

Marta D'Elia¹ & Eric Phipps¹ & H. Carter Edwards² & Jonathan J. Hu² & Siva Rajamanickam²
¹Optimization and Uncertainty Quantification, ²Scalable Algorithms, Sandia National Laboratories, NM

Objectives

- Enable accurate predictive simulation for many problems that are intractable today using uncertainty quantification (UQ) as a scientific driver for pushing to the exascale.
- Improve the performance of UQ approaches that repeatedly sample deterministic simulation codes at different realizations of the input data, resulting in performance limited to that of each realization.
- Achieve high performance in the simulation of PDEs on multicore (CPU/GPU/Accelerator) architectures addressing the following problems:
 - Random, uncoalesced memory accesses,
 - Inability to exploit consistent vectorization.

Approach

Many UQ approaches are based on the solution of a PDE for several realizations of input parameters, sampled from a probability density function, e.g.

$$\nabla \cdot (a(\mathbf{x}, \mathbf{y}_i) \nabla u) = g \quad \text{in } \Omega \quad \text{for some samples } \{\mathbf{y}_i\}_{i=1}^M. \quad (1)$$

In many cases, the code path, processor instructions, and memory access patterns are very similar from realization to realization.

Idea: Propagate a collection (**ensemble**) of samples together through the forward simulation: given the PDEs $f(u, \mathbf{y}_i) = 0, i = 1, \dots, m$

- discretize via finite elements (FE): $F(U, Y_i) = 0, i = 1, \dots, m$
- propagate: $\mathbf{F}(\mathbf{U}, \mathbf{Y}) = \mathbf{0}$, where

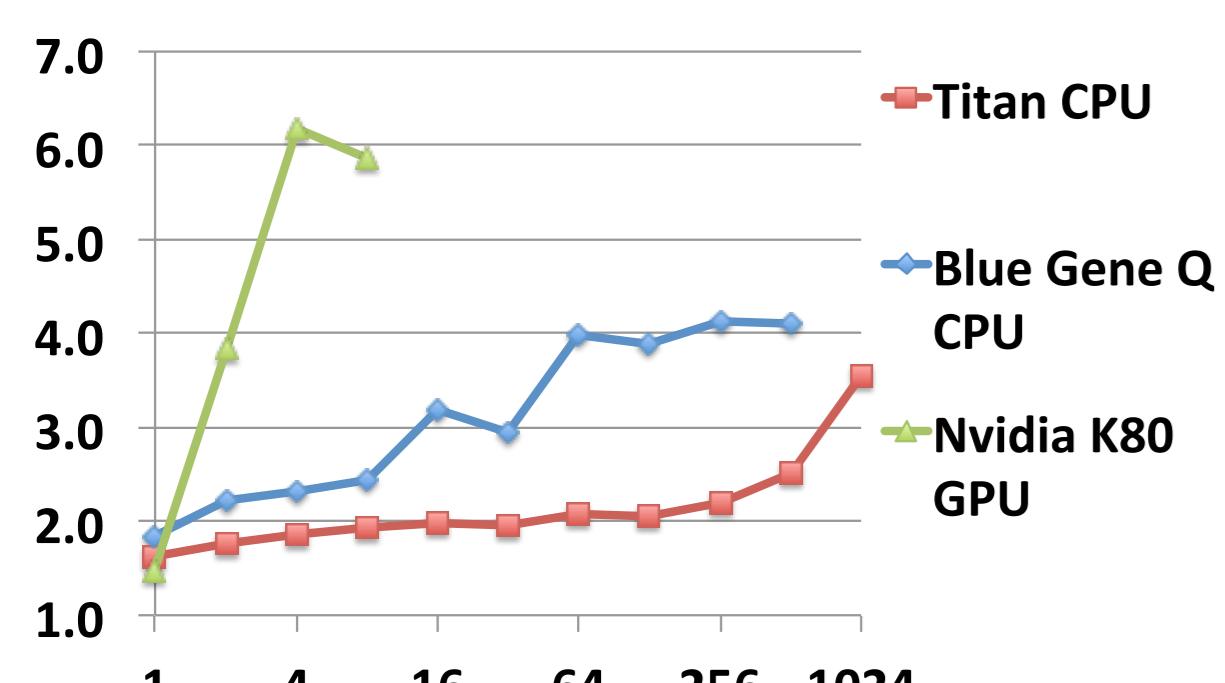
Ensemble FE solution: $\mathbf{U} = \sum_{i=1}^m U_i \otimes \mathbf{e}_i$

Ensemble input data: $\mathbf{Y} = \sum_{i=1}^m Y_i \otimes \mathbf{e}_i$

Ensemble FE residual: $\mathbf{F} = \sum_{i=1}^m F(U_i, Y_i) \otimes \mathbf{e}_i$

The new approach:

- Turns sample-dependent parameters into small arrays;
- Increases the fine-grained parallelism: each sample within the ensemble can be assigned to a vector lane/CUDA thread;
- Improves memory access patterns: random memory accesses become block accesses (coalesced/packed);
- Enables sharing of non-sample-dependent data (e.g., mesh) between samples to reduce memory bandwidth;
- Amortizes MPI communication latency across ensemble.



Approach applied to C++ PDE codes via template-based generic programming: **Stokhos** embedded uncertainty quantification library on top of **Kokkos** portable manycore performance library (H.C. Edwards, D. Sunderland, C. Trott).

Figure: Speed-up vs compute nodes on a 64x64x64 mesh for the solution of $\mathbf{F}(\mathbf{U}, \mathbf{Y}) = \mathbf{0}$ with $m = 32$.

Problem setting

Solvers

- For the solution of $F(U, Y_i) = 0$ and $\mathbf{F}(\mathbf{U}, \mathbf{Y}) = \mathbf{0}$ we use the Conjugate Gradient (CG) method.
- We precondition the system using a smoothed aggregation algebraic multigrid (AMG) preconditioner implemented in the Trilinos package ML (R. Tuminaro, C. Siefert, J. Hu).

NOTE: though very robust, the convergence of the AMG preconditioned CG may deteriorate if 1. the computational grid is unstructured/anisotropic, 2. the diffusion parameter is highly non-smooth.

The diffusion parameter

Given the covariance function $cov(\mathbf{x}, \mathbf{x}')$ with eigenvalues and eigenfunctions λ_n and $v_n(\mathbf{x})$, the parameter $a(\mathbf{x}, \mathbf{y})$ is defined via truncated Karhunen–Loëve (KL) expansion:

$$a(\mathbf{x}, \mathbf{y}) = a_0 + e^{\sum_{n=1}^N \sqrt{\lambda_n} v_n(\mathbf{x}) y_n} \quad \text{with} \quad cov(\mathbf{x}, \mathbf{x}') = e^{-\frac{\|\mathbf{x}-\mathbf{x}'\|_2^2}{L^2}}.$$

Single-Parameter results

For $\Omega = [0, 1]^2$, $L = 0.1$, $N = 3$, and $\mathbf{y} \in \mathbb{R}^N$ such that $y_n \sim \mathcal{U}(-25, 25)$, we solve $F(U, Y) = 0$. In the table below we report the realizations \mathbf{y}_i , $\Delta a(\mathbf{y}_i) = \max_{\Omega} a(\mathbf{x}, \mathbf{y}_i) - \min_{\Omega} a(\mathbf{x}, \mathbf{y}_i)$, the condition number of the FE diffusion matrix $\kappa(D_i)$ and the number of CG iterations its_i to reach convergence. In the figures below we report, for \mathbf{y}_6 , \mathbf{y}_8 , and \mathbf{y}_9 , $a(\mathbf{x}, \mathbf{y})$ and $u(\mathbf{x}, \mathbf{y})$.

