

SAND2015-2534C

A Minimax Approach to Sensor Fusion for Intrusion Detection

Matthew Pugh

Sandia National Laboratories

SAS 2015

Table of Contents

1 Introduction

- Classic Example
- Previous Work
- Problem Statement

2 Toy Examples

- Binary Decision
- Ternary Decision

3 Minimax Sensor Fusion

- Set-Up
- Results
- Conclusion

Introduction

Goal:

- Try to analyze and mitigate the **worst case** performance of the intrusion detection system

Introduction

Goal:

- Try to analyze and mitigate the **worst case** performance of the intrusion detection system

Framework:

- Assume we know the the statistical distribution of the background signal
 - Using results derived from other paper
 - **Sensor Fusion**: Combine all sensors into a single metric - Mahalanobis distance
 - Background signal is chi-squared distributed

Introduction

Goal:

- Try to analyze and mitigate the **worst case** performance of the intrusion detection system

Framework:

- Assume we know the the statistical distribution of the background signal
 - Using results derived from other paper
 - **Sensor Fusion**: Combine all sensors into a single metric - Mahalanobis distance
 - Background signal is chi-squared distributed
- Compute the worst-case event distribution
 - Assumes a cost associated with making a decision

Introduction

Goal:

- Try to analyze and mitigate the **worst case** performance of the intrusion detection system

Framework:

- Assume we know the the statistical distribution of the background signal
 - Using results derived from other paper
 - **Sensor Fusion**: Combine all sensors into a single metric - Mahalanobis distance
 - Background signal is chi-squared distributed
- Compute the worst-case event distribution
 - Assumes a cost associated with making a decision

A Different Perspective:

- False alarm constraints versus worst-case performance

Classic Example: Rock, Paper, Scissors

Alice and Bob play rock, paper, scissors

Payoff Matrix

Alice \ Bob	Rock	Paper	Scissors
Rock	0	-1	1
Paper	1	0	-1
Scissors	-1	1	0

Classic Example: Rock, Paper, Scissors

Alice and Bob play rock, paper, scissors

Payoff Matrix			
Alice \ Bob	Rock	Paper	Scissors
Rock	0	-1	1
Paper	1	0	-1
Scissors	-1	1	0

Question: How should Alice and Bob play?

Classic Example: Rock, Paper, Scissors

Alice and Bob play rock, paper, scissors

Payoff Matrix			
Alice \ Bob	Rock	Paper	Scissors
Rock	0	-1	1
Paper	1	0	-1
Scissors	-1	1	0

Question: How should Alice and Bob play?

- Mixed strategies!
- Choose randomly according to some distribution
- Alice chooses according to x and Bob chooses according to y

Classic Example: Rock, Paper, Scissors

Alice and Bob play rock, paper, scissors

		Payoff Matrix		
		Rock	Paper	Scissors
Alice \ Bob	Rock	0	-1	1
	Paper	1	0	-1
	Scissors	-1	1	0

Notation:

$$\mathbf{x} = [\Pr[\text{Alice} = \text{Rock}], \Pr[\text{Alice} = \text{Paper}], \Pr[\text{Alice} = \text{Scissors}]]^T \in \mathbb{R}^3$$

$$\mathbf{y} = [\Pr[\text{Bob} = \text{Rock}], \Pr[\text{Bob} = \text{Paper}], \Pr[\text{Bob} = \text{Scissors}]]^T \in \mathbb{R}^3$$

Payoff matrix: $\mathbf{M} \in \mathbb{R}^{3 \times 3}$

$$\boxed{\text{Expected Payoff} = \mathbf{x}^T \mathbf{M} \mathbf{y}}$$

Classic Example: Rock, Paper, Scissors

Alice and Bob play rock, paper, scissors

		Payoff Matrix		
Alice \ Bob		Rock	Paper	Scissors
Rock	Rock	0	-1	1
	Paper	1	0	-1
	Scissors	-1	1	0

Define $\beta(\mathbf{x}) = \min_{\mathbf{y}} \mathbf{x}^T \mathbf{M} \mathbf{y}$ and $\alpha(\mathbf{y}) = \max_{\mathbf{x}} \mathbf{x}^T \mathbf{M} \mathbf{y}$

