

From Deterministic Inversion to Uncertainty Quantification: Planning a Long Journey in Ice Sheet Modeling

M. Eledred, J. Jakeman, M. Perego, A. Salinger, I. K. Tezaur [SNL],
P. Heimbach, C. Jackson [UT Austin],
M. Hoffman, S. Price [LANL],
G. Stadler [Courant]

Sandia
National
Laboratories

THE UNIVERSITY OF
TEXAS
AT AUSTIN

NYU

Workshop, Los Angeles, April 2, 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

PISCEES, funded by

Problem definition

Quantity of Interest in ice sheet modeling:

total ice mass loss/gain by, e.g. 2200 → sea level rise prediction

Main sources of uncertainty:

- climate forcings (e.g. Surface Mass Balance)
 - **basal friction**
 - bedrock topography
 - geothermal heat flux
- model parameters (e.g. Glen's Flow Law exponent)

Problem definition

Goal: Uncertainty Quantification of QoI

(Main) Issue: Huge number of parameters (10^5 - 10^7)

Work flow:

- Perform adjoint-based deterministic inversion to estimate initial ice sheet state.
(i.e. characterize the present state of ice sheet to be used for performing prediction runs).
- Use deterministic inversion to build a Gaussian posterior in the inverse problem (based on recovered fields and the Hessian).
- Bayesian Calibration: construct the posterior distribution using Markov Chain Monte Carlo run on an emulator of the forward model.
- Forward Propagation: sample the obtained distribution and perform ensemble of forward propagation runs to compute the uncertainty on the QoI.

Deterministic Inversion

GOAL

Find ice sheet initial state that

- matches observations (e.g. surface velocity, temperature, etc.)
- matches present-day geometry (elevation, thickness)
- is in “equilibrium” with climate forcings (SMB)

by inverting for unknown/uncertain ice sheet model parameters.

Significantly reduce non physical transients without spin-up.

Bibliography

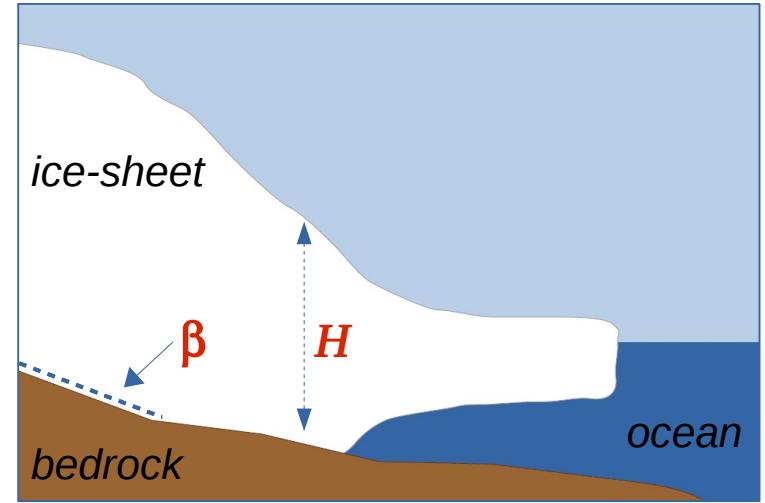
- Arthern, Gudmundsson, J. Glaciology, 2010
- Price, Payne, Howat and Smith, PNAS, 2011
- Petra, Zhu, Stadler, Hughes, Ghattas, J. Glaciology, 2012
- Pollard DeConto, TCD, 2012
- W. J. J.Van Pelt et al., The Cryosphere, 2013
- Morlighem et al. Geophysical Research Letters, 2013
- Goldberg and Heimbach, The Cryosphere, 2013
- Michel et al., Computers & Geosciences, 2014

Deterministic Inversion

Problem details

Available data/measurements

- *ice extension and surface topography*
- *surface velocity*
- *Surface Mass Balance (SMB)*
- *ice thickness H (sparse measurements)*



Fields to be estimated

- *ice thickness H (allowed to vary but weighted by observational uncertainties)*
- *basal friction β (spatially variable proxy for all basal processes)*

Modeling Assumptions

- *ice flow described by nonlinear Stokes equation*
- *ice is close to mechanical equilibrium*

Additional Assumption (for now)

- *given temperature field*

Deterministic Inversion

PDE-constrained optimization problem: cost functional

Problem: find initial conditions such that the ice is close to thermo-mechanical equilibrium, given the geometry and the SMB, and matches available observations.

Optimization problem:

find β and H that minimizes the functional \mathcal{J}

$$\begin{aligned}\mathcal{J}(\beta, H) = & \int_{\Sigma} \frac{1}{\sigma_u^2} |\mathbf{u} - \mathbf{u}^{obs}|^2 ds \\ & + \int_{\Sigma} \frac{1}{\sigma_{\tau}^2} |\operatorname{div}(\mathbf{U}H) - \tau_s|^2 ds \\ & + \int_{\Sigma} \frac{1}{\sigma_H^2} |H - H^{obs}|^2 ds \\ & + \mathcal{R}(\beta, H)\end{aligned}$$

surface velocity
mismatch } Common
SMB
mismatch } Proposed
thickness
mismatch
regularization terms.

subject to ice sheet model equations
(FO or Stokes)

\mathbf{U} : computed depth averaged velocity

H : ice thickness

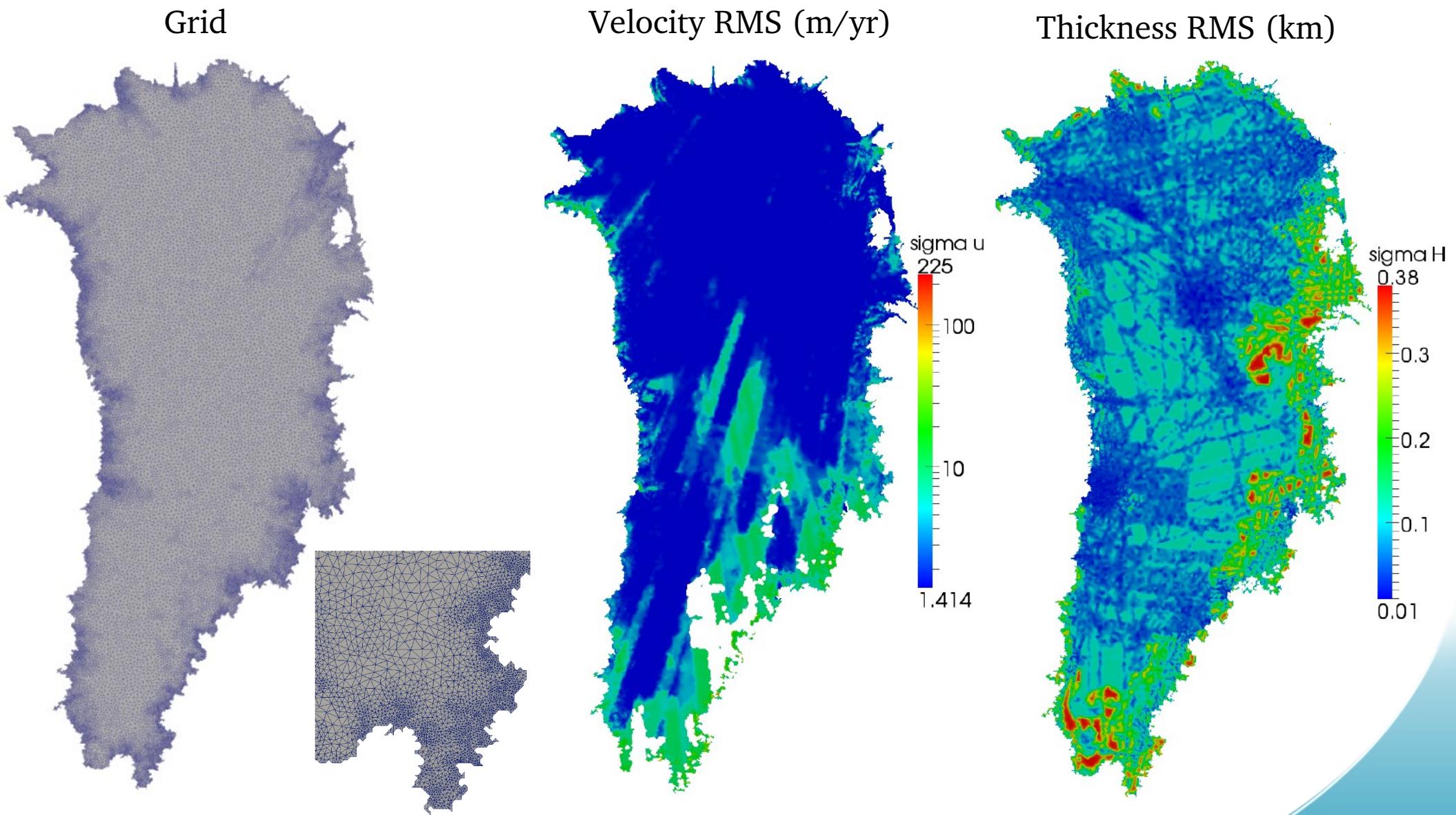
β : basal sliding friction coefficient

τ_s : SMB

$\mathcal{R}(\beta)$ regularization term

Deterministic Inversion for Greenland ice sheet

Grid and RMS of velocity and errors associated with velocity and thickness observations

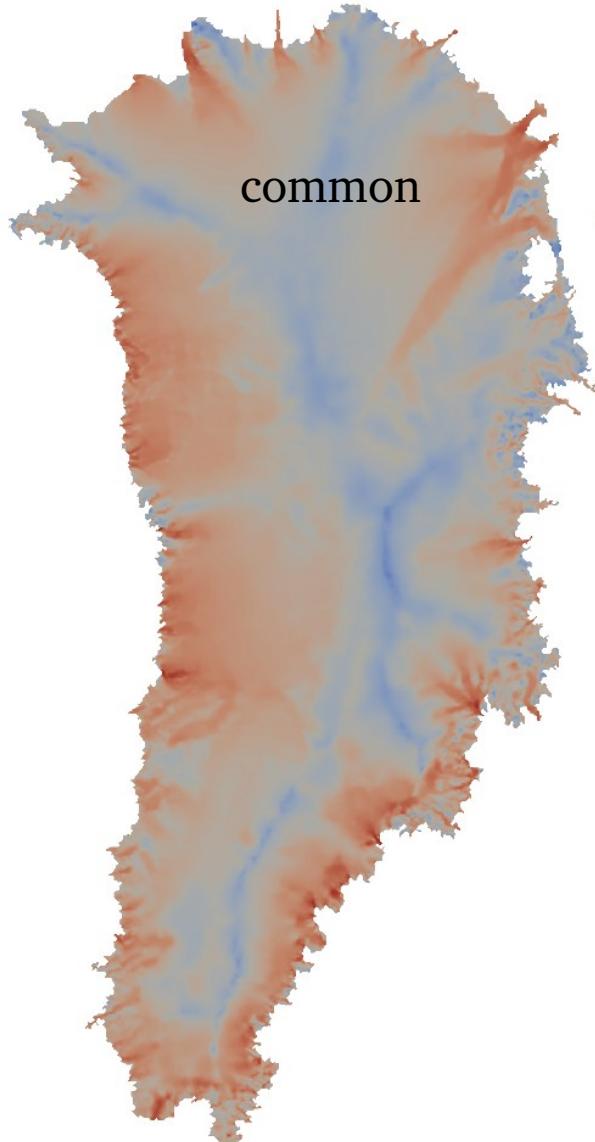


Geometry and fields Bamber et al.[2013], temperature computed with CISM (Shannon et al. [2013])

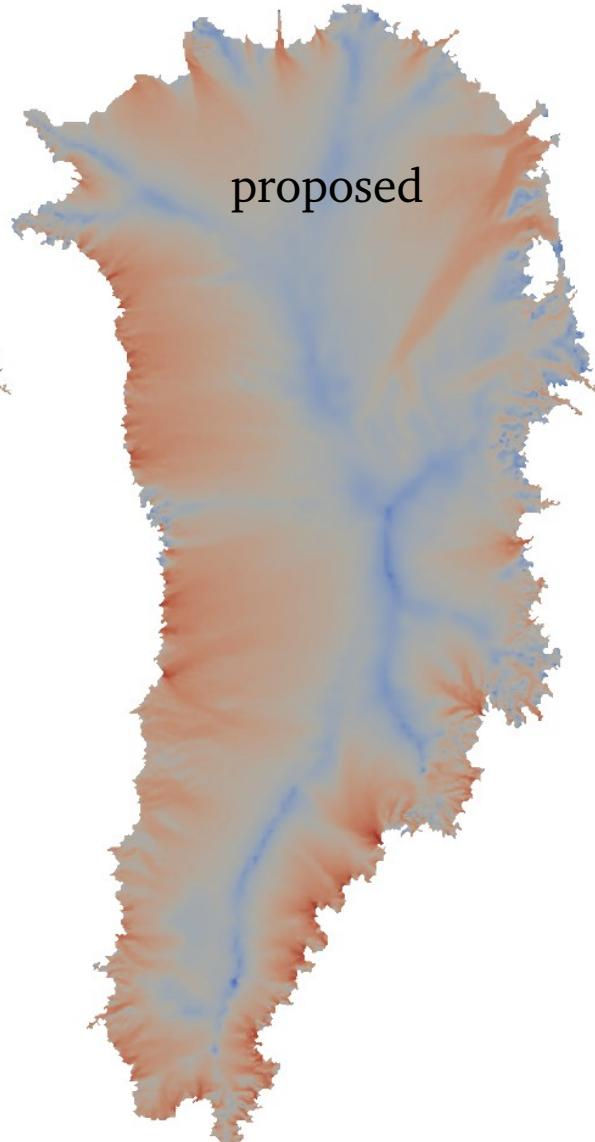
Deterministic Inversion for Greenland ice sheet

Inversion results: surface velocities

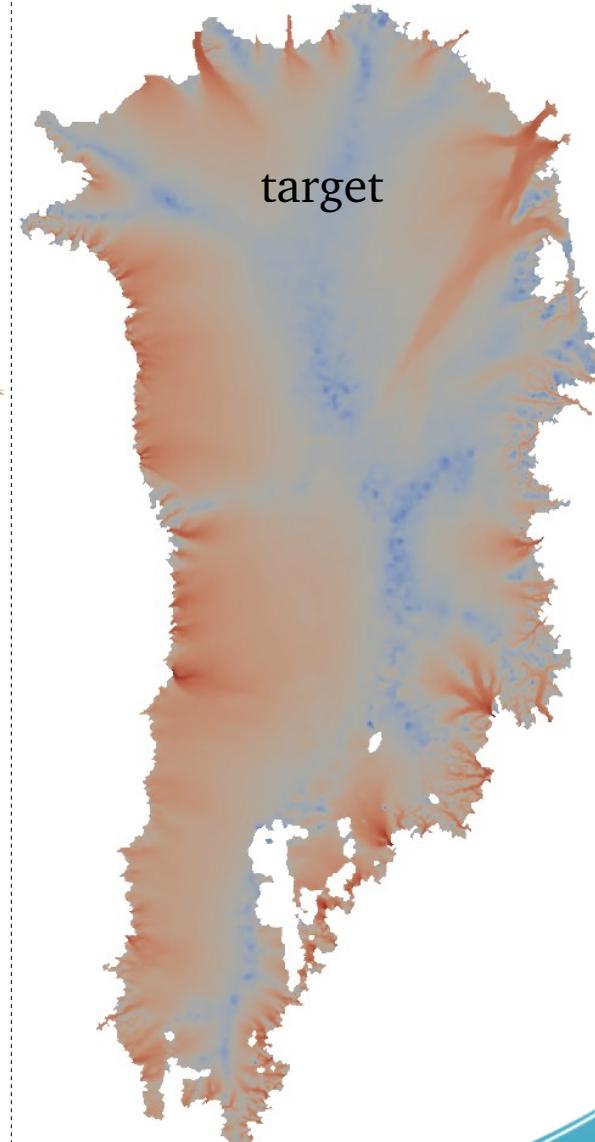
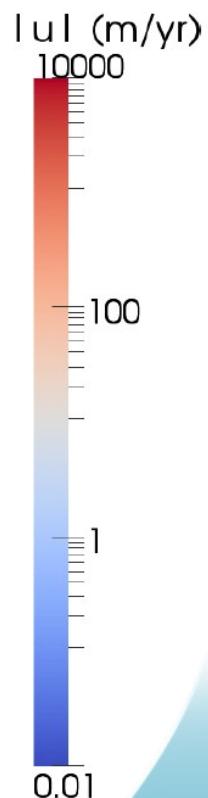
computed surface velocity



proposed



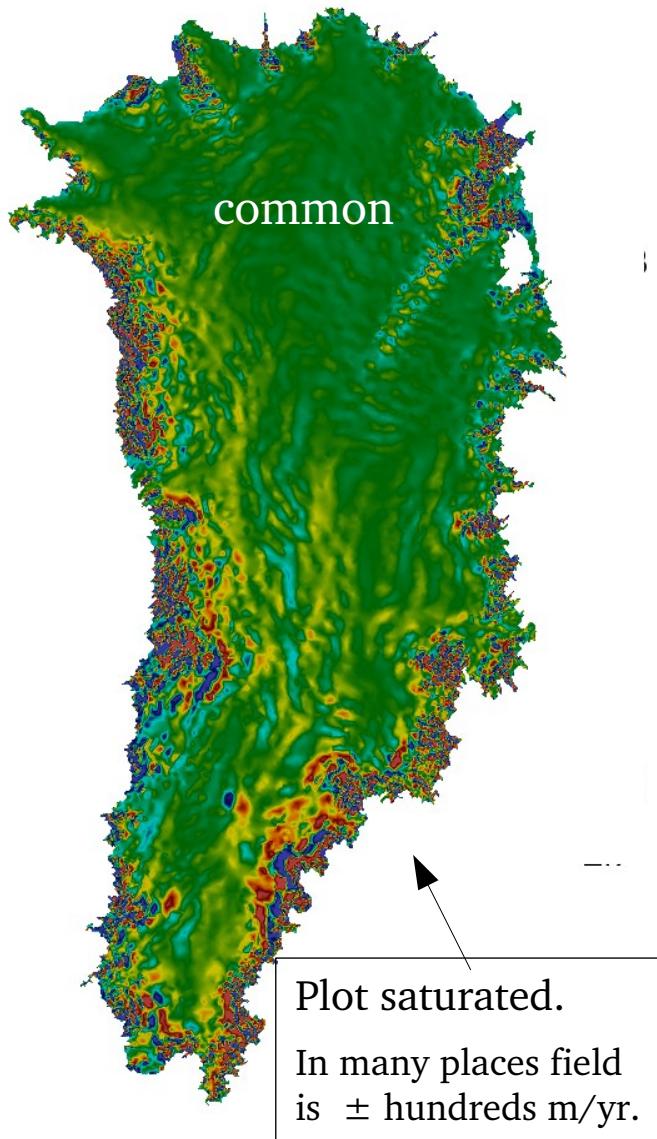
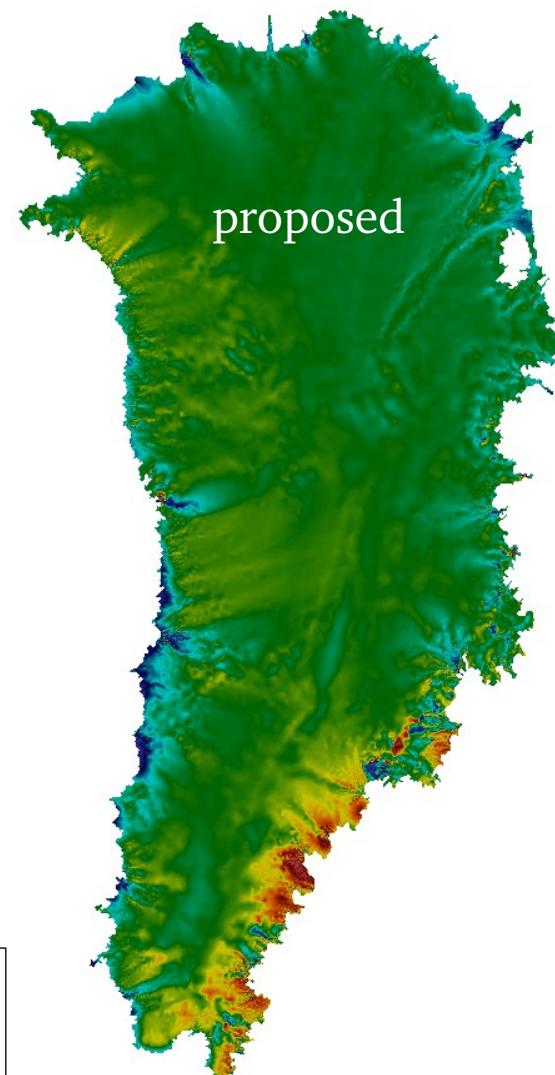
observed surface velocity