sample	$\Delta a(\mathbf{y}_i)$	$\kappa(D_i)$	its_i
$\mathbf{y}_1 = (8, -21, 18)$	2.1600e+03	1.1062e+07	47
$\mathbf{y}_2 = (-11, -16, 9)$	5.9669e+03	1.8700e+07	69
$\mathbf{y}_3 = (-14, -8, -11)$	2.5747e+03	5.9703e+06	61
$\mathbf{y}_4 = (22, -15, 4)$	2.9942e+00	3.7685e+04	27
$\mathbf{y}_5 = (-20, 12, 14)$	5.8283e+04	1.1907e+08	97
$\mathbf{y}_6 = (-1, 4, 6)$	1.3962e+01	7.7359e+04	28
$\mathbf{y}_7 = (-14, -22, 9)$	6.5345e+04	1.9956e+08	93
$\mathbf{y}_8 = (-23, 22, 11)$	7.6637e+05	1.7142e+09	113
$\mathbf{y}_9 = (-18, 6, 1)$	8.1776e+03	9.3598e+05	57
$\mathbf{y}_{10} = (1, -1, -7)$	7.3972e+00	4.9348e+04	27
$\mathbf{y}_{11} = (-6, 20, 16)$	2.0276e+04	7.8380e+07	80
$\mathbf{y}_{12} = (-13, -10, -9)$	1.9646e+03	4.8397e+06	58
$\mathbf{y}_{13} = (-9, -22, -4)$	9.1691e+03	3.1937e+07	77
$\mathbf{y}_{14} = (11, 17, 23)$	1.6592e+03	8.7855e+06	43
$\mathbf{y}_{15} = (2, -5, -22)$	9.0591e+03	3.9393e+06	35
$\mathbf{y}_{16} = (6, -19, 16)$	1.2703e+03	6.4215e+06	43