Mixed Nash Equilibrium: A pair $(\tilde{\mathbf{x}}, \tilde{\mathbf{y}})$ such that

$$\beta(\tilde{\mathbf{x}}) = \tilde{\mathbf{x}}^T \mathbf{M} \tilde{\mathbf{y}} = \alpha(\tilde{\mathbf{y}})$$

Test Bed

Sensor Module

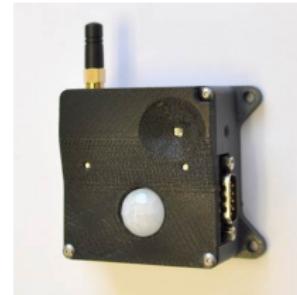
- Tri-axis accelerometer
- Photo-detector
- Passive infrared sensor

Instrumented Room

- Placed 8 sensor modules along walls
- Modules connected via CAN bus

Objective

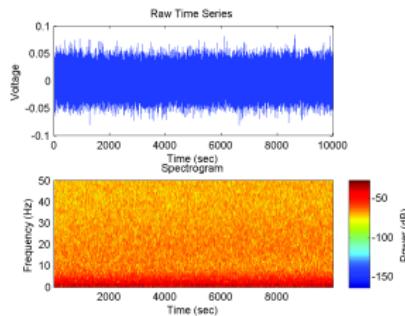
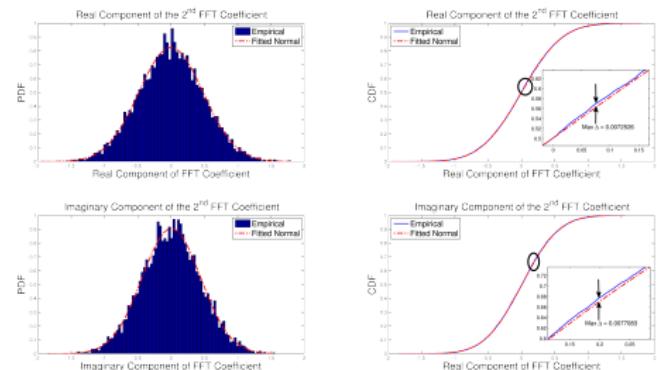
- Collect background data
- Collected data during entry
- Develop decision algorithm to minimize worst-case cost
 - Can handle arbitrary number of possible decisions



Previous Results

Goal: Find distribution on background data

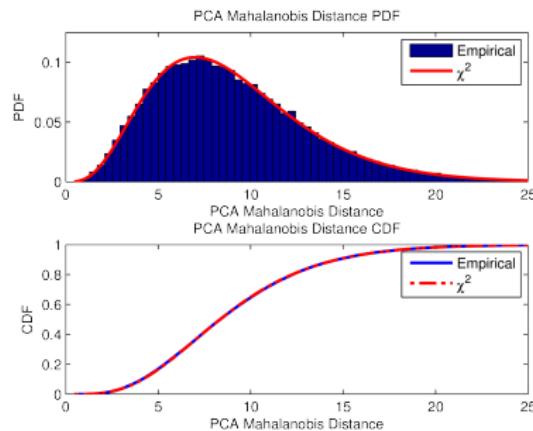
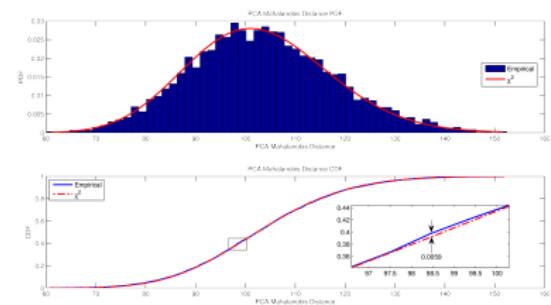
- Analyze distribution of frequency components



