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Introduction

Goal:

Try to analyze and mitigate the worst case performance of the
intrusion detection system

Framework:

Assume we know the the statistical distribution of the
background signal

Using results derived from other paper
Sensor Fusion: Combine all sensors into a single metric -
Mahalanobis distance
Background signal is chi-squared distributed

Compute the worst-case event distribution

Assumes a cost associated with making a decision

A Different Perspective:

False alarm constraints versus worst-case performance
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Classic Example: Rock, Paper, Scissors

Alice and Bob play rock, paper, scissors

Payoff Matrix
Alice \Bob Rock Paper Scissors

Rock 0 -1 1
Paper 1 0 -1
Scissors -1 1 0
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Classic Example: Rock, Paper, Scissors

Alice and Bob play rock, paper, scissors

Payoff Matrix
Alice \Bob Rock Paper Scissors

Rock 0 -1 1
Paper 1 0 -1
Scissors -1 1 0

Question: How should Alice and Bob play?

Mixed strategies!

Choose randomly according to some distribution

Alice chooses according to x and Bob chooses according to y
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Classic Example: Rock, Paper, Scissors

Alice and Bob play rock, paper, scissors

Payoff Matrix
Alice \Bob Rock Paper Scissors

Rock 0 -1 1
Paper 1 0 -1
Scissors -1 1 0

Notation:
x = [Pr[Alice = Rock],Pr[Alice = Paper],Pr[Alice = Scissors]]T ∈ R3

y = [Pr[Bob = Rock],Pr[Bob = Paper],Pr[Bob = Scissors]]T ∈ R3

Payoff matrix: M ∈ R3×3

Expected Payoff = xTMy
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Classic Example: Rock, Paper, Scissors

Alice and Bob play rock, paper, scissors

Payoff Matrix
Alice \Bob Rock Paper Scissors

Rock 0 -1 1
Paper 1 0 -1
Scissors -1 1 0

Define β(x) = min
y

xTMy and α(y) = max
x

xTMy

Mixed Nash Equilibrium: A pair (x̃, ỹ) such that

β (x̃) = x̃TMỹ = α (ỹ)
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Test Bed

Sensor Module

Tri-axis accelerometer

Photo-detector

Passive infrared sensor

Instrumented Room

Placed 8 sensor modules along walls

Modules connected via CAN bus

Objective

Collect background data

Collected data during entry

Develop decision algorithm to
minimize worst-case cost

Can handle arbitrary number of
possible decisions
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Previous Results

Goal: Find distribution on background data

Analyze distribution of frequency components

Marginal Distributions: real and imaginary frequency
components look Gaussian

Questions:
If an adversary chose the event distribution, what would it look like?

How could we design our algorithm to minimize the adverse effects?
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PCA and Mahalanobis Distance

Metric with a known distribution

Chi-squared distribution for Mahalanobis distance
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The Problem

How does the Mahalanobis distance distribution connect with
rock, paper, scissors?

In rock,paper, scissors, Bob tries to minimize payoff given a
fixed distribution for Alice: β(x) = min

y
xTMy

In our problem, we assume that the Mahalanobis distance
distribution is fixed
Bob can choose a distribution y to minimize our payoff

We must define our payoff

Our recourse: Alice can modify the decision algorithm

For a given observed Mahalanobis distance value, Alice can
optimize what decision is made to maximize payoff
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The Problem

Problem:

Every T seconds, we observe the Mahalanobis distance X
computed from all of the sensors

Sensor fusion is in the metric

X is either generated from background noise or an event

Task: Determine what generated X

Goal: Bound worst-case performance

Minimax approach:

Find worst-case event distribution
Determine best decision to minimize cost

Cost needs to be defined
Cost can be subjective
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Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two
possible distributions - decide from which one

Background data ∼ U [0, 1] = pbg

Event data ∼ Bob’s choice = pevent
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Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two
possible distributions - decide from which one

Background data ∼ U [0, 1] = pbg

Event data ∼ Bob’s choice = pevent

Notation:
Decision Matrix: T ∈ R2×N where Ti,j = Pr[αi|X = xk]

Note: 2 is the number of actions, N is the number of possible
observations, αi is the ith decision, xk is the kth possible
observed value

Implication: For continuous distributions, discretization is
required
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Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two
possible distributions - decide from which one

Background data ∼ U [0, 1] = pbg

Event data ∼ Bob’s choice = pevent

Notation:
Decision Matrix: T ∈ R2×N where Ti,j = Pr[αi|X = xk]
Probability Matrix: P ∈ RN×2 where Pk,j = Pr[X = xk|ωj ]

Note: 2 is the number of states of nature: background or
event, ωj is the jth state of nature

First column: pbg, second column: pevent
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Binary Decision Problem: Samples are drawn from one of two
possible distributions - decide from which one

Background data ∼ U [0, 1] = pbg

Event data ∼ Bob’s choice = pevent

Notation:
Decision Matrix: T ∈ R2×N where Ti,j = Pr[αi|X = xk]
Probability Matrix: P ∈ RN×2 where Pk,j = Pr[X = xk|ωj ]
Loss Matrix: Λ ∈ R2×2 where Λi,j = λ (αi|ωj)

Λ has dimensions # of actions by # of states of nature

The loss values can be subjective!
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Probability Matrix: P ∈ RN×2 where Pk,j = Pr[X = xk|ωj ]
Loss Matrix: Λ ∈ R2×2 where Λi,j = λ (αi|ωj)
Prior probabilities on state of nature: p(ω)
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Toy Example #1: Picking a Distribution

Binary Decision Problem: Samples are drawn from one of two
possible distributions - decide from which one

Background data ∼ U [0, 1] = pbg

Event data ∼ Bob’s choice = pevent

Notation:
Decision Matrix: T ∈ R2×N where Ti,j = Pr[αi|X = xk]
Probability Matrix: P ∈ RN×2 where Pk,j = Pr[X = xk|ωj ]
Loss Matrix: Λ ∈ R2×2 where Λi,j = λ (αi|ωj)
Prior probabilities on state of nature: p(ω)
Question: Given the loss matrix Λ, background distribution pbg
and the prior probabilities p(ω):

How would Bob select pevent to maximize loss?