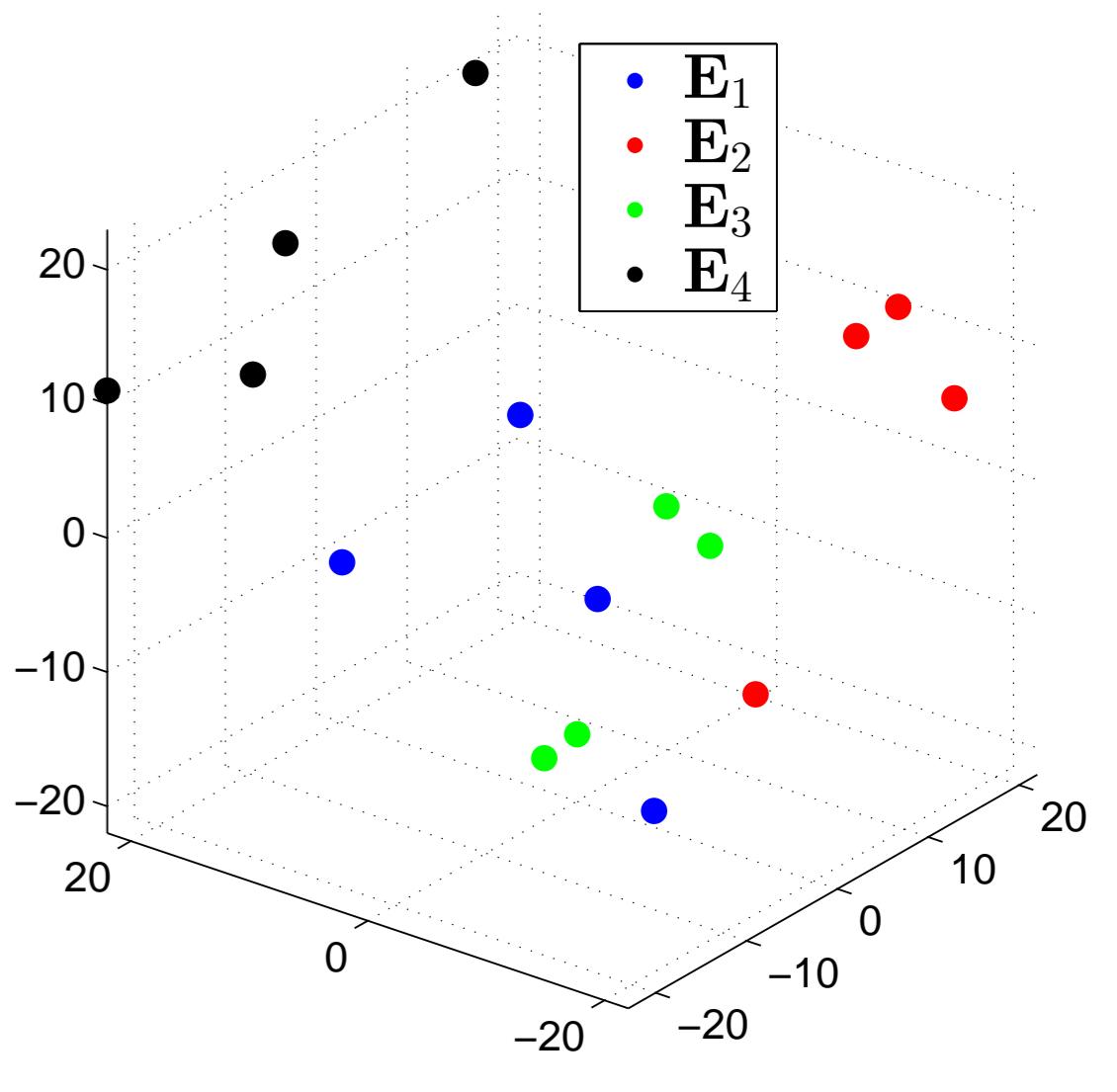
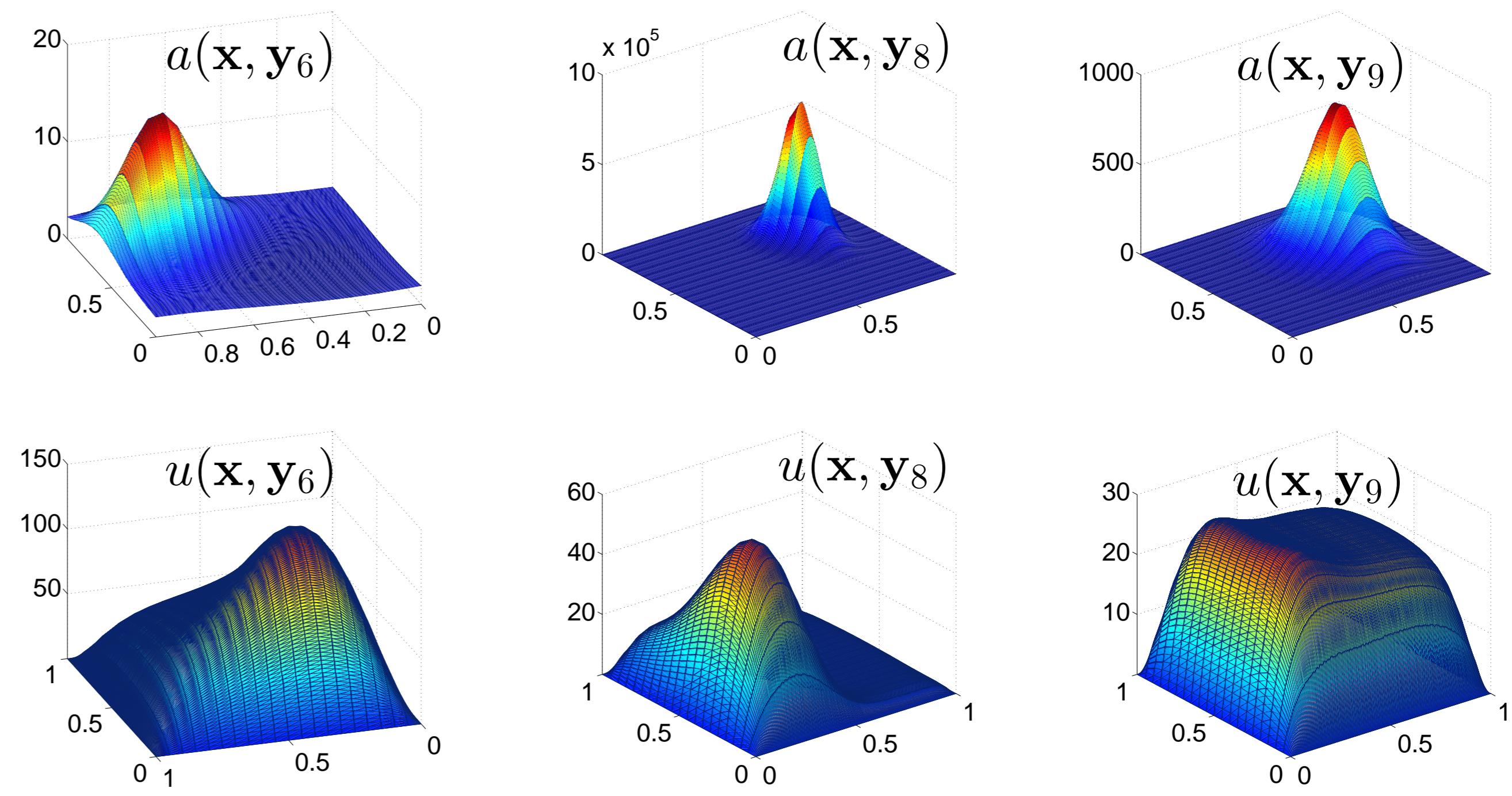


Figure: Samples \mathbf{y}_1 – \mathbf{y}_{16} grouped by mutual distance.



