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Single—Parameter results

Objectives
For Q =[0,1]?, L=10.1, N = 3, and y € R" such that y,, ~ U(—25,25), we
solve F'(U,Y) = 0. In the table below we report the realizations y;, Aa(y;) =
maxg a(X, y;) —ming a(x, y;), the condition number of the FE diffusion matrix
k(D;) and the number of CG iterations its; to reach convergence. In the

e Enable accurate predictive simulation for many problems that are
intractable today using uncertainty quantification (UQ) as a scientific
driver for pushing to the exascale.

e I[mprove the performance of UQ approaches that repeatedly sample figures below we report, for yg, ys, and yg, a(x,y) and u(x,y).
deterministic simulation codes at different realizations of the input data,
resulting in performance limited to that of each realization. sample Aalyi)  K(Di) 1ts;
_ _ _ _ _ _ y1 = (8, —21,18) 2.1600e+03 1.1062e+07 47 By
e Achieve high performance in the simulation of PDEs on multicore yo = (—11,—16,9)  5.9669¢+03 1.8700e+07 69 BT = gg
(CPU/GPU/Accelerator) architectures addressing the following problems: ys =(—14,-8,—11) 2.5747e+03 5.9703e+06 61 o0 0 LR,
yi = (22, —15,4) 2.9942e+00 3.7685e+04 27 T e
— Random, uncoalesced memory accesses, ys = (—20,12,14)  5.8283e+04 1.1907¢+08 97 B
— Inability to exploit consistent vectorization. y6 = (—1,4,6) 1.3962e+01 7.7350e+04 28 o e
yr = (—14,-22,9)  6.5345e+04 1.9956e+08 93 e
ys = (—23,22,11)  7.6637e+05 1.7142¢+09 113 ol e
yo = (—18,6,1) 8.1776e+03 9.3598e+05 57 | o
Approach yio = (1,—1,-7) 7.3972e+00 4.9348e+04 27
yi = (—6,20,16)  2.0276e+04 7.8380e+07 80
Many UQ approaches are based on the solution of a PDE for several realizations y12 = (—13,—10,—9) 1.9646e+03 4.8397e+06 58
_ . . | yi3 = (—9,—22,—4) 9.1691e+03 3.1937e+07 77
of input parameters, sampled from a probability density function, e.g. v = (11,17, 23) 1 6592¢+03 8.785564-06 43
| o : M yi5 = (2, —5H, —22) 9.0591e+03 3.9393e+06 35 Figure: Samples y,—ys grouped by
V- (a(x,y;)Vu) =g inQ for some samples {y;},-;. (1) y16 = (6, —19, 16) 1.2703¢+03 6.4215e4-06 43 mutual distance.

In many cases, the code path, processor instructions, and memory access pat-

terns are very similar from realization to realization. 0 ( )
10, RSERA 1000 a(X,yo)

Idea: Propagate a collection (ensemble) of samples together through the
forward simulation: given the PDEs f(u,y;) =0,7=1,...m

500

o discretize via finite elements (FE): F(U,Y;) =0,i=1,..m
o propagate: F(U,Y) = 0, where

Ensemble FE solution: U =", U; ® €;

Ensemble input data: 'Y =Y7",Y; ® e

Ensemble FE residual: F =Y, F(U,,Y;) ® e;
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The new approach:

e Turns sample—dependent parameters into small arrays;
Note: when we form the ensemble system, the convergence of the linear solver

e Increases the fine—grained parallelism: each sample within the ensemble can
be assigned to a vector lane/CUDA thread:; is dictated by the sample that requires the highest number of iterations in a

single—sample solve and, in most of the cases, is even worse.

GOAL: find an efficient grouping strategy.

