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Introduction

What are we doing differently?
@ Trying to design algorithms with a prescribed false alarm rate
How is this different than past work?

@ We do not understand the statistics of the events we are
trying to detect

@ No ROC curves!
Why is this important?
@ Mostly focused on detectability

o False alarms cost money
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Test Configuration

Motivational Questions

How confident can we be in a decision?
@ Decision theory
What do we have to know to make good decisions?

@ The more we know the better
@ What can be done when very little is known?

e No signal model
e Try to manipulate into something that is known

How do design constraints change the system?
@ Detectability versus false alarm

How to distinguish between noise and not noise?

’Assumption: Components function properly‘
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Introduction

Questions
Test Configuration

Test Bed

Sensor Module

@ Tri-axis accelerometer

@ Photo-detector

@ Passive infrared sensor
Instrumented Room

@ Placed 8 sensor modules along walls

@ Modules connected via CAN bus
Objective

o Collect background data

@ Collected data during entry

@ Develop algorithm to detect entry
given a false alarm rate

o Binary decision problem
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Unknown Everything?

Binary Decision Problem: Intrusion?
@ What are the null and alternative hypotheses?
@ What is the distribution of the background noise data?
e What is the structure/distribution of the signal?
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Unclear how to model PIR Sensors
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What's wrong with our data?
Detection Theory Binary Detection
Approaching our data?

Classic Example: Detection Theory

Deciding whether or not a DC signal is present in AWGN
@ Hy: noise only
e Hi: Known DC signal + noise

@ Note: Signal and noise models are known!
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Detection Theory

What's wrong with our data?
Binary Detection
Approaching our data?

Classic Example: Detection Theory

Deciding whether or not a DC signal is present in AWGN

Signal Value

@ Hy: noise only

e Hi: Known DC signal + noise

DC Signal in AWGN

Sample

Pugh et al.
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Classic Example: Detection Theory

Deciding whether or not a DC signal is present in AWGN
@ Hy: noise only
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What's wrong with our data?
Detection Theory Binary Detection
Approaching our data?

Classic Example: ROC Curves

Error probabilities depend on Signal-to-Noise Ratio (SNR)
@ Signal power
@ Signal length

@ Noise variance

ROC Curve P, versus SNR for Fixed P,

1
Weak Signal
Stronger Signal 09

e
©

©
©

o

®

07 o® 07
5 5
g os g 08
$ $
a 05 3
s 05
s s
z z
Z 04 = 04
2 3
g 3
S 03 8
& 2 o3

o
o

o

N

Pea=10%

)
°

o
o

o

01 02z 03 04 05 06 07 08 09 1 0 2 4 6 8 10 12 14 16 18 20
Probability of False Alarm: PFA Signal-to-Noise Ratio (dB)

Pugh et al. Sensor Fusion - False Alarm Constraints 8/16



with our data?
Detection Theory E
Approachmg our data?

Unknown Everything - Reuvisited

Binary Decision Problem: Intrusion?
@ What are the null and alternative hypotheses?
@ What is the distribution of the background noise data?
e What is the structure/distribution of the signal?
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- H
iy

0 10 20 3 4 5 60 70 8 90
Time (sec)
Sensor 6 Time Series

w

m

\ [WLW

Voltage (V)

o

sw“”wwv{

|

' L

[

0 10 20 3 4 5 60 70 8 90
Time (sec)

Voltage (V)

Pugh et al. Sensor Fusion - False Alarm Constraints 9/16



at's wrong with our data?
Detection Theory 3inary Detection
ching our data?

Unknown Everything - Reuvisited

Binary Decision Problem: Intrusion?
@ What are the null and alternative hypotheses?
@ What is the distribution of the background noise data?
e What is the structure/distribution of the signal?

Unclear how to model PIR Sensors
Sensor 5 Time Series Approach
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Time and Frequency Domain Analysis
Results
Noise Modeling and Results Future Directions and Conclusion

Matching the Noise Distribution

Statistical Model of Noise Distribution — Problem Solved
@ Compute threshold to meet false alarm requirement
@ Declare an event when signal metric exceeds threshold
Example
@ Hjy: Noise only
@ Hi: Not noise

Distribution of the Mean Statistic: Threshold = 26

@ Selected threshold s.t.

o probability of false alarm

05 is 5%

@ Threshold computed from
distribution of noise

DI
o
=

metric
0.1
. @ What is the distribution
T Nnsgavae 2 of the noise metric?
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Time and Frequency Domain Analysis
Results
Noise Modeling and Results Future Directions and Conclusion

Time Domain Approach

PIR Time Series

Time (sec)

Empirical Distribution of Time Series Samples

POF

Voltage (V)

Looks “close” to a Gaussian marginal distribution
@ Need to be confident otherwise false alarm constraint is
meaningless
@ How to have confidence?
o Match data to theoretical model
o Gather large amounts of data for empirical estimates
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PIR Time Series
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Time Domain Approach
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Looks “close” to a Gaussian marginal distribution
@ Need to be confident otherwise false alarm constraint is
meaningless
@ How to have confidence?
o Match data to theoretical model
o Gather large amounts of data for empirical estimates
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Results
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Frequency Domain Approach

Analyze distribution of frequency components
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hypothesis test
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Analyze distribution of frequency components
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@ Distribution of frequency components is not rejected by
hypothesis test

@ More confidence in match

@ How to combine frequency component information?
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Mahalanobis Distance

Want to combine as much frequency information as possible
@ Requires sub-sampling of frequency components
e Parseval's Identity

@ Use Principal Component Analysis (PCA)

Need metric to combine principal
components and sensors

PCA Mahalanobis Distance PDF
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Mahalanobis Distance

Want to combine as much frequency information as possible
@ Requires sub-sampling of frequency components
e Parseval's Identity
@ Use Principal Component Analysis (PCA)

Need metric to combine principal
components and sensors

@ Mahalanobis distance
@ Easily computable

@ Known distribution given
Gaussian frequency
components

@ ? distribution for
Mahalanobis distance

@ Closed-form threshold
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Time and Frequency Domain Analysis

Results

Noise Modeling and Results

Combined Results

@ 8 PIR sensors
@ False Alarm Constraint: Ppy = 1073

Signals During Event

Future Directions and Conclusion
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Adapting Statistical Parameters

@ Continuously update estimates of mean and covariance
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Future Directions

Adapting Statistical Parameters
@ Continuously update estimates of mean and covariance
Optimization of Design Parameters

@ FFT length, subset selection method, sample length, new
metrics, etc.

Fully Integrate Sensors
@ Combine PIR with photo-detectors and accelerometers
Sensor Failure Detection

@ Current algorithm declares an event when threshold is
exceeded

e Sensor failure could cause algorithm to exceed threshold

@ Need to disambiguate between failures and events
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Conclusion

Focused on development of detection algorithms with false
alarm constraints

@ Found metric on background data that matches known
closed-form distribution

e Frequency components
e Subset Selection: Principal Component Analysis
o Mahalanobis Distance: x? distributed

o Combine all PIR sensors into a single metric
@ Determine threshold to meet false alarm constraint
@ Algorithm performs well on collected data

Still a lot of work to be done
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Conclusion

Thank You!

Special Thanks:

Jacques Kvam
Jerry Brewer

Any Questions?

Pugh et al. Sensor Fusion - False Alarm Constraints 16 /16



	Introduction
	Questions
	Test Configuration

	Detection Theory
	What's wrong with our data?
	Binary Detection
	Approaching our data?

	Noise Modeling and Results
	Time and Frequency Domain Analysis
	Results
	Future Directions and Conclusion