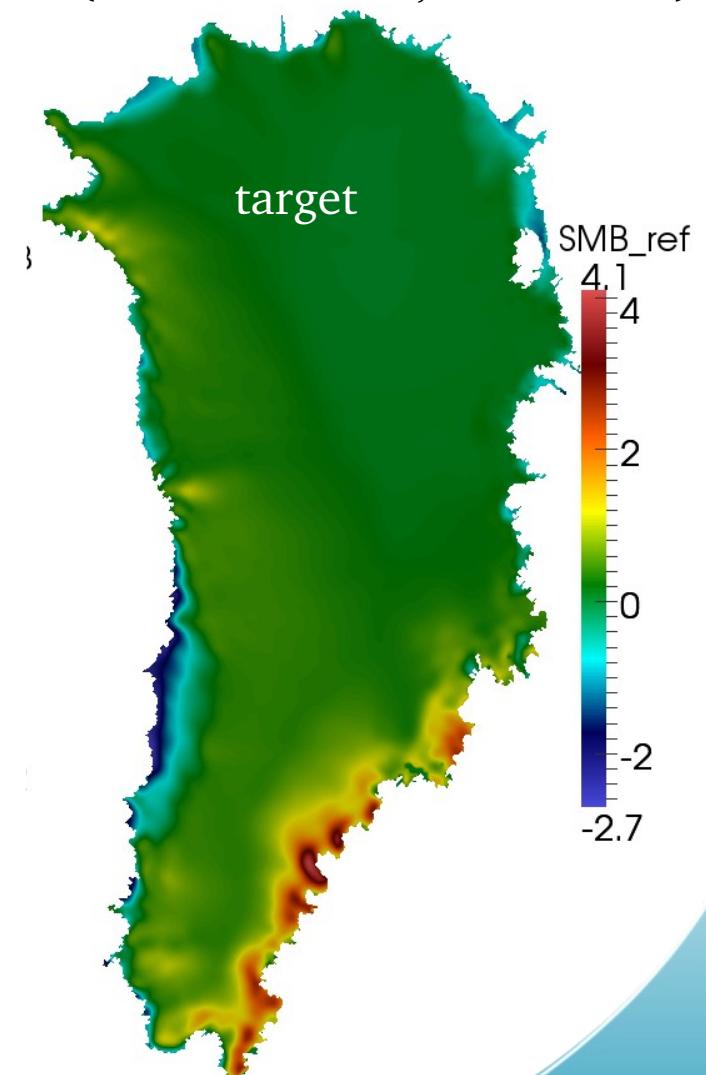
Deterministic Inversion for Greenland ice sheet

Inversion results: surface mass balance (SMB)