- Marginal Distributions: real and imaginary frequency components look Gaussian

Previous Results

PCA and Mahalanobis Distance

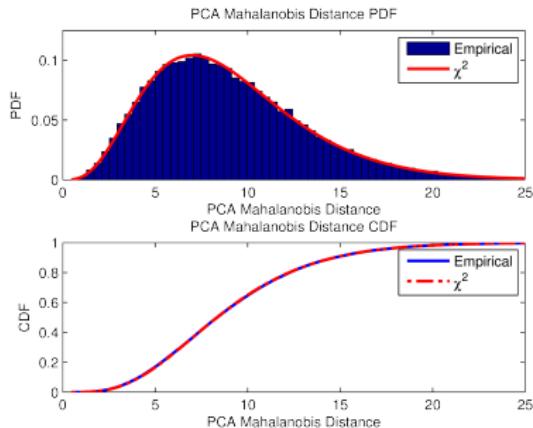
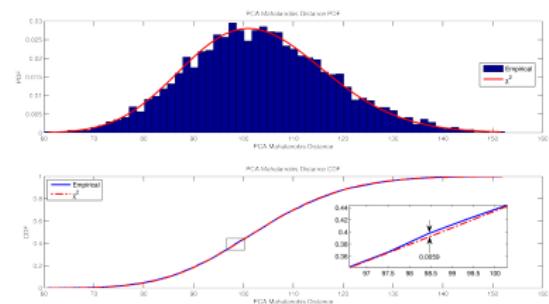


Metric with a known distribution

- Chi-squared distribution for Mahalanobis distance

Previous Results

PCA and Mahalanobis Distance



Metric with a known distribution

- Chi-squared distribution for Mahalanobis distance

Questions:

- If an adversary chose the event distribution, what would it look like?
- How could we design our algorithm to minimize the adverse effects?

The Problem

- How does the Mahalanobis distance distribution connect with *rock, paper, scissors?*

The Problem

- How does the Mahalanobis distance distribution connect with *rock, paper, scissors*?
 - In *rock, paper, scissors*, Bob tries to minimize payoff given a fixed distribution for Alice: $\beta(\mathbf{x}) = \min_{\mathbf{y}} \mathbf{x}^T \mathbf{M} \mathbf{y}$

The Problem

- How does the Mahalanobis distance distribution connect with *rock, paper, scissors*?
 - In *rock, paper, scissors*, Bob tries to minimize payoff given a fixed distribution for Alice: $\beta(\mathbf{x}) = \min_{\mathbf{y}} \mathbf{x}^T \mathbf{M} \mathbf{y}$
 - In our problem, we assume that the Mahalanobis distance distribution is fixed
 - Bob can choose a distribution \mathbf{y} to minimize our payoff
 - We must define our payoff

The Problem

- How does the Mahalanobis distance distribution connect with *rock, paper, scissors*?
 - In *rock, paper, scissors*, Bob tries to minimize payoff given a fixed distribution for Alice: $\beta(\mathbf{x}) = \min_{\mathbf{y}} \mathbf{x}^T \mathbf{M} \mathbf{y}$
 - In our problem, we assume that the Mahalanobis distance distribution is fixed
 - Bob can choose a distribution \mathbf{y} to minimize our payoff
 - We must define our payoff
 - Our recourse: Alice can modify the decision algorithm
 - For a given observed Mahalanobis distance value, Alice can optimize what decision is made to maximize payoff

The Problem

Problem:

- Every T seconds, we observe the Mahalanobis distance X computed from all of the sensors
 - Sensor fusion is in the metric

The Problem

Problem:

- Every T seconds, we observe the Mahalanobis distance X computed from all of the sensors
 - Sensor fusion is in the metric
- X is either generated from background noise or an event

The Problem

Problem:

- Every T seconds, we observe the Mahalanobis distance X computed from all of the sensors
 - Sensor fusion is in the metric
- X is either generated from background noise or an event
- **Task:** Determine what generated X
- **Goal:** Bound worst-case performance

The Problem

Problem:

- Every T seconds, we observe the Mahalanobis distance X computed from all of the sensors
 - Sensor fusion is in the metric
- X is either generated from background noise or an event
- **Task:** Determine what generated X
- **Goal:** Bound worst-case performance
- **Minimax approach:**
 - Find worst-case event distribution
 - Determine best decision to minimize cost
 - Cost needs to be defined
 - Cost can be subjective

Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two possible distributions - decide from which one

- Background data $\sim U[0, 1] = \mathbf{p}_{bg}$
- Event data \sim Bob's choice $= \mathbf{p}_{event}$

Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two possible distributions - decide from which one

- Background data $\sim U[0, 1] = \mathbf{p}_{bg}$
- Event data \sim Bob's choice $= \mathbf{p}_{event}$

Notation:

Decision Matrix: $T \in \mathbb{R}^{2 \times N}$ where $T_{i,j} = \Pr[\alpha_i | X = x_k]$

Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two possible distributions - decide from which one

- Background data $\sim U[0, 1] = \mathbf{p}_{bg}$
- Event data \sim Bob's choice $= \mathbf{p}_{event}$

Notation:

Decision Matrix: $T \in \mathbb{R}^{2 \times N}$ where $T_{i,j} = \Pr[\alpha_i | X = x_k]$

- Note: 2 is the number of actions, N is the number of possible observations, α_i is the i^{th} decision, x_k is the k^{th} possible observed value
- Implication: For continuous distributions, **discretization is required**

Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two possible distributions - decide from which one

- Background data $\sim U[0, 1] = \mathbf{p}_{bg}$
- Event data \sim Bob's choice $= \mathbf{p}_{event}$

Notation:

Decision Matrix: $T \in \mathbb{R}^{2 \times N}$ where $T_{i,j} = \Pr[\alpha_i | X = x_k]$

Probability Matrix: $P \in \mathbb{R}^{N \times 2}$ where $P_{k,j} = \Pr[X = x_k | \omega_j]$

Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two possible distributions - decide from which one

- Background data $\sim U[0, 1] = \mathbf{p}_{bg}$
- Event data \sim Bob's choice $= \mathbf{p}_{event}$

Notation:

Decision Matrix: $T \in \mathbb{R}^{2 \times N}$ where $T_{i,j} = \Pr[\alpha_i | X = x_k]$

Probability Matrix: $P \in \mathbb{R}^{N \times 2}$ where $P_{k,j} = \Pr[X = x_k | \omega_j]$

- Note: 2 is the number of states of nature: **background** or **event**, ω_j is the j^{th} state of nature
- First column: \mathbf{p}_{bg} , second column: \mathbf{p}_{event}

Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two possible distributions - decide from which one

- Background data $\sim U[0, 1] = \mathbf{p}_{bg}$
- Event data \sim Bob's choice $= \mathbf{p}_{event}$

Notation:

Decision Matrix: $T \in \mathbb{R}^{2 \times N}$ where $T_{i,j} = \Pr[\alpha_i | X = x_k]$

Probability Matrix: $P \in \mathbb{R}^{N \times 2}$ where $P_{k,j} = \Pr[X = x_k | \omega_j]$

Loss Matrix: $\Lambda \in \mathbb{R}^{2 \times 2}$ where $\Lambda_{i,j} = \lambda(\alpha_i | \omega_j)$

Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two possible distributions - decide from which one

- Background data $\sim U[0, 1] = \mathbf{p}_{bg}$
- Event data \sim Bob's choice $= \mathbf{p}_{event}$

Notation:

Decision Matrix: $T \in \mathbb{R}^{2 \times N}$ where $T_{i,j} = \Pr[\alpha_i | X = x_k]$

Probability Matrix: $P \in \mathbb{R}^{N \times 2}$ where $P_{k,j} = \Pr[X = x_k | \omega_j]$

Loss Matrix: $\Lambda \in \mathbb{R}^{2 \times 2}$ where $\Lambda_{i,j} = \lambda(\alpha_i | \omega_j)$

- Λ has dimensions # of actions by # of states of nature
- The loss values can be **subjective!**

Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two possible distributions - decide from which one

- Background data $\sim U[0, 1] = \mathbf{p}_{bg}$
- Event data \sim Bob's choice $= \mathbf{p}_{event}$

Notation:

Decision Matrix: $T \in \mathbb{R}^{2 \times N}$ where $T_{i,j} = \Pr[\alpha_i | X = x_k]$

Probability Matrix: $P \in \mathbb{R}^{N \times 2}$ where $P_{k,j} = \Pr[X = x_k | \omega_j]$

Loss Matrix: $\Lambda \in \mathbb{R}^{2 \times 2}$ where $\Lambda_{i,j} = \lambda(\alpha_i | \omega_j)$

Prior probabilities on state of nature: $p(\omega)$

Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two possible distributions - decide from which one

- Background data $\sim U[0, 1] = \mathbf{p}_{bg}$
- Event data \sim Bob's choice $= \mathbf{p}_{event}$

Notation:

Decision Matrix: $T \in \mathbb{R}^{2 \times N}$ where $T_{i,j} = \Pr[\alpha_i | X = x_k]$

Probability Matrix: $P \in \mathbb{R}^{N \times 2}$ where $P_{k,j} = \Pr[X = x_k | \omega_j]$

Loss Matrix: $\Lambda \in \mathbb{R}^{2 \times 2}$ where $\Lambda_{i,j} = \lambda(\alpha_i | \omega_j)$

Prior probabilities on state of nature: $p(\omega)$

Question: Given the loss matrix Λ , background distribution \mathbf{p}_{bg} and the prior probabilities $p(\omega)$:

- How would Bob select \mathbf{p}_{event} to *maximize* loss?
- How would Alice design T to *minimize* loss?

Toy Example #1: Optimization Problem

Define the conditional risk as:

$$R(\alpha_i|x) = \sum_j \lambda(\alpha_i|\omega_j) p(\omega_j|x) = \sum_j \lambda(\alpha_i|\omega_j) \frac{p(x|\omega_j)p(\omega_j)}{p(x)}$$

Want to minimize risk: $\alpha(x) = \operatorname{argmin}_{\alpha_i} R(\alpha_i|x)$

Define the *risk* as:

$$R = \sum_i^N R(\alpha(x_i)|x_i) p(x_i) = \mathbf{1}^T ((\Lambda \cdot \operatorname{diag}(p)) \circ (TP)) \mathbf{1}$$

Toy Example #1: Optimization Problem

The minimax problem is

$$\begin{aligned} & \min_{T \in \mathbb{R}^{p \times N}} \max_{\mathbf{p} \in \mathbb{R}^N} \mathbf{1}^T ((\Lambda \cdot \text{diag}(p)) \circ (TP)) \mathbf{1} \\ \text{subject to} \quad & \mathbf{p}^T \mathbf{1} = 1 \\ & \mathbf{p} \geq 0 \\ & T \geq 0 \\ & \mathbf{1}^T T = \mathbf{1}^T \\ & \mathbf{p}^T \mathbf{x} = \mu_{\text{event}} \end{aligned}$$

Constraints:

- Mean constraint
- Probability constraints
- Can add linear constraints e.g. moments

Toy Example #1: Optimization Problem

The minimax problem is

$$\begin{aligned} & \min_{T \in \mathbb{R}^{p \times N}} \max_{\mathbf{p} \in \mathbb{R}^N} \mathbf{1}^T ((\Lambda \cdot \text{diag}(p)) \circ (TP)) \mathbf{1} \\ \text{subject to} \quad & \mathbf{p}^T \mathbf{1} = 1 \\ & \mathbf{p} \geq 0 \\ & T \geq 0 \\ & \mathbf{1}^T T = \mathbf{1}^T \\ & \mathbf{p}^T \mathbf{x} = \mu_{\text{event}} \end{aligned}$$

Minimax Solution: There exists a unique answer to the problem!

