reactor for which a distinct temperature is defined.
Furthermore, every time the temperature of a given region is modified, a
new calculation must be performed. Although each individual calculation
represents a relatively small computational burden, the large number of cal-
culations that may be required in a given simulation may result in a large
portion of the overall computational effort being spent in this cross section
processing. Using the JFNK method, evaluation of the function in Eq. (13)
at a perturbed state point appears as

fλ


φ+ ∆φ

λ+ ∆λ

T + ∆T

 =


A(T + ∆T )(φ+ ∆φ)− (λ+ ∆λ)Bν(T + ∆T )(φ+ ∆φ)

RSREBκ(T + ∆T )(φ+ ∆φ)− P ∗

L(T + ∆T )(T + ∆T )−REBκ(T + ∆T )(φ+ ∆φ)

 ,
(26)
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and, similarly, evaluation of Eq. (14) results in

fC


φ+ ∆φ

C + ∆C

T + ∆T

 =


A(T + ∆T,C + ∆C)(φ+ ∆φ)− λtargetBν(T + ∆T )(φ+ ∆φ)

RSREBκ(T + ∆T )(φ+ ∆φ)− P ∗

L(T + ∆T )(T + ∆T )−REBκ(T + ∆T )(φ+ ∆φ)

 ,
(27)

where the appearance of A(T + ∆T ) and Bν(T + ∆T ) indicate the need
to recompute cross sections based on the perturbed temperature distribution
and boron concentration at every linear (Krylov) iteration. This is in contrast
to Picard iteration, where cross sections only need updating once every fixed-
point iteration. With the expectation that several Newton iterations will
be required to converge a given problem and potentially dozens of linear
iterations will be necessary for every Newton iteration, the time spent simply
updating cross sections is likely to be prohibitive with a straightforward
application of JFNK.

In order to circumvent this potential bottleneck, we propose using an
approximate Newton update equation,

Ĵ(um)δm = −f(um) , (28)

where Ĵ indicates that an approximation to the Jacobian is used. In contrast
to inexact Newton methods which involve solving the true Newton correc-
tion equation in an approximate manner [31], the current approach is more
accurately described as a preconditioned Picard iteration [8]. In the interest
of maintaining the attractive matrix-free nature of JFNK, we can determine
a corresponding approximate function evaluation, f̂ , such that a finite differ-
ence operation approximates a product with Ĵ rather than the full Jacobian,
i.e.,

Ĵ(um)v ≈ f̂(um + εv)− f(um)

ε
, (29)

where f̂ is an approximation to Eq. (13) that does not require recalculation
of cross section data. This approach is consistent with strategies studied in
Ref. [35]; utilizing inexactness in the function evaluations within JFNK was
also studied in Ref. [36], although in that study the model used to perform
approximate function evaluations was periodically updated to capture addi-
tional physics information, whereas the approximation in the current study
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remains static. It should be noted that the full nonlinear function, including
processing of all cross sections, must still be evaluated once for every nonlin-
ear iteration and is used to evaluate convergence of the nonlinear iterations.

We explore two approximations to the Jacobian-vector product in this pa-
per. The first approximation is to simply neglect the temperature variation of
cross sections during an approximate Jacobian-vector product, corresponding
to an approximate Jacobian of

Ĵλ


φ

λ

T

 =


A(T )− λBν(T ) −Bν(T )φ 0

RSREBκ(T ) 0 0

−REBκ(T ) 0
∂(L(T )T )

∂T

 , (30)

or, equivalently, an approximate function evaluation of

f̂λ


φ+ ∆φ

λ+ ∆λ

T + ∆T

 =


A(T )(φ+ ∆φ)− (λ+ ∆λ)Bν(T )(φ+ ∆φ)

RSREBκ(T )(φ+ ∆φ)− P ∗

L(T + ∆T )(T + ∆T )−REBκ(T )(φ+ ∆φ)

 . (31)

This selection, however, results in no updated temperature (or boron) infor-
mation exchange being communicated from the heat transfer solver to the
neutronics domain during a given nonlinear iteration. This lack of informa-
tion is expected to have a detrimental effect on the convergence behavior of
the nonlinear solver. We denote this modified JFNK method as MJFNK1
in the results section. For the boron search formulation, the equivalent ap-
proximate Jacobian (neglecting the dependence of the cross sections on both
temperature and boron concentration) is given by