SMB (m/yr) needed for equilibrium



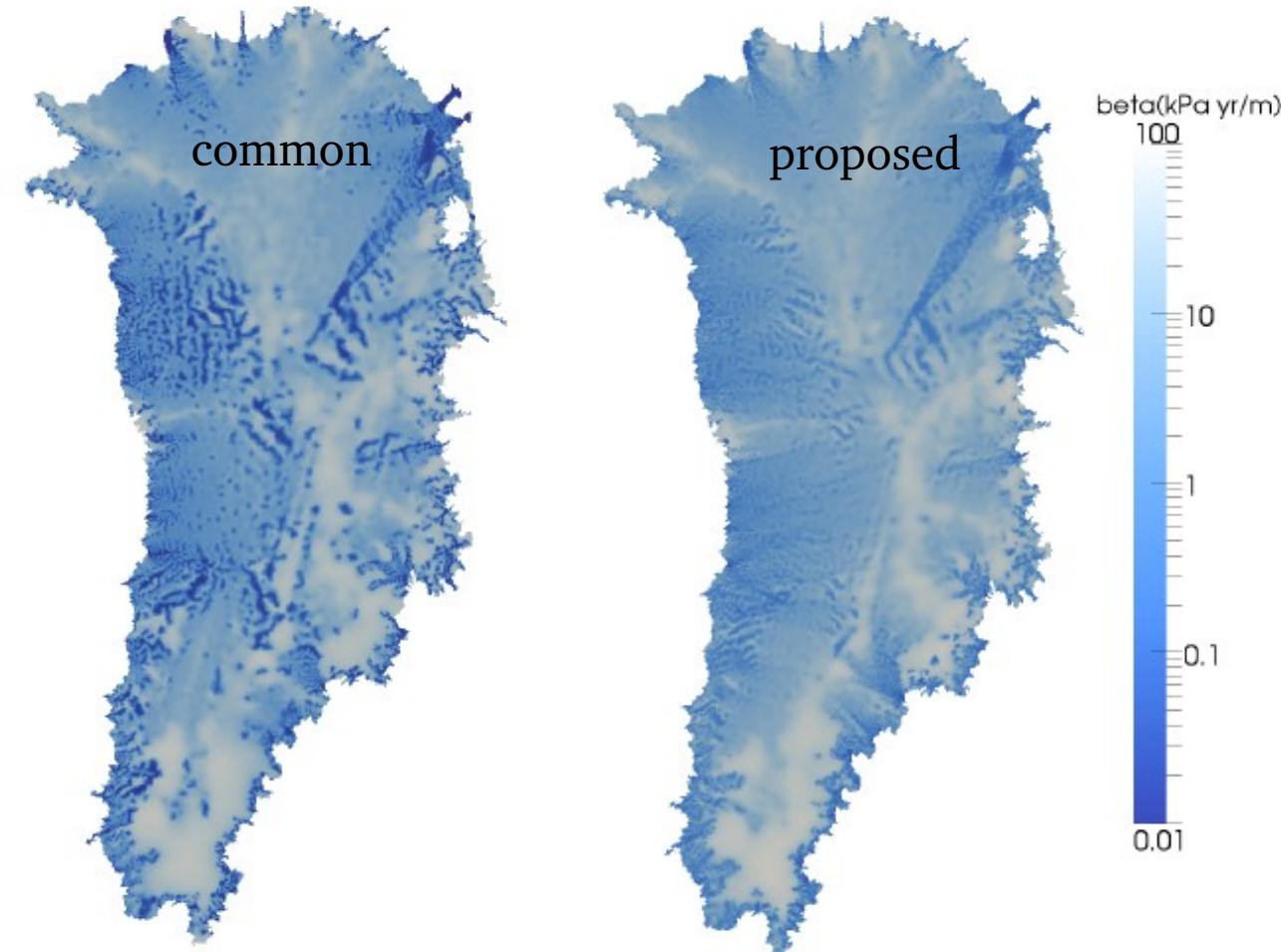
SMB from climate model
(Ettema et al. 2009, RACMO2/GR)



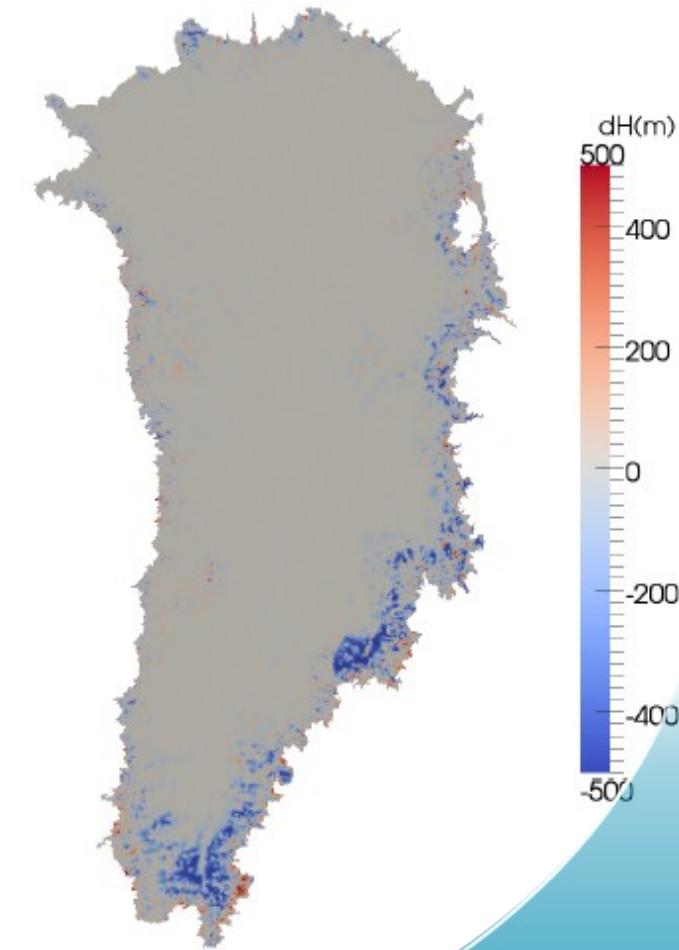
Deterministic Inversion for Greenland ice sheet

Estimated beta and change in topography

recovered basal friction



difference between recovered and observed thickness

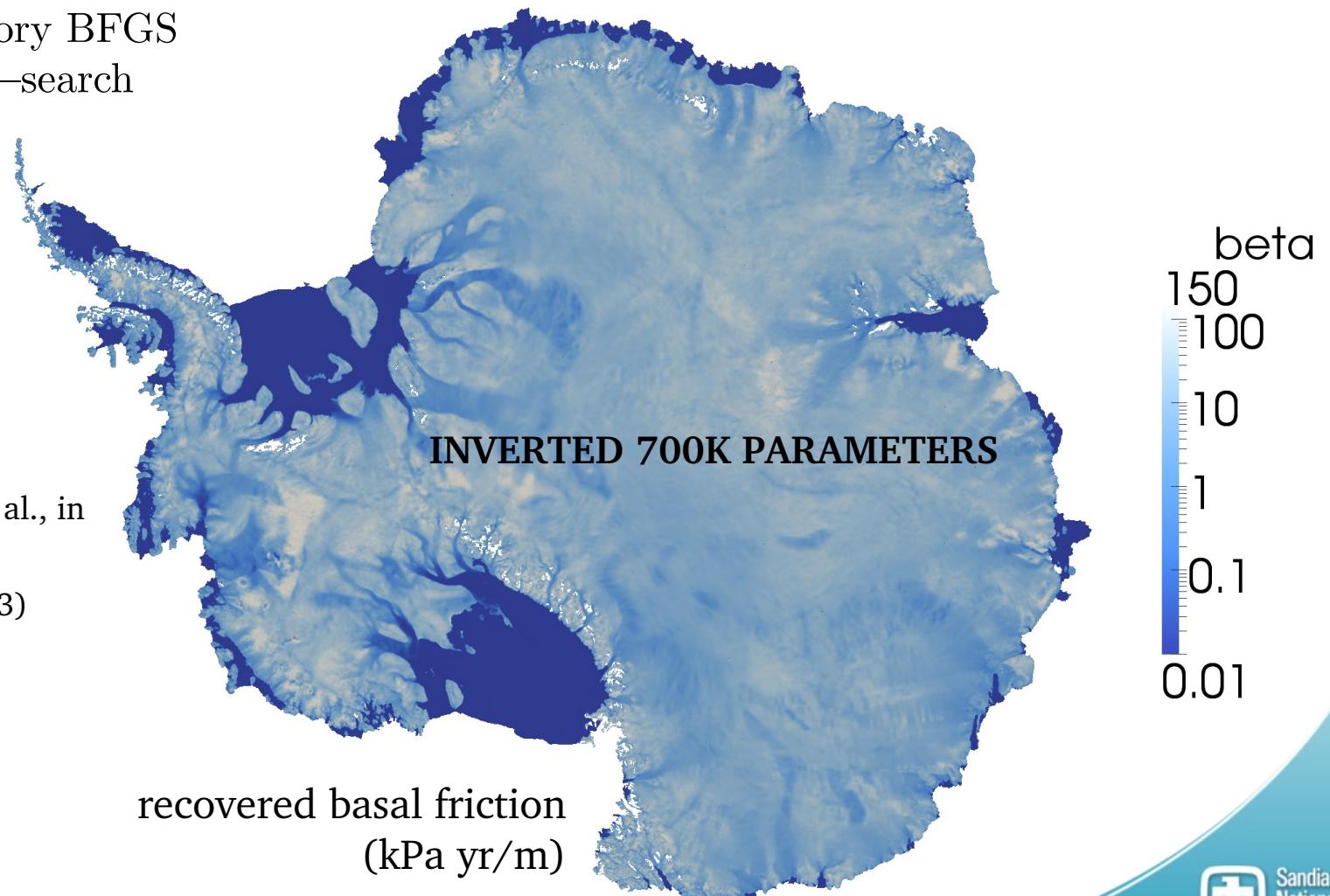


Antarctica Inversion (only for basal friction)

Objective functional: $\mathcal{J}(\mathbf{u}(\beta), \beta) = \int_{\Sigma} \frac{1}{\sigma_u^2} |\mathbf{u} - \mathbf{u}^{obs}|^2 ds + \alpha \int_{\Sigma} |\nabla \beta|^2 ds$

ROL algorithm:

- Limited-Memory BFGS
- Backtrack line-search



Geometry (Cornford, Martin et al., in prep.)

Bedmap2 (Fretwell et al., 2013)

Temperature (Pattyn, 2010)

Bayesian Calibration (proof of concept w/ KLE)

Difficulty in UQ approach: “*Curse of dimensionality*”.

At relevant model resolutions, the basal friction parameter space can have $O(10^6)$ parameters. However, the effective dimension of the problem is smaller.

1. Assume analytic covariance kernel $\Gamma_{\text{prior}} = \exp\left(-\frac{|r_1 - r_2|^2}{L^2}\right)$. First attempt, we intend to use Hessian based covariance in the future.
2. Perform eigenvalue decomposition of Γ_{prior} .
3. Take the mean $\bar{\beta}$ to be the deterministic solution and expand β in basis of eigenvector $\{\phi_k\}$ of Γ_{prior} , with random variables $\{\xi_k\}$

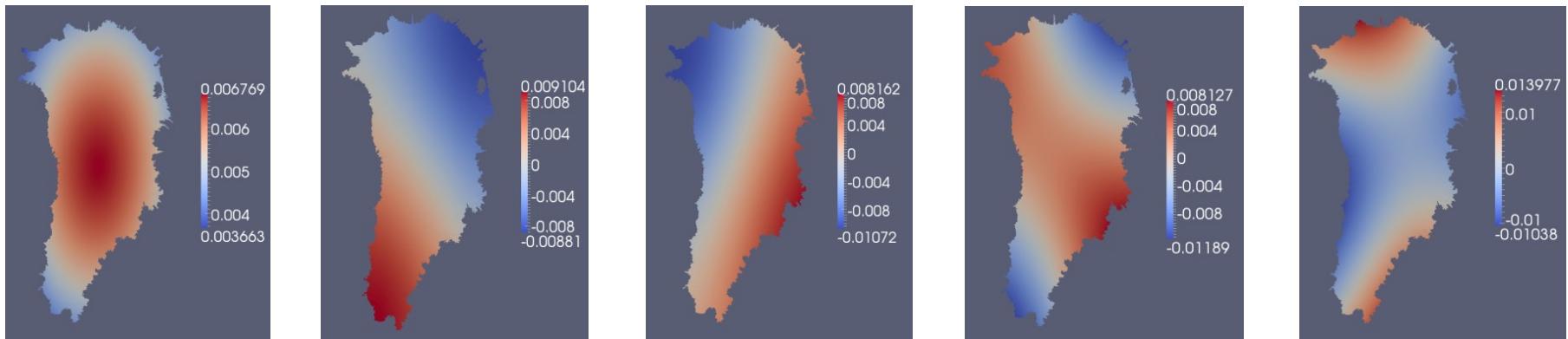
$$\beta(\omega) = \bar{\beta} + \sum_{k=1}^K \sqrt{\lambda_k} \phi_k \xi_k(\omega)$$

*Expansion done on $\log(\beta)$ to avoid negative values for β .

4 Bayesian Calibration (proof of concept w/ KLE)

KLE modes, emulator build, inversion

- 5 KLE modes capture 95% of covariance energy – consequence of chosen covariance (parallel C++/Trilinos code **Anasazi**).



