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Quantity of Interest in ice sheet modeling:

total ice mass loss/gain by, e.g. 2200   sea level rise prediction→

Main sources of uncertainty:

­ climate forcings  (e.g. Surface Mass Balance)

­ basal friction

­ bedrock topography

­ geothermal heat flux

­ model parameters (e.g. Glen's Flow Law exponent)

Problem definition



Problem definition

Goal: Uncertainty Quantification of QoI

(Main) Issue: Huge number of parameters (105­107)

Work flow:
● Perform adjoint­based deterministic inversion to estimate initial ice sheet state.

(i.e. characterize the present state of ice sheet to be used for performing prediction runs).
● Use deterministic inversion to build a Gaussian posterior in the inverse problem (based 

on recovered fields and the Hessian).
● Bayesian Calibration: construct the posterior distribution using Markov Chain Monte 

Carlo run on an emulator of the forward model.
● Forward Propagation: sample the obtained distribution and perform ensemble of forward 

propagation runs to compute the uncertainty on the QoI.



Deterministic Inversion

Perego, Price, Stadler, Journal of Geophysical Research, 2014

­ Arthern, Gudmundsson, J. Glaciology, 2010

­ Price, Payne, Howat and  Smith, PNAS, 2011

­ Petra, Zhu, Stadler, Hughes, Ghattas, J. Glaciology, 2012

­ Pollard DeConto, TCD, 2012

­ W. J. J.Van Pelt et al., The Cryosphere, 2013

­ Morlighem et al. Geophysical Research Letters, 2013

­ Goldberg and Heimbach, The Cryosphere, 2013

­ Michel et al., Computers & Geosciences, 2014

Bibliography

GOAL

Find ice sheet initial state that 

● matches observations (e.g. surface velocity, temperature, etc.)

● matches present­day geometry  (elevation, thickness)  

● is in “equilibrium” with climate forcings (SMB)

by inverting for unknown/uncertain ice sheet model parameters.

Significantly reduce non physical transients without spin­up.



Available data/measurements 
 ice extension and surface topography  
 surface velocity
 Surface Mass Balance (SMB)
 ice thickness H (sparse measurements) 

Fields to be estimated
 ice thickness H (allowed to vary but weighted by observational uncertainties)

 basal friction (spatially variable proxy for all basal processes) 

Modeling Assumptions
 ice flow described by nonlinear Stokes equation 
 ice is close to mechanical equilibrium

Additional Assumption (for now) 
 given temperature field

ice-sheet

bedrock
ocean

H 

Perego, Price, Stadler, Journal of Geophysical Research, 2014

Problem details

Deterministic Inversion



 PDE­constrained optimization problem: cost functional

Problem: find initial conditions such that the ice is close to thermo­mechanical 
equilibrium, given the geometry and the SMB, and matches available observations. 

Common

Proposed

Optimization problem:

Deterministic Inversion



Grid and RMS of velocity and errors associated with velocity and thickness observations

Grid Velocity RMS (m/yr) Thickness RMS (km)

Geometry and fields Bamber et al.[2013], temperature computed with CISM (Shannon et al. [2013])

Deterministic Inversion for Greenland ice sheet



common proposed target

Inversion results: surface velocities

computed surface velocity observed surface velocity

Deterministic Inversion for Greenland ice sheet



Inversion results: surface mass balance (SMB) 

common proposed target

SMB (m/yr) needed for equilibrium      SMB from climate model
(Ettema et al. 2009, RACMO2/GR)

Deterministic Inversion for Greenland ice sheet

Plot saturated.

In many places field 
is  ± hundreds m/yr.



Estimated beta and change in topography

recovered basal friction difference between recovered and 
observed thickness

common proposed

Deterministic Inversion for Greenland ice sheet



Antarctica Inversion (only for basal friction)

INVERTED 700K PARAMETERS

recovered basal friction 
(kPa yr/m)

Gometry (Cornford, Martin et al., in 
prep.)

Bedmap2 (Fretwell et al., 2013)

Temperature (Pattyn, 2010)



Bayesian Calibration (proof of concept w/ KLE) 

Difficulty in UQ approach: “Curse of dimensionality”. 
At relevant model resolutions, the basal friction parameter space can have O(106) parameters.
However, the effective dimension of the problem is smaller.



1
4

• 5 KLE modes capture 95% of covariance energy – consequence of chosen covariance  
(parallel C++/Trilinos code Anasazi).

Only spatial correlation has been considered.

Bayesian Calibration (proof of concept w/ KLE) 
KLE modes, emulator build, inversion

• Mismatch (ALBANY):
 

• Build Emulator. Polynomial chaos expansion (PCE) was formed 
for the mismatch over random variables using uniform prior 
distributions.  DAKOTA. 

• Inversion/Calibration. Markov Chain Monte Carlo (MCMC) 
was performed on the PCE with 100K samples  QUESO. 



True  field  Reconstructed  field 

Posterior distributions for the 5 KLE coefficients:

MAP solution:   = (­0.16, ­0.08, 0, 0, 0)

Truth Reconstructed
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Bayesian Calibration (proof of concept w/ KLE) 
Numerical results



Building the Gaussian posterior approximation 
using Hessian from deterministic inversion

Samples from the prior (top row) and Gaussianized posterior (bottom row) 
distributions for the basal sliding parameter field. Isaac et al. 2004.

Hessian provide a way to compute the Covariance of the Gaussian posterior.

Courtesy of

O. Ghattas 
group

MAP



Building the Gaussian posterior approximation 
using Hessian from deterministic inversion

Log­linear plot of spectrum of prior­preconditioned data misfit Hessian for two successively 
finer parameter/state meshes of the inverse ice sheet problem. Isaac et al. 2004.

Hessian provide a way to compute the Covariance of the Gaussian posterior.

We want to limit to only the most important directions of the covariance matrix.

Issue: significant eigenvalues are still too many (~ 1000).

Courtesy of

O. Ghattas 
group



Perform Uncertainty Propagation using 
compressed sensing 

● Parameter distribution can be either assumed to be Gaussian (based on Hessian 
information) or can be the result of the Bayesian calibration.

● The emulator is built using Dakota coupled with Albany for forward runs.

­ use compressed sensing technique* to adaptively select significant modes and the basis 
for the parameter space. The hope is that only few modes affect the QoI.
­ possibly use cheap physical models to reduce the time of computing the forward model. 

● Use MCMC to perform Uncertainty propagation.

Build emulator 
(Polynomial Chaos Expansion, PCE)

Model realizations
Forward propagation 

(e.g. 2000­2100)

Dakota/Albany

total ice 
mass loss

*Jakeman, Eldred, Sargsyan, JCP, 2015



Thank you!
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