ĴC


φ

C

T

 =


A(T,C)− λtargetBν(T,C) 0 0

RSREBκ(T,C) 0 0

−REBκ(T,C) 0
∂(L(T )T )

∂T

 . (32)

Note that this matrix is block lower triangular and has a zero diagonal block,
so it is singular regardless of φ, C, or T and should not be expected to produce
a viable method.
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Figure 1: Temperature dependence of 23 group homogenized absorption cross sections for
a 3.1% enriched PWR fuel pin. Each curve represents the absorption cross section in a
different energy group relative to the group value at T = 600K.

It is possible to include some information about the temperature feedback
effect on cross sections without performing a full cross section processing
step at each function evaluation. One such approach can be accomplished by
noting that the strongest temperature feedback effect is due to an increase in
absorption with increasing temperature (largely due to Doppler broadening
in 238U). As shown in Fig. 1, the temperature dependence of absorption cross
sections, σa, is approximately linear over a wide range of temperatures (this
dependence is often stated as being proportional to

√
T [37], however, we

feel that a linear fit more accurately represents our data). This suggests a
modification to the Jacobian approximation of Eq. (30) which uses a linear
approximation to the temperature dependence of the absorption cross section
and neglects the temperature dependence of all other cross sections:

Ĵλ


φ

λ

T

 =


A(T )− λBν(T ) −Bν(T )φ

∂σa
∂T

φ

RSREBκ(T ) 0 0

−REBκ(T ) 0
∂(L(T )T )

∂T

 . (33)
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The function evaluation corresponding to Eq. (33) is

f̂λ


φ+ ∆φ

λ+ ∆λ

T + ∆T

 =


A(T )(φ+ ∆φ)− (λ+ ∆λ)Bν(T )(φ+ ∆φ) +

∂σa
∂T

φ∆T

RSREBκ(T )(φ+ ∆φ)− P ∗

L(T + ∆T )(T + ∆T )−REBκ(T )(φ+ ∆φ)

 .
(34)

Because the cross sections, and the absorption cross sections in particular,
are strongly dependent on the boron concentration, an additional correction
term to account for the change in absorption due to changes in the boron
concentration must be added. With this term, the analog of Eq. (33) is

ĴC


φ

C

T

 =


A(T,C)− λtargetBν(T,C)

∂σa
∂C

φ
∂σa
∂T

φ

RSREBκ(T,C) 0 0

−REBκ(T,C) 0
∂(L(T )T )

∂T

 (35)

with a corresponding function evaluation of

f̂C


φ+ ∆φ

C + ∆C

T + ∆T

 =


A(T,C)(φ+ ∆φ)− λtargetBν(T,C)(φ+ ∆φ) +

∂σa
∂T

φ∆T +
∂σa
∂C

φ∆C

RSREBκ(T,C)(φ+ ∆φ)− P ∗

L(T + ∆T )(T + ∆T )−REBκ(T,C)(φ+ ∆φ)

 .
(36)

In writing the two derivatives separately, we are assuming that the temper-
ature and boron derivatives are independent of each other. Although there
will certainly be some slight dependence, because the temperature derivative
is isolated to the fuel and the boron derivative is isolated to the moderator, it
is expected that the dependence will be slight. The presence of the derivative
terms in Eq. (35) is expected to remedy the singular Jacobian of Eq. (32).
Adding the feedback of absorption sensitivities to the approximated residuals
is described as MJFNK2 in Section 4.

4. Results

For the numerical experiments in this paper, the radiation transport equa-
tion is approximated using the simplified PN (SPN) angular approximation
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[38, 39, 40]. These equations are discretized spatially using a finite volume
approach as implemented in the Denovo package [41]. The simple nature of
the SPN equations offers significant advantages in the current study: the op-
erators A and B from Eq. (9) can be explicitly constructed as sparse matrices
and, therefore, algebraic preconditioners (algebraic multigrid, for instance)
can be easily applied. Aside from the development of appropriate precon-
ditioners, it is expected that similar behavior would be observed for other
transport formulations (such as discrete ordinates). The cross sections used
by the SPN equations are generated by the XSProc module of the SCALE
package [21]. The heat transfer and subchannel equations are solved using the
Advanced Multiphysics (AMP) package [42, 43]. The heat transfer equation
is discretized using standard trilinear continuous Galerkin finite elements and
the subchannel equations employ a finite difference approximation [18]. Val-
idation of the pin heat transfer models in AMP has been performed through
comparison to data from several experiments [44, 45]. Preliminary investiga-
tion into multiphysics coupling involving AMP and Denovo was performed
in Ref. [46].