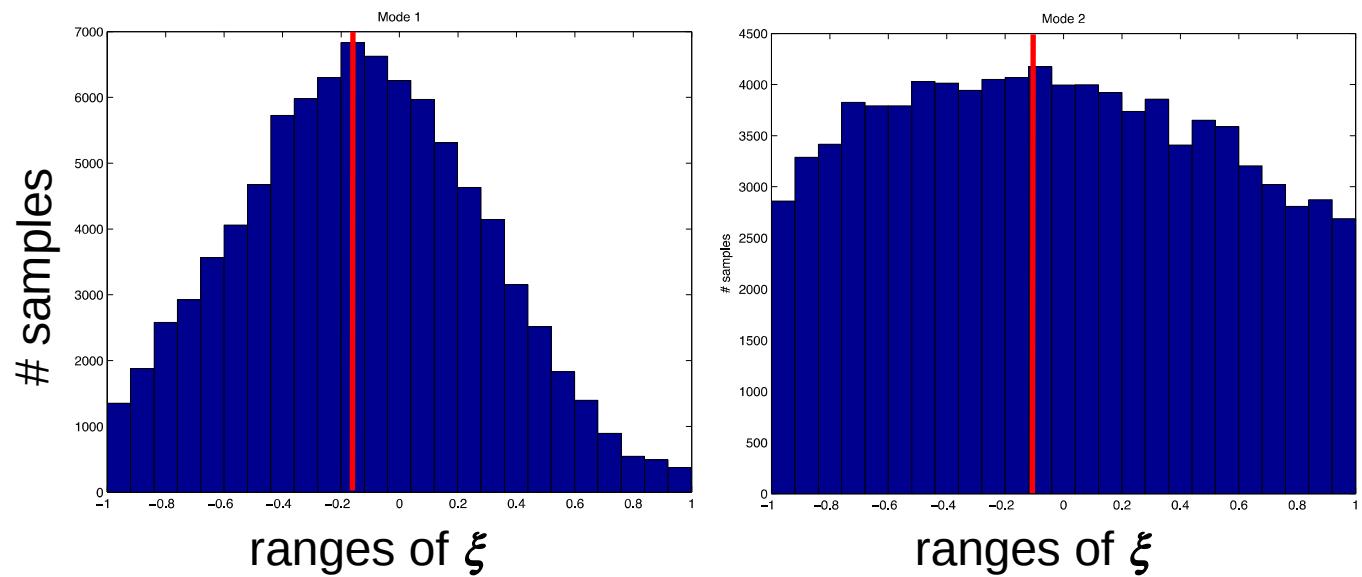
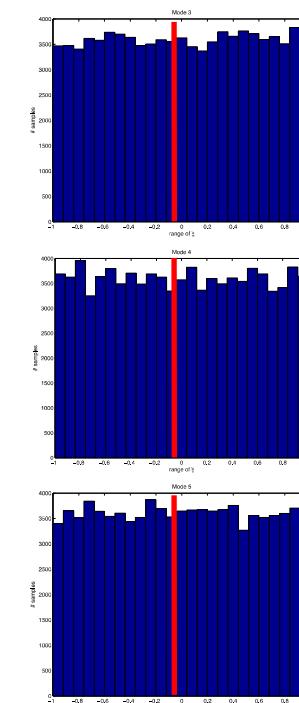
Only spatial correlation has been considered.

- Mismatch (**ALBANY**): $\mathcal{J}(\beta) = \int_{\Sigma} \frac{1}{\sigma_u^2} |\mathbf{u} - \mathbf{u}^{obs}|^2 ds$
- ***Build Emulator.*** Polynomial chaos expansion (**PCE**) was formed for the mismatch over random variables using uniform prior distributions. **DAKOTA**.
- ***Inversion/Calibration.*** Markov Chain Monte Carlo (**MCMC**) was performed on the PCE with 100K samples **QUESO**.

Bayesian Calibration (proof of concept w/ KLE)

Numerical results

Posterior distributions for the 5 KLE coefficients:



MAP solution: $\xi = (-0.16, -0.08, 0, 0, 0)$

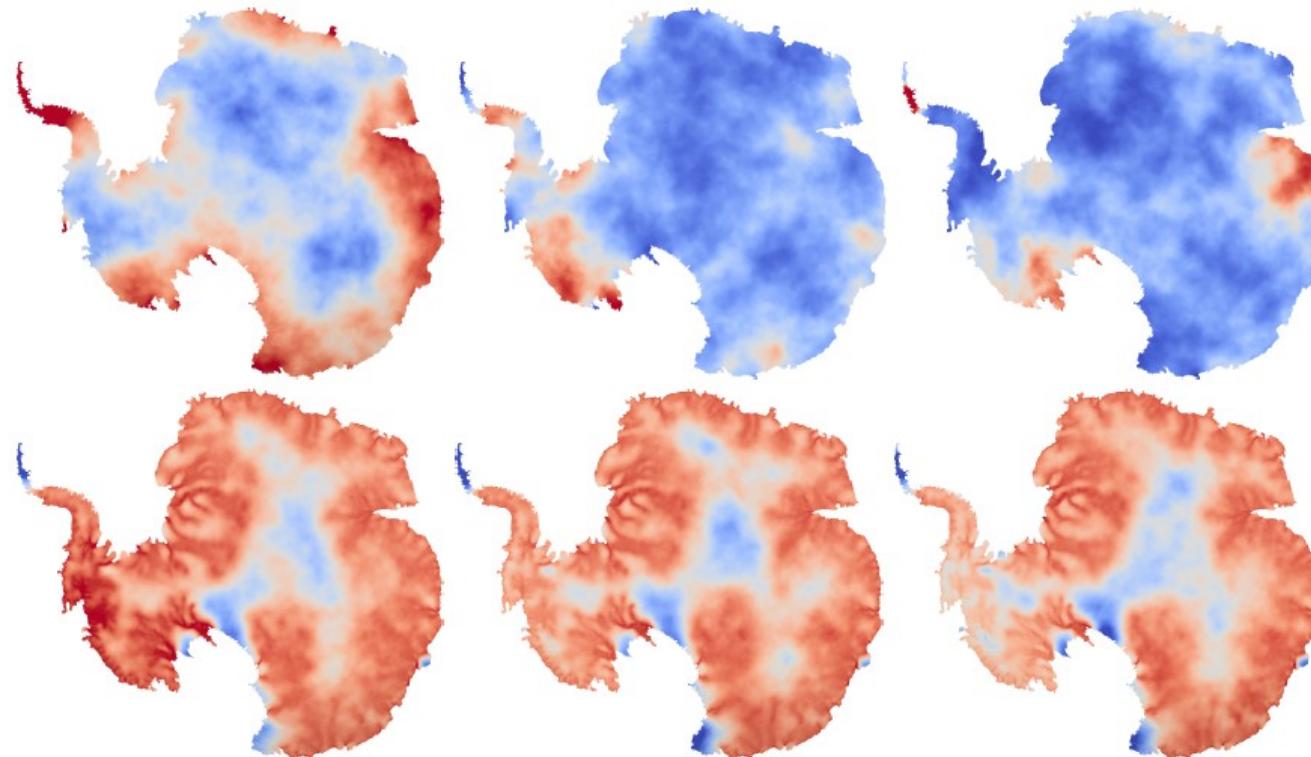
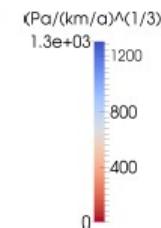
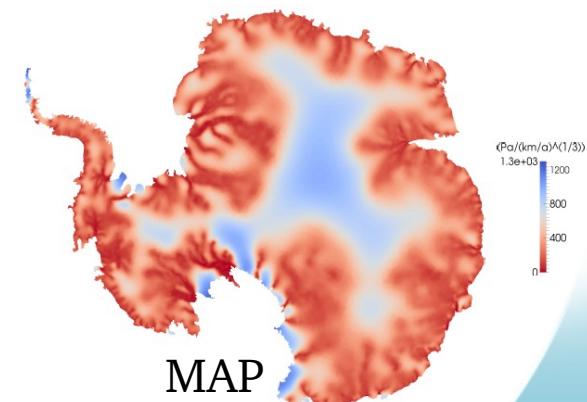
True β field