Idea: use a grouping strategy that aggregates samples requiring similar number

of iterations. We introduce three grouping strategies based on

1. Variation of the diffusion parameter over §l;

2. Condition number of the FE diffusion matrix:

e Improves memory access patterns: random memory accesses become block
accesses (coalesced/packed);

e Enables sharing of non—sample—dependent data (e.g., mesh) between
samples to reduce memory bandwidth;

e Amortizes MPl communication latency across ensemble.

7.0 | | | 3. Mutual distance of the samples in the space.
6.0 _ “Titan CPU Approach applied to C++ PDE codes via template—based
5.0 BlueGeneq  ZEneric programming: Stokhos embedded uncertainty Ensemble results
4.0 /‘/ T CPU quantification library on top of KOkkOS portable manycore _ _ _
3.0 — NVidia K80 o e library (H.C. Edwards, D. Sunderland, C. Trott). Using the strategies 1., 2., and 3. we group the samples in 4 ensembles,
20 [ o : E., Ey, E5 E,, of size m = 4. We report the results in the table below
10 | Figure: Speed-up vs compute nodes on a 64x64x64 mesh L, =2, =3, Hd _ ' _ _ _ '
1 4 16 64 256 1024 for the solution of F(U,Y) = 0 with m = 32. Strategy 0 refers to grouping based on the number of |terat|on‘.5.; r; is related
to the ratio between the cost of the ensemble approach and the single—sample’s
PP g P
i m 1ts; T
Problem setting ;= 7
(speed—up) Z?ll 1ts; (speed—up)
Solvers CONCLUSION
e For the solution of F(U,Y;) =0 and F(U,Y) = 0 we use the Conjugate Ensembles its; r; k(D)) 0 -

. __ _ @

Gradient (CG) method .- eni s oo @ Our approach allows us to
. . . . 2 =% 10 4 £t R p)= 1. 2902€ achieve a signiticant speed—
e We precondition the system using a smoothed aggregation algebraic E;={12,3,2 13} 99 149 r(Dg)=3.1937e+07 6 gl ot fc)

L . . . - _ _ up for several architectures
multigrid (AMG) preconditioner implemented in the Trilinos package ML (R. B, ={11,7,58 18 196 r(Dp)=29381e+09 P Tor |
Tuminaro, C. Siefert, J. Hu) 1. B, = {4,10,6,9Y 56 191 s(Dg)=7.5931e-+06 and different ensemble sizes.
NOTE: th N E, = {15, 16, 14, 12} 59  1.32 k(Dg)=1.0875e-+07 o To exploit the speed—up an

: though very robust, the convergence of the AMG preconditioned E,={1,3,2 13} 100 157 x(Dg)=4.9514e+07 - |
CG may deteriorate if 1. the computational grid is unstructured/anisotropic, B, ={11,57,8; 188 196 r(Dg)=2.938le+09 © ectlvde grouping strategy
2. the diffusion parameter is highly non—-smooth. 2. By =1{4,10,6,9} 5 191 w(Dp)=7.5931e+06 'S mandatory.
E, = {1512, 3,16} 65 132 k(Dg)=1.3379e+07 o Stratesyv 1. seems to be the

o E;={14,1,2,13} 95 161 rk(Dp)=5.1755e+07 &Y -

The diffusion parameter E,={11,5,7,8 188 196 k(Dy)=2.9381e+09 most promising when the
Given the covariance function cov(x,x’) with eigenvalues and eigenfunctions 3. E, ={10,9,15, 61 57 155 w(Dy)=4.7551e+06 smoothness of parameters
A\, and v,,(x), the parameter a(x,y) is defined via truncated Karhunen—Loéve E,=1{13,16, 1,4} 79 = 163 x(Dp)=8.3190e+07

n n( ) P (x,¥) E,— (271230 105 149 n(Dy)—2 0333108 affects the convergence of
(KL) expansion: 2 E,={8,5, 14, 11} 170 2.04 k(Dy)=4.1230e+09 linear solvers.
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a(X,y) = ap+ e X with cov(x,X') =e . Future work: application to hierarchical stochastic collocation methods for UQ.
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