To test the behavior of different nonlinear solvers on a realistic problem,
we consider the solution of CASL AMA Progression Problem 6 [4]. This
problem consists of a single 17 × 17 PWR fuel assembly with 264 fuel pins
containing 3.1% enriched UO2, 24 guide tubes, and a single central instru-
mentation tube. Eight spacer grids are located along the axial length of the
assembly, as well as upper and lower assembly nozzles. A full description
of the problem, including detailed material and geometric specifications, is
contained in Ref. [4].

For the base configuration, we model the assembly at a power of 17.67
MW and 1300 ppm dissolved boron; the effect of power level on solver con-
vergence will be studied later in this section. The base configuration uses a
252 energy group cross section library and the XSProc module of the SCALE
package to collapse these cross sections to 23 groups for Denovo SPN calcu-
lations. Distinct cross sections are used for each fuel pin and each of 49 axial
levels. An SP3 angular order (containing two angular moments) is used for
all calculations, along with P1 scattering. A 2 × 2 spatial mesh per pin cell
is used in the x–y plane, with a maximum axial mesh size of 2 cm, resulting
in 290,156 mesh cells for the full assembly. The AMP heat transfer problem
contains 15,504 mesh cells per fuel pin (over both the fuel and clad meshes),
resulting in approximately 4.1 million total cells. A linear continuous finite
element discretization of the heat transfer problem is used. All problems in
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this study are executed in parallel on 289 processing cores, resulting in a
decomposition of one fuel pin per core. All calculations were performed on
the Oak Ridge Leadership Computing Facility Eos cluster, a 744-node Cray
XC30 cluster.

Five different solver approaches are considered. First is a damped Picard
iteration with the damping applied to the temperature component of the solu-
tion as described in Section 3. Except where otherwise noted, all calculations
use a damping factor of ω = 0.5 which appears to produce nearly optimal
convergence behavior for a wide range of problems. Within Picard iteration,
the k-eigenvalue problem is solved with a generalized Davidson eigensolver,
which has been shown to be highly efficient for solving the k-eigenvalue prob-
lem [47, 48], and the heat transfer and subchannel flow equations are solved
simultaneously using a JFNK approach. The second solver consists of Ander-
son acceleration applied to the fixed point map of Eq. (19). Inner iterations
are performed exactly the same as in Picard iteration. Except when specif-
ically stated, a mixing parameter of β = 0.75 is used. A storage depth (the
number of previous residuals used by the Anderson acceleration algorithm)
of m = 2 is used in all cases; varying this parameter yielded no improvements
to either the rate of convergence or the robustness of the solver.

The next solution approach consists of a full JFNK solver using the non-
linear function evaluation described by Eq. (13). Recall that this selection
requires performing full cross section processing at every linear iteration of
the Krylov solver. The final two solvers are modified JFNK approaches
based on the function evaluations in Section 3.3.2. The approach denoted
by MJFNK1 corresponds to the function evaluation of Eq. (31), in which
the temperature dependence of the cross sections is entirely neglected during
a nonlinear iteration. The approach denoted by MJFNK2 corresponds to
Eq. (34), in which a linear approximation to the temperature dependence
of the absorption cross section is used during each nonlinear iteration. This
linear approximation is determined by performing stand-alone XSProc cal-
culations at 600K and 1500K to compute pin-homogenized absorption cross
sections (the clad and coolant are kept at the nominal value of 565K for
these calculations). In both modified JFNK approaches, only a single cross
section processing step is performed per nonlinear iteration. In all of the
JFNK-based methods, a scale factor of 10−3 is applied to the component of
the residual corresponding to Eq. (10), effectively converting the units of the
power from AMP’s native W/kg to W/g. This scaling brings the magnitude
of the residual more in line with the other residual components and provides
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a slight improvement in convergence behavior. All other components are left
unscaled.