Reconstructed β field

Building the Gaussian posterior approximation using Hessian from deterministic inversion

Hessian provide a way to compute the Covariance of the Gaussian posterior.

$$\boldsymbol{\Gamma}_{\text{post}} = \left(\boldsymbol{\Gamma}_{\text{prior}} \boldsymbol{H}_{\text{misfit}} + \boldsymbol{I} \right)^{-1} \boldsymbol{\Gamma}_{\text{prior}}$$



MAP

Courtesy of
O. Ghattas
group

Samples from the prior (top row) and Gaussianized posterior (bottom row) distributions for the basal sliding parameter field. *Isaac et al. 2004*.

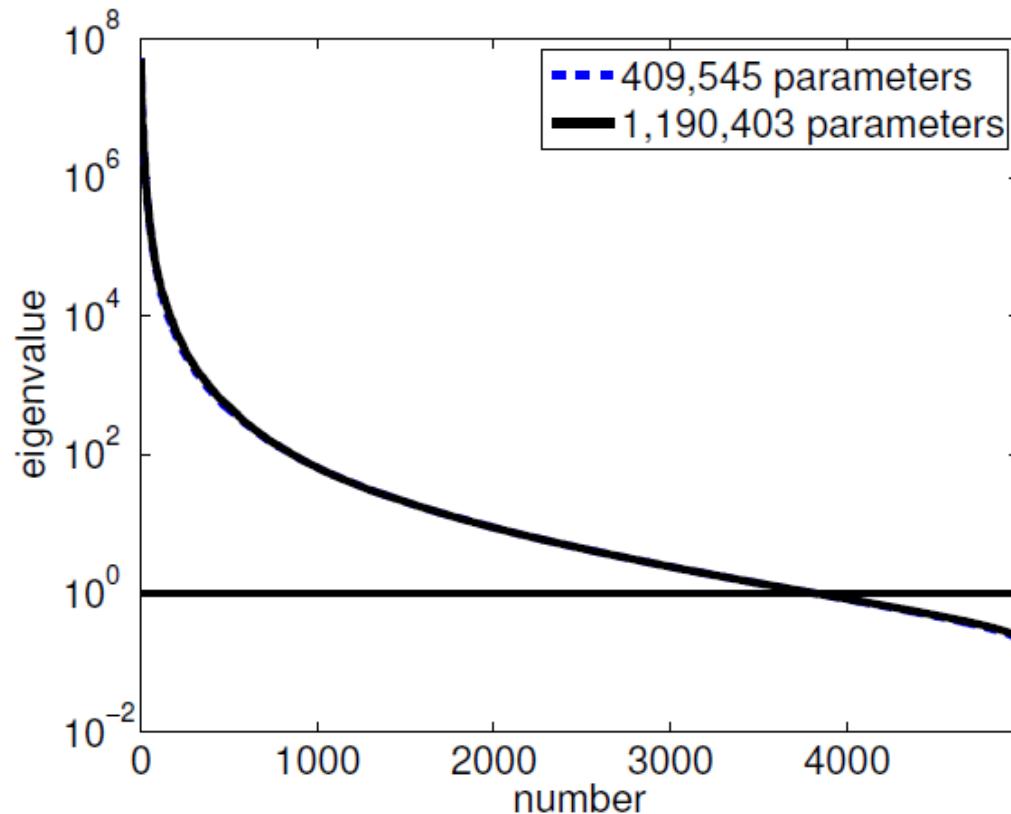
Building the Gaussian posterior approximation using Hessian from deterministic inversion

Hessian provide a way to compute the Covariance of the Gaussian posterior.

$$\boldsymbol{\Gamma}_{\text{post}} = \left(\boldsymbol{\Gamma}_{\text{prior}} \boldsymbol{H}_{\text{misfit}} + \boldsymbol{I} \right)^{-1} \boldsymbol{\Gamma}_{\text{prior}}$$

We want to limit to only the most important directions of the covariance matrix.

Issue: significant eigenvalues are **still too many** (~ 1000).



Courtesy of
O. Ghattas
group

$$\text{Err}^{\text{post}} = \mathcal{O} \left(\sum_{i=r+1}^n \frac{\lambda_i^{\text{prior}}}{1 + \lambda_i^{\text{prior}}} \right)$$

Log-linear plot of spectrum of prior-preconditioned data misfit Hessian for two successively finer parameter/state meshes of the inverse ice sheet problem. *Isaac et al. 2004.*

Perform Uncertainty Propagation using compressed sensing

Build emulator

(Polynomial Chaos Expansion, PCE)

Dakota/Albany

$$\beta(\omega) = \bar{\beta} + \sum_{k=1}^K \sqrt{\lambda_k} \phi_k \xi_k(\omega)$$

Model realizations
Forward propagation
(e.g. 2000-2100)

QoI(β)
total ice
mass loss

- Parameter distribution can be either assumed to be Gaussian (based on Hessian information) or can be the result of the Bayesian calibration.
- The emulator is built using Dakota coupled with Albany for forward runs.
 - use **compressed sensing technique*** to adaptively select significant modes and the basis for the parameter space. The hope is that only few modes affect the QoI.
 - possibly use cheap physical models to reduce the time of computing the forward model.
- Use MCMC to perform Uncertainty propagation.

*Jakeman, Eldred, Sargsyan, JCP, 2015

Thank you!