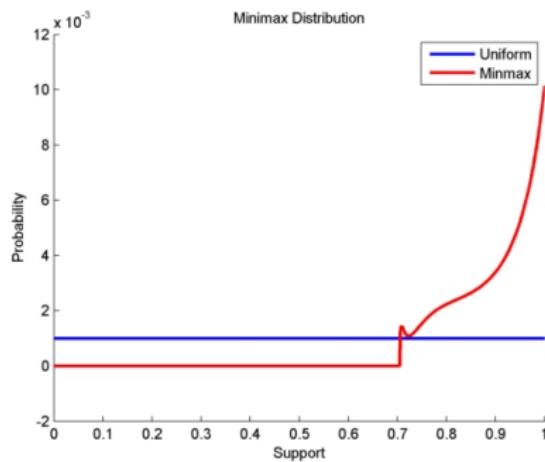
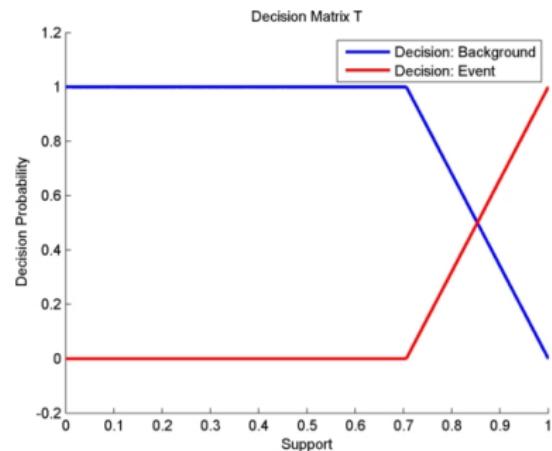
- Problem must be recast using linear programming duality to be put into convex optimization packages
- Solution seems to be sensitive to discretization and solver

Toy Example #1: Results

Parameters:

- $\mathbf{p}_{bg} \sim U[0, 1]$)
- $[0, 1]$ uniformly discretized into 1000 bins
- $\mu_{event} = 0.9$
- $p(\text{event}) = 0.1 = 1 - p(\text{background})$
- $\Lambda = \begin{bmatrix} -500 & 1000 \\ 15 & -1000 \end{bmatrix}$

Toy Example #1: Results



- Small probabilities due to discretization
- Randomized Decisions

Toy Example #2: Ternary Decision Problem

Problem:

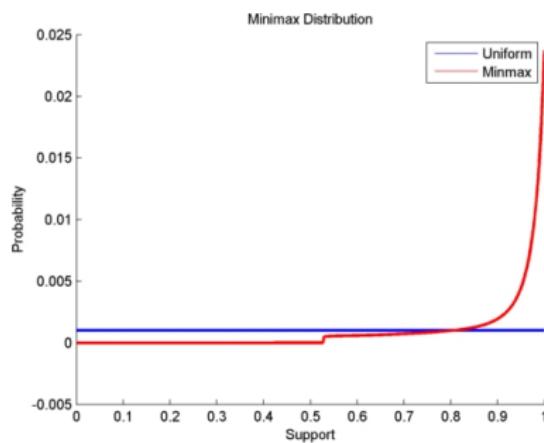
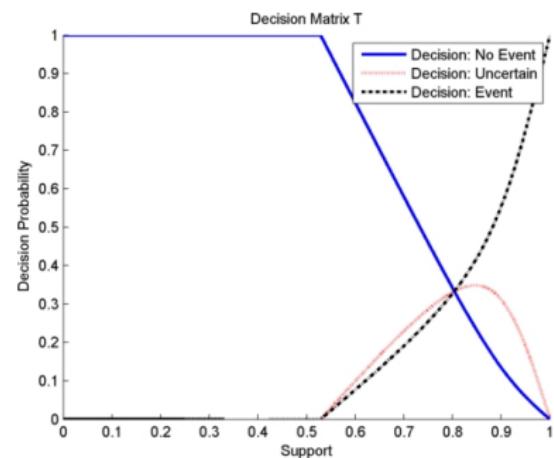
- Samples are drawn from two possible distributions
 - Background data $\sim U[0, 1] = \mathbf{p}_{bg}$
 - Event data \sim Bob's choice $= \mathbf{p}_{event}$
- Allow a third decision option: uncertain
- Task: Decide which distribution sample is drawn from or declare uncertainty
 - Can be extended to arbitrary number of decisions

Toy Example #2: Ternary Decision Problem

Parameters:

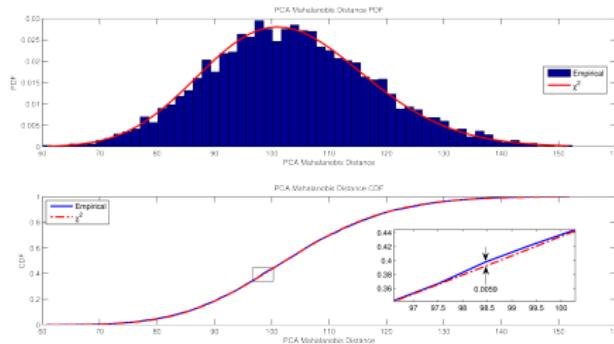
- $p_{bg} \sim U[0, 1]$
- $[0, 1]$ uniformly discretized into 1000 bins
- $\mu_{event} = 0.9$
- $p(\text{event}) = 0.1 = 1 - p(\text{background})$
- $\Lambda = \begin{bmatrix} -100 & 1000 \\ 50 & -500 \\ 100 & -1000 \end{bmatrix}$
 - Columns: {background, event}
 - Rows: {background, uncertain, event}

Toy Example #2: Ternary Decision Problem



Minimax Sensor Fusion: Analogy

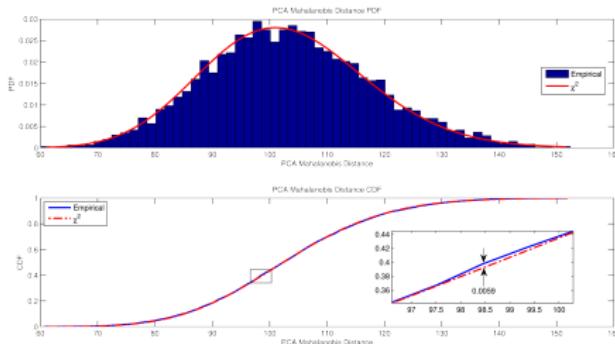
Background Distribution



- Chi-squared distribution for Mahalanobis distance
- Mahalanobis distance incorporates data from all PIR sensors

Minimax Sensor Fusion: Analogy

Background Distribution



The same problem as the toy examples:

- Observable (Mahalanobis distance) drawn from two possible distributions
 - Background Distribution $\sim \chi^2$
 - Event Distribution
- How to choose which distribution the observed Mahalanobis distance came from?

Minimax Sensor Fusion: Parameters

Discretization:

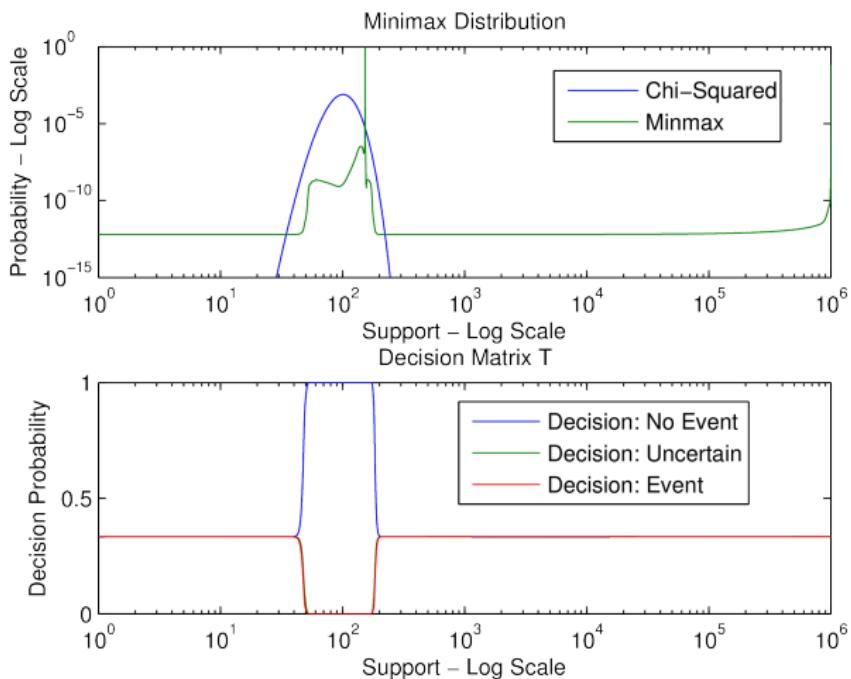
- Observables occur over massive scales
 - Average background: 101
 - Maximum event: 4.2×10^5
- How to discretization support?
 - Optimization sensitive to support
 - Feasibility - cannot have *too* many points
- Our approach:
 - Uniformly logarithmically spaced between 0 and $\lceil \log_{10} 4.2 \times 10^5 \rceil$ with 50000 points
 - $\Pr[x_i] = F_{\chi^2}(x_i) - F_{\chi^2}(x_{i-1})$

Minimax Sensor Fusion: Parameters

Parameters:

- $\mu_{event} = 6.674 \times 10^4$ = Empirical mean on test data
- $p(\text{event}) = 1 \times 10^{-7}$
- Hypotheses: { No Event, Event }
- Actions: { No Event, Uncertain, Event }
- $\Lambda = \begin{bmatrix} -100 & 1000 \\ 50 & -500 \\ 100 & -1000 \end{bmatrix}$
 - Columns: Hypotheses
 - Rows: Actions
 - How to select these values?

Minimax Sensor Fusion: Results



Conclusion

Bound on performance

Conclusion

Bound on performance

- Minimax solution finds **worst-case** event distribution

Conclusion

Bound on performance

- Minimax solution finds **worst-case** event distribution
- Leveraged past work to define:
 - Observable metric - Mahalanobis distance
 - Distribution on observable - χ^2 distribution
 - Metric combines information from multiple sensors

Conclusion

Bound on performance

- Minimax solution finds **worst-case** event distribution
- Leveraged past work to define:
 - Observable metric - Mahalanobis distance
 - Distribution on observable - χ^2 distribution
 - Metric combines information from multiple sensors
- Determine decision policy to minimize worst-case effects

Conclusion

Bound on performance

- Minimax solution finds **worst-case** event distribution
- Leveraged past work to define:
 - Observable metric - Mahalanobis distance
 - Distribution on observable - χ^2 distribution
 - Metric combines information from multiple sensors
- Determine decision policy to minimize worst-case effects
- Flexible constraints

Conclusion

Bound on performance

- Minimax solution finds **worst-case** event distribution
- Leveraged past work to define:
 - Observable metric - Mahalanobis distance
 - Distribution on observable - χ^2 distribution
 - Metric combines information from multiple sensors
- Determine decision policy to minimize worst-case effects
- Flexible constraints

Issues:

Conclusion

Bound on performance

- Minimax solution finds **worst-case** event distribution
- Leveraged past work to define:
 - Observable metric - Mahalanobis distance
 - Distribution on observable - χ^2 distribution
 - Metric combines information from multiple sensors
- Determine decision policy to minimize worst-case effects
- Flexible constraints

Issues:

- Large observable support
 - Hard for optimization tools to handle

Conclusion

Bound on performance

- Minimax solution finds **worst-case** event distribution
- Leveraged past work to define:
 - Observable metric - Mahalanobis distance
 - Distribution on observable - χ^2 distribution
 - Metric combines information from multiple sensors
- Determine decision policy to minimize worst-case effects
- Flexible constraints

Issues:

- Large observable support
 - Hard for optimization tools to handle
- Cost definition
 - Subjective in nature

Conclusion

Bound on performance

- Minimax solution finds **worst-case** event distribution
- Leveraged past work to define:
 - Observable metric - Mahalanobis distance
 - Distribution on observable - χ^2 distribution
 - Metric combines information from multiple sensors
- Determine decision policy to minimize worst-case effects
- Flexible constraints

Issues:

- Large observable support
 - Hard for optimization tools to handle
- Cost definition
 - Subjective in nature
- Appropriate constraints

Conclusion

Thank You!

Any Questions?