Preconditioning of the radiation transport problem is accomplished using
a physics-based multigrid in energy preconditioner [49], and the heat trans-
fer problem is preconditioned using an algebraic multigrid approach from
the Trilinos ML package [50]. Within Picard and Anderson, the transport
preconditioner is used directly for subspace expansion within the generalized
Davidson solver, and the heat transfer preconditioner is applied to the linear
solver within the JFNK solver. In the JFNK approaches, a block diagonal
preconditioner is formed using the individual physics preconditioners. Be-
cause the preconditioner selection is the same in all cases, we believe this
presents the fairest possible comparison of the solvers. The nonlinear stop-
ping tolerance for all cases is τ = 10−4, although the stopping criterion is
applied slightly differently for each solver. For Picard iteration and Ander-
son acceleration, the stopping criterion is when the relative L2 norm of the
update for each variable (temperature and power) separately is less than the
prescribed tolerance, i.e.,

‖T k+1 − T k‖2
‖T k+1‖2

< τ, and (37)

‖P k+1 − P k‖2
‖P k+1‖2

< τ . (38)

For the JFNK-based methods, the absolute length-scaled norm of the func-
tion defined by Eq. (13) is used. A brief numerical justification of the equiva-
lence of these differing stopping criteria will be provided later in this section.
For Picard and Anderson iteration, the convergence tolerance is fixed at 10−5

for the heat transfer problem and at 10−7 for the transport eigenvalue prob-
lem. For the JFNK methods, a fixed linear solver tolerance of 10−5 is used.
More sophisticated inner stopping criteria have been developed to reduce the
time to solution [51] and in some cases even improve the robustness of the
nonlinear solver [52]. Optimization of inner stopping criteria remains an area
for future investigation.

Figure 2 shows the convergence behavior for each of the solvers consid-
ered. Picard iteration demonstrates the expected linear convergence rate.
Anderson acceleration displays a more erratic convergence curve, although
the average rate of convergence is quite comparable to Picard. Convergence
for the full JFNK method is quadratic, as expected for a Newton method.
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MJFNK1 follows the convergence behavior of the full JFNK for the first few
iterations before deviating and ultimately converging linearly with a rate
similar to that of Picard iteration. MJFNK2 follows the convergence rate
of full JFNK even more closely, and although it eventually deviates from
quadratic convergence at small residual norms, it still converges at a very
rapid rate. The deviation from quadratic convergence is expected because
the Newton correction equation has been altered through the use of the ap-
proximate function evaluations; the departure from quadratic convergence
occurs when the residual norm is approximately the same magnitude as the
error between the true and approximate functional evaluations. The rea-
son for the erratic behavior of Picard iteration and Anderson acceleration at
residual norms below 10−6 is not clear. Although the convergence tolerances
used to generate this plot are several orders of magnitude smaller than what
is often applied to such multiphysics problems, there are certain applications
(e.g., sensitivity and uncertainty quantification) that may require the ability
to converge problems very accurately.

Table 1 shows the effect of the stopping criteria on the time to solution.
The coarsest tolerance is representative of a typical value for an engineering-
scale calculation, and the finer tolerances are indicative of possible values
used in sensitivity studies. This study clearly displays the issue with a “pure”
JFNK implementation that was described in Section 3.3.2: although the con-
vergence is very favorable with respect to the number of nonlinear iterations,
each iteration is very costly due to the cross section processing that must be
done at every linear iteration. The modified JFNK approaches avoid most of
this cross section processing expense, resulting in much lower time to solution.
MJFNK2, in particular, performs exceptionally well, resulting in a smaller
time to solution than any other approach at all convergence tolerances. The
fast convergence rate is particularly noticeable at tighter tolerances.

