

Embedded Sampling–Based Uncertainty Quantification
Approaches for Emerging Computer Architectures

Marta D’Elia1 & Eric Phipps1 & H. Carter Edwards2 & Jonathan J. Hu2 & Siva Rajamanickam2

1Optimization and Uncertainty Quantification, 2Scalable Algorithms, Sandia National Laboratories, NM

Objectives

•Enable accurate predictive simulation for many problems that are
intractable today using uncertainty quantification (UQ) as a scientific
driver for pushing to the exascale.
• Improve the performance of UQ approaches that repeatedly sample
deterministic simulation codes at different realizations of the input data,
resulting in performance limited to that of each realization.
•Achieve high performance in the simulation of PDEs on multicore
(CPU/GPU/Accelerator) architectures addressing the following problems:
– Random, uncoalesced memory accesses,
– Inability to exploit consistent vectorization.

Approach

Many UQ approaches are based on the solution of a PDE for several realizations
of input parameters, sampled from a probability density function, e.g.

∇ · (a(x,yi)∇u) = g in Ω for some samples {yi}Mi=1. (1)

In many cases, the code path, processor instructions, and memory access pat-
terns are very similar from realization to realization.

Idea: Propagate a collection (ensemble) of samples together through the
forward simulation: given the PDEs f (u,yi) = 0, i = 1, ...m

• discretize via finite elements (FE): F (U, Yi) = 0, i = 1, ...m
• propagate: F(U,Y) = 0, where
Ensemble FE solution: U = ∑m

i=1Ui ⊗ ei
Ensemble input data: Y = ∑m

i=1 Yi ⊗ ei
Ensemble FE residual: F = ∑m

i=1F (Ui, Yi)⊗ ei

The new approach:
•Turns sample–dependent parameters into small arrays;
• Increases the fine–grained parallelism: each sample within the ensemble can
be assigned to a vector lane/CUDA thread;
• Improves memory access patterns: random memory accesses become block
accesses (coalesced/packed);
•Enables sharing of non–sample–dependent data (e.g., mesh) between
samples to reduce memory bandwidth;
•Amortizes MPI communication latency across ensemble.

1.0	

2.0	

3.0	

4.0	

5.0	

6.0	

7.0	

1	
 4	
 16	
 64	
 256	
 1024	

	
 S
pe

ed
-­‐U
p	

Compute	
 Nodes	

Embedded	
 Ensemble	
 CG-­‐AMG	
 Solve	
 Speed-­‐Up	
 	

Over	
 Non-­‐intrusive	
 Polynomial	
 Chaos	
 Sampling	

64x64x64	
 SpaIal	
 Mesh	
 per	
 Compute	
 Node	

Titan	
 CPU	

Blue	
 Gene	
 Q	

CPU	

Nvidia	
 K80	

GPU	

Approach applied to C++ PDE codes via template–based

generic programming: Stokhos embedded uncertainty

quantification library on top of Kokkos portable manycore

performance library (H.C. Edwards, D. Sunderland, C. Trott).

Figure: Speed-up vs compute nodes on a 64x64x64 mesh

for the solution of F(U,Y) = 0 with m = 32.

Problem setting

Solvers
•For the solution of F (U, Yi) = 0 and F(U,Y) = 0 we use the Conjugate
Gradient (CG) method.
•We precondition the system using a smoothed aggregