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Problem definition

Quantity of Interest in ice sheet modeling:

total ice mass loss/gain by, e.g. 2200 - sea level rise prediction

Main sources of uncertainty:

- climate forcings (e.g. Surface Mass Balance)
- basal friction
- bedrock topography
- geothermal heat flux

- model parameters (e.g. Glen's Flow Law exponent)




Problem definition

Goal: Uncertainty Quantification of Qol

(Main) Issue: Huge number of parameters (10°-10")

Work flow:

» Perform adjoint-based deterministic inversion to estimate initial ice sheet state.
(i.e. characterize the present state of ice sheet to be used for performing prediction runs).

e Use deterministic inversion to build a Gaussian posterior in the inverse problem (based
on recovered fields and the Hessian).

e Bayesian Calibration: construct the posterior distribution using Markov Chain Monte
Carlo run on an emulator of the forward model.

» Forward Propagation: sample the obtained distribution and perform ensemble of forward
propagation runs to compute the uncertainty on the Qol.




Deterministic Inversion

GOAL
Find ice sheet initial state that
« matches observations (e.g. surface velocity, temperature, etc.)
« matches present-day geometry (elevation, thickness)
e is in “equilibrium” with climate forcings (SMB)
by inverting for unknown/uncertain ice sheet model parameters.

Significantly reduce non physical transients without spin-up.
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Deterministic Inversion

Problem details

Available data/measurements

+ ice extension and surface topography

ice-sheet

+ surface velocity
+ Surface Mass Balance (SMB)

+ ice thickness H (sparse measurements)

Fields to be estimated
. ice thickness H (allowed to vary but weighted by observational uncertainties)

+ basal friction B (spatially variable proxy for all basal processes)

Modeling Assumptions
+ ice flow described by nonlinear Stokes equation

+ ice is close to mechanical equilibrium

Additional Assumption (for now)

+ given temperature field

Perego, Price, Stadler, Journal of Geophysical Research, 2014



Deterministic Inversion

PDE-constrained optimization problem: cost functional

Problem: find initial conditions such that the ice is close to thermo-mechanical
equilibrium, given the geometry and the SMB, and matches available observations.

Optimization problem:

find # and H that minimizes the functional J
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Deterministic Inversion for Greenland ice sheet

Grid and RMS of velocity and errors associated with velocity and thickness observations

Velocity RMS (m/yr) Thickness RMS (km)
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Geometry and fields Bamber et al.[2013], temperature computed with CISM (Shannon et al. [20 el



Deterministic Inversion for Greenland ice sheet

Inversion results: surface velocities

computed surface velocity observed surface velocity

lul (m/yr)
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Deterministic Inversion for Greenland ice sheet

Inversion results: surface mass balance (SMB)

SMB (m/yr) needed for equilibrium SMB from climate model
(Ettema et al. 2009, RACMO2/GR)
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Deterministic Inversion for Greenland ice sheet
Estimated beta and change in topography

recovered basal friction ~ difference between recovered and
‘ observed thickness
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Antarctica Inversion (only for basal friction)

Objective functional: J(u(8), B) :/ %|u—u0b3\2ds—|— oz/ IVB|? ds
2 Yu >

ROL algorithm:
e Limited—Memory BFGS
e Backtrack line—search
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Gometry (Cornford, Martin et al., in
prep.)
Bedmap2 (Fretwell et al., 2013)

Temperature (Pattyn, 2010)
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Bayesian Calibration (proof of concept w/ KLE)

Difficulty in UQ approach: “Curse of dimensionality”.
At relevant model resolutions, the basal friction parameter space can have O(10°) parameters.
However, the effective dimension of the problem is smaller.

2
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12
tempt, we intend to use Hessian based covariance in the future.

. First at-

1. Assume analytic covariance kernel I', 0 = €xp

2. Perform eigenvalue decomposition of I'yior-

3. Take the mean 8 to be the deterministic solution and expand /3 in basis
of eigenvector {¢;, } of I'prior, with random variables {& }

Bw) =B+ >V udpbi(w)

*Expansion done on log(3) to avoid negative values for (.




Bayesian Calibration (proof of concept w/ KLE)

KLE modes, emulator build, inversion

* 5 KLE modes capture 95% of covariance energy — consequence of chosen covariance
(parallel C+ +/Trilinos code Anasazi).
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Only spatial correlation has been considered.

* Mismatch (ALBANY): J(B) = / 1 u— uob3|2 ds
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* Build Emulator. Polynomial chaos expansion (PCE) was formed

for the mismatch over random variables using uniform prior
distributions. DAKOTA.

* Inversion/Calibration. Markov Chain Monte Carlo (MCMC)
was performed on the PCE with 100K samples QUESO.
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Bayesian Calibration (proof of concept w/ KLE)

Numerical results

Posterior distributions for the 5 KLE coefficients:
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Building the Gaussian posterior approximation
using Hessian from deterministic inversion

Hessian provide a way to compute the Covariance of the Gaussian posterior.
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Samples from the prior (top row) and Gaussianized posterior (bottom row)
distributions for the basal sliding parameter field. Isaac et al. 2004.
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Building the Gaussian posterior approximation
using Hessian from deterministic inversion

Hessian provide a way to compute the Covariance of the Gaussian posterior.

= (T, H,+1) T,

We want to limit to only the most important directions of the covariance matrix.

post

Issue: significant eigenvalues are still too many (~ 1000).
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Log-linear plot of spectrum of prior-preconditioned data misfit Hessian for two successwely

finer parameter/state meshes of the inverse ice sheet problem. Isaac et alzy’/




Perform Uncertainty Propagation using
compressed sensing

Build emulator Dakota/Albany
(Polynomial Chaos Expansion, PCE)
a Model realizations
_ A / ol
Blw) =F+ Z M@k (W) Forward propagation - Q (6)
k=1 (e.g. 2000-2100) total ice
mass loss

 Parameter distribution can be either assumed to be Gaussian (based on Hessian
information) or can be the result of the Bayesian calibration.

» The emulator is built using Dakota coupled with Albany for forward runs.

- use compressed sensing technique* to adaptively select significant modes and the basis
for the parameter space. The hope is that only few modes affect the Qol.
- possibly use cheap physical models to reduce the time of computing the forward model.

e Use MCMC to perform Uncertainty propagation.

*Jakeman, Eldred, Sargsyan, JCP, 2015




Thank you!

Sandia
National
Laboratories



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Bayesian Inversion: Moderate-Dimensional Greenland Problem
	Slide 14
	Preliminary Results for Greenland Bayesian Inference (cont’d)
	Slide 16
	Slide 18
	Slide 19
	Slide 20