To clearly demonstrate the reason for the poor timing behavior of the
full JFNK approach, and also to compare the merits of the different solvers,
we now look at varying the energy resolution of the problem, both in the
cross section processing and in the construction of the SPN matrices. This
allows us to vary the cost of cross section processing from (relatively) cheap
to very expensive. Figure 3 shows the overall timing results for each solver,
and Tables 2–4 provide a breakdown of the timing by individual physics
component. The most obvious trend is the sharp increase in the JFNK
run time as the number of XSProc energy groups is increased. With only
eight energy groups, JFNK is reasonably competitive with (albeit still slower
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Figure 2: Nonlinear convergence behavior for different solvers.

Convergence Tolerance

Method 10−4 10−5 10−6 10−7

Picard 2437 3197 3981 DNC
Anderson 2647 3204 3490 4603

JFNK 46653 46653 46653 46653
MJFNK1 2263 3684 6097 7930
MJFNK2 1846 1846 1846 2283

Table 1: Solver timing in seconds as function of convergence tolerance. DNC indicates
that the method failed to achieve the prescribed tolerance after 50 iterations.
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than) the other methods, but, with 252 XSProc groups, JFNK is more than
25 times slower than any other solver. Because of the poor performance
with the 252 group library, which is the preferred approach for engineering
analyses [4, 33], the JFNK approach is excluded from consideration in the
remaining studies in this paper.

The remaining solvers all result in somewhat similar behavior over the
range of energy group structures. In all cases, MJFNK2 is the most effi-
cient solver, typically 25–30% faster than Picard iteration. In general, the
JFNK-based approaches result in less time being spent in cross section pro-
cessing and the thermal diffusion components of the calculation, but modest
increases in the time spent in the SPN portion of the calculation. It should
be noted that the generalized Davidson eigenvalue solver used in Picard and
Anderson was shown in Refs. [47, 48] to be highly efficient for solving the
SN k-eigenvalue problem, and the same conclusion was made for the SPN

version of the problem considered here in Ref. [49]. For stand-alone neutron-
ics solvers not utilizing such an efficient approach, it is very possible that a
reduction in computational effort for the transport portion of the problem
could also be reduced relative to Picard. Some caution should be taken when
interpreting the individual timings in Tables 2–4, because physics operators
(and particularly preconditioning) are applied differently in Picard/Anderson
versus the JFNK-based methods. Therefore, a perfect comparison is gener-
ally not possible. We have made an effort to separate the different compo-
nents consistently, but some cases (particularly the SPN component) result
in significantly different times per application of the operator between the
methods. Additionally, operations such as mesh generation, reading of input
files, writing of output files, and mesh transfer operations are included in
the total solution time but not in any of the individual physics components.
Thus the sum of the components may be significantly less than the total run
time. In particular, mesh transfer operations are performed more frequently
in the JFNK-based methods (once per linear iteration rather than once per
nonlinear iteration with Picard), resulting in more time not accounted for in
the individual physics components.

The convergence behavior of Picard iteration and Anderson acceleration
as a function of damping/mixing parameter at several different power levels
is shown in Fig. 4. The Picard curve shows the same general shape as the
corresponding plot from Ref. [46] and is consistent with the behavior ob-
served in Refs. [1, 2, 3], all of which reported using damping factors between
0.3 and 0.6. An interesting feature of this curve is that the convergence be-
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Figure 3: Convergence behavior with different energy resolution.
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Method Total SPN Thermal XSProc

Picard 709 (9) 18 (267) 615 (283) 43 (9)
Anderson 814 (10) 21 (319) 704 (321) 52 (11)

JFNK 1836 (4) 54 (249) 395 (249) 1244 (249)
MJFNK1 715 (5) 64 (296) 457 (296) 27 (6)
MJFNK2 552 (4) 46 (219) 339 (219) 23 (5)

Table 2: Timing in seconds (operator applies) by component for 8 group XSProc, 8 group
SPN .

Method Total SPN Thermal XSProc

Picard 988 (9) 91 (329) 638 (295) 206 (9)
Anderson 1032 (8) 96 (347) 676 (308) 205 (9)

JFNK 6545 (4) 165 (234) 393 (234) 5705 (234)
MJFNK1 1415 (6) 284 (429) 669 (429) 160 (7)
MJFNK2 862 (4) 154 (236) 366 (236) 114 (5)

Table 3: Timing in seconds (operator applies) by component for 56 group XSProc, 23
group SPN .