How would Alice design T to minimize loss?
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Toy Example #1: Optimization Problem

Define the conditional risk as:

R (αi|x) =
∑
j

λ (αi|ωj) p (ωj |x) =
∑
j

λ (αi|ωj)
p(x|ωj)p(ωj)

p(x)

Want to minimize risk: α(x) = argmin
αi

R (αi|x)

Define the risk as:

R =

N∑
i

R (α(xi)|xi) p(xi) = 1T ((Λ · diag(p)) ◦ (TP ))1
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Toy Example #1: Optimization Problem

The minimax problem is

min
T∈Rp×N

max
p∈RN

1T ((Λ · diag(p)) ◦ (TP ))1

subject to pT1 = 1
p ≥ 0
T ≥ 0
1TT = 1T

pTx = µevent

Constraints:

Mean constraint

Probability constraints

Can add linear constraints e.g. moments
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Toy Example #1: Optimization Problem

The minimax problem is

min
T∈Rp×N

max
p∈RN

1T ((Λ · diag(p)) ◦ (TP ))1

subject to pT1 = 1
p ≥ 0
T ≥ 0
1TT = 1T

pTx = µevent

Minimax Solution: There exists a unique answer to the problem!

Problem must be recast using linear programming duality to
be put into convex optimization packages

Solution seems to be sensitive to discretization and solver
Matthew Pugh Sensor Fusion - Minimax Approach 9 / 15
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Toy Example #1: Results

Parameters:

pbg ∼ U [0, 1])

[0, 1] uniformly discretized into 1000 bins

µevent = 0.9

p(event) = 0.1 = 1− p(background)

Λ =

[
−500 1000

15 −1000

]
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Toy Example #1: Results

Small probabilities due to
discretization

Randomized Decisions
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Toy Example #2: Ternary Decision Problem

Problem:

Samples are drawn from two possible distributions

Background data ∼ U [0, 1] = pbg
Event data ∼ Bob’s choice = pevent

Allow a third decision option: uncertain

Task: Decide which distribution sample is drawn from or
declare uncertainty

Can be extended to arbitrary number of decisions

Matthew Pugh Sensor Fusion - Minimax Approach 11 / 15



Introduction
Toy Examples

Minimax Sensor Fusion

Binary Decision
Ternary Decision

Toy Example #2: Ternary Decision Problem

Parameters:

pbg ∼ U [0, 1])

[0, 1] uniformly discretized into 1000 bins

µevent = 0.9

p(event) = 0.1 = 1− p(background)

Λ =

−100 1000
50 −500
100 −1000


Columns: {background, event}
Rows: {background, uncertain, event}
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Minimax Sensor Fusion: Analogy

Background Distribution

Chi-squared distribution for Mahalanobis distance

Mahalanobis distance incorporates data from all PIR sensors
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Minimax Sensor Fusion: Analogy

Background Distribution

The same problem as the toy examples:

Observable (Mahalanobis distance) drawn from two possible distributions

Background Distribution ∼ χ2

Event Distribution

How to choose which distribution the observed Mahalanobis distance

came from?
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Minimax Sensor Fusion: Parameters

Discretization:

Observables occur over massive scales

Average background: 101
Maximum event: 4.2× 105

How to discretization support?

Optimization sensitive to support
Feasibility - cannot have too many points

Our approach:

Uniformly logarithmically spaced between 0 and⌈
log10 4.2× 105

⌉
with 50000 points

Pr[xi] = Fχ2(xi)− Fχ2(xi−1)

Matthew Pugh Sensor Fusion - Minimax Approach 13 / 15
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Minimax Sensor Fusion: Parameters

Parameters:

µevent = 6.674× 104 = Empirical mean on test data

p(event) = 1× 10−7

Hypotheses: { No Event, Event }
Actions: { No Event, Uncertain, Event }

Λ =

−100 1000
50 −500
100 −1000


Columns: Hypotheses
Rows: Actions
How to select these values?

Matthew Pugh Sensor Fusion - Minimax Approach 13 / 15
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Minimax Sensor Fusion: Results
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Conclusion

Bound on performance

Minimax solution finds worst-case event distribution

Leveraged past work to define:

Observable metric - Mahalanobis distance
Distribution on observable - χ2 distribution
Metric combines information from multiple sensors

Determine decision policy to minimize worst-case effects

Flexible constraints
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Minimax solution finds worst-case event distribution

Leveraged past work to define:
Observable metric - Mahalanobis distance
Distribution on observable - χ2 distribution
Metric combines information from multiple sensors

Determine decision policy to minimize worst-case effects

Flexible constraints

Issues:

Large observable support

Hard for optimization tools to handle

Cost definition

Subjective in nature

Appropriate constraints
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Conclusion

Thank You!

Any Questions?
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