Note: when we form the ensemble system, the convergence of the linear solver is dictated by the sample that requires the highest number of iterations in a single-sample solve and, in most of the cases, is even worse.

GOAL: find an efficient **grouping** strategy.

Idea: use a grouping strategy that aggregates samples requiring similar number of iterations. We introduce three grouping strategies based on

1. Variation of the diffusion parameter over Ω ;
2. Condition number of the FE diffusion matrix;
3. Mutual distance of the samples in the space.

Ensemble results

Using the strategies 1., 2., and 3. we group the samples in 4 ensembles, $\mathbf{E}_1, \mathbf{E}_2, \mathbf{E}_3, \mathbf{E}_4$, of size $m = 4$. We report the results in the table below. Strategy 0. refers to grouping based on the number of iterations; r_j is related to the ratio between the cost of the ensemble approach and the single-sample's

$$\frac{m \, its_j}{(\text{speed-up}) \sum_{i=1}^m its_i} = \frac{r_j}{(\text{speed-up})}.$$

Ensembles	its_j	r_j	$\kappa(D_j)$
0. $\mathbf{E}_1 = \{10, 4, 6, 15\}$	34	1.16	$\kappa(D_E) = 7.6198e+06$
$\mathbf{E}_2 = \{14, 16, 1, 9\}$	59	1.24	$\kappa(D_E) = 1.1562e+07$
$\mathbf{E}_3 = \{12, 3, 2, 13\}$	99	1.49	$\kappa(D_E) = 3.1937e+07$
$\mathbf{E}_4 = \{11, 7, 5, 8\}$	188	1.96	$\kappa(D_E) = 2.9381e+09$
1. $\mathbf{E}_1 = \{4, 10, 6, 9\}$	56	1.91	$\kappa(D_E) = 7.5931e+06$
$\mathbf{E}_2 = \{15, 16, 14, 12\}$	59	1.32	$\kappa(D_E) = 1.0875e+07$
$\mathbf{E}_3 = \{1, 3, 2, 13\}$	100	1.57	$\kappa(D_E) = 4.9514e+07$
$\mathbf{E}_4 = \{11, 5, 7, 8\}$	188	1.96	$\kappa(D_E) = 2.9381e+09$
2. $\mathbf{E}_1 = \{4, 10, 6, 9\}$	56	1.91	$\kappa(D_E) = 7.5931e+06$
$\mathbf{E}_2 = \{15, 12, 3, 16\}$	65	1.32	$\kappa(D_E) = 1.3379e+07$
$\mathbf{E}_3 = \{14, 1, 2, 13\}$	95	1.61	$\kappa(D_E) = 5.1755e+07$
$\mathbf{E}_4 = \{11, 5, 7, 8\}$	188	1.96	$\kappa(D_E) = 2.9381e+09$
3. $\mathbf{E}_1 = \{10, 9, 15, 6\}$	57	1.55	$\kappa(D_E) = 4.7551e+06$
$\mathbf{E}_2 = \{13, 16, 1, 4\}$	79	1.63	$\kappa(D_E) = 8.3199e+07$
$\mathbf{E}_3 = \{2, 7, 12, 3\}$	105	1.49	$\kappa(D_E) = 2.0333e+08$
$\mathbf{E}_4 = \{8, 5, 14, 11\}$	170	2.04	$\kappa(D_E) = 4.1230e+09$

CONCLUSION

- Our approach allows us to achieve a significant speed-up for several architectures and different ensemble sizes.
- To exploit the speed-up an effective grouping strategy is mandatory.
- Strategy 1. seems to be the most promising when the smoothness of parameters affects the convergence of linear solvers.

Future work: application to hierarchical stochastic collocation methods for UQ.