Method Total SPN Thermal XSProc

Picard 2437 (9) 81 (296) 470 (296) 1507 (9)
Anderson 2647 (9) 92 (332) 483 (305) 1673 (10)

JFNK 46653 (4) 173 (252) 417 (252) 45472 (252)
MJFNK1 2263 (5) 210 (323) 499 (323) 1003 (6)
MJFNK2 1846 (4) 145 (224) 346 (224) 835 (5)

Table 4: Timing in seconds (operator applies) by component for 252 group XSProc, 23
group SPN .
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havior depends on the power level, with high power levels requiring smaller
damping factors for optimal convergence. Anderson acceleration exhibits a
less dramatic dependence on the mixing parameter, β. For a given power
level, the number of iterations to convergence varies by only 2 or 3 iterations
within a given range of mixing parameters, and convergence is not achieved
outside of this window. The locations where Anderson acceleration does not
converge do not represent true divergence of the method, but rather, the
failure to converge occurs due to the finite bounds on material models being
violated by the estimate of the solution at some iteration. It is very possible
that either extending the material models or modifyng the solution vector to
remain within the bounds of the models would allow Anderson acceleration
to converge. The reason for these sharp bounds on the window of conver-
gence for the Anderson mixing parameter is not well understood. As with
Picard iteration, the region of convergence shifts slightly as the power level
increases, and the number of iterations required to converge also increases
slightly.

Table 5 provides the time required to achieve convergence for each solution
strategy at four different power levels. The time required for Picard iteration
and Anderson acceleration to converge is approximately constant for most
power levels, showing a slight upward trend at higher power levels, indicating
that stronger coupling is present at high power. MJFNK1 performs very
well at low power levels, reducing runtimes relative to Picard or Anderson.
At high power levels, however, the time required for convergence greatly
increases, reaching nearly twice the runtime of Picard at 140% power. This
behavior is easily understood by noting that the low heat generation rate at
low power results in relatively small changes in temperature, and therefore
the effect of neglecting the temperature dependence of cross sections is not
too large. High power levels, however, produce large temperature variations
and a corresponding degradation in convergence due to not capturing the
effects of changes in cross sections. The second modified JFNK approach
performs very well across all power levels, resulting in the fastest time to
solution for all cases and displaying very little variation with power level,
even out to 140% power.

Table 6 shows the behavior of the solvers for the solution of the critical
boron search problem described in Section 2.2 compared to the standard k-
eigenvalue form of the problem. The target eigenvalue for the boron search
is λtarget = 1

1.2
. Picard iteration uses the approach defined by Eq. (14), and

Anderson acceleration uses a fixed point map based on that equation. A
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Figure 4: Convergence behavior at different power levels.
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Power Level

Method 80% 100% 120% 140%

Picard 2155 2437 2728 3020
Anderson 2499 2508 2732 3297
MJFNK1 1890 2263 4012 5417
MJFNK2 1466 1846 1839 1863

Table 5: Solver timing in seconds as function of power level.

k-eigenvalue Boron Search
Method Iterations Time (s) Iterations Time (s)

Picard 9 2437 12 3056
Anderson 9 2647 9 2770
MJFNK2 4 1846 4 1945

Table 6: Solver comparison for boron search problem.

fixed value of ∂ρ
∂C

= 8 × 10−5 (as defined in Section 3.1) is used in these
calculations. As discussed in Section 3.3.2, the MJFNK1 approach results in
a singular Jacobian for the boron search problem and therefore was excluded
from consideration. No attempt was made to modify the function evaluation
to produce a nonsingular Jacobian, although it may be possible to do so.
MJFNK2 requires not only an approximation of the temperature derivative of
the absorption cross section, but also an approximation of the corresponding
derivative with respect to boron concentration as seen in Eq. (36). This
value was computed by performing cross section evaluations at 0 ppm and
2000 ppm boron and using the resulting slope as the derivative. Relative
to the standard k-eigenvalue form of the coupled problem, Picard requires
a few extra iterations to converge, indicating a slightly stronger coupling
between physics in this problem. Anderson acceleration and MJFNK2 show
much more robustness on this problem, displaying almost no variation in
convergence behavior when moving from the standard eigenvalue search to
the boron search.

It was noted earlier in this section that a different stopping criteria must
be applied for JFNK-style methods as compared to the more standard crite-
ria that are applied within Picard iteration and Anderson acceleration. To
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Figure 5: Relationship between residual norm and eigenvalue accuracy.

evaluate whether these differing stopping criteria are appropriate, we plot
the error in the computed eigenvalue in Fig. 5 as a function of the residual
norm for the different solver types. Because all of the JFNK-style methods
evaluate convergence based on identical criteria, only a single curve is used
to represent their collective behavior. The reference eigenvalue is the mean
of the values computed by these three methods at a convergence tolerance of
τ = 10−7, which were in agreement to nearly eight digits. These curves indi-
cate that while perfect agreement is clearly not possible, comparable accuracy
is achieved for all methods. At most residual norm values, the discrepancy
in the eigenvalue accuracy amongst the methods is almost always less than
an order of magnitude.

A brief mention should be made of the memory usage of the various so-
lution approaches. It should be noted that all vectors used were stored as
double precision arrays. Picard iteration uses virtually no memory on its own
(only a single extra copy of the solution vector to determine convergence),
and therefore the memory usage is determined by the individual solvers. In
this study, the JFNK solver used by the heat transfer solver internally uses a
GMRES linear solver, which requires a subspace with up to 20 vectors con-
taining the thermal solution. The generalized Davidson solver used in the
SPN calculations requires multiple subspaces, which combined requires the
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storage of up to 75 vectors of the length of the SPN solution vector. Memory
requirements for Anderson acceleration are equivalent to Picard, except that
a small number of additional vectors (in this study, 2) are used by the solver.
For the JFNK-based methods, the primary memory requirement is through
the GMRES linear solver used. In this study, no restarting was employed.
This resulted in a subspace size of as many as 80 vectors, each having the
combined length of the thermal and SPN solutions. Note that all of the
GMRES linear solvers, as well as the generalized Davidson solver, offer the
possibility of more aggressive restarting capabilities to limit the size of the
subspaces that are used, typically at a cost of performing a small number
of additional iterations to reach the same convergence criteria. In addition
to memory associated with solver subspaces, there is an additional memory
cost associated with forming the problem operators and corresponding pre-
conditioners. These costs, however, are consistent across every solver option
because consistent parameters and preconditioning options were used.

5. Conclusions

In this study we have provided an assessment of several different non-
linear solvers for use in problems involving coupled neutronics and thermal
hydraulics. In particular, comparisons of damped Picard iteration, Ander-
son acceleration, and Jacobian-free Newton-Krylov have been performed.
Because a näıve implementation of JFNK results in performing a very large
number of cross section processing steps, two modified variants of JFNK have
been introduced that only require processing cross sections at each nonlinear
iteration. Numerical results on CASL AMA Problem 6 indicate that if on-
line generation of cross sections represents a large portion of the runtime of
a calculation, then a direct JFNK implementation results in a prohibitively
large number of cross section processing steps. It has been shown that ap-
proximations to the nonlinear operator that avoid cross section processing
can largely preserve the fast convergence rate of JFNK without the overhead.
Although the computational gains for Newton methods relative to Picard it-
eration were modest in this study, it is evident that the convergence behavior
is more robust than that of Picard iteration and is not subject to the selection
and optimization of a damping parameter.

Although Anderson acceleration resulted in similar behavior to Picard
iteration with respect to both time to solution and robustness, further inves-
tigation is warranted in this area based on the success of the solver in other
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multiphysics areas, as well as the ease of extending existing Picard-style cou-
pling schemes to take advantage of Anderson acceleration. The failures of
Anderson acceleration in this study were invariably due to limits on the ex-
tents of the material models in the various physics operators. Therefore, it
may be possible to either extend the bounds of these models or enable a
safeguarded line search within Anderson acceleration to limit the solution
to the physical bounds of the models. This has the potential to greatly im-
prove the robustness of the Anderson acceleration approach. Future work
is necessary to develop more sophisticated preconditioners that may further
increase the computational efficiency of Newton-like methods. Application of
the MJNFK2 approach to boiling water reactors or other nuclear reactor de-
signs would require re-evaluating the particular physics approximations that
are relevant and appropriate for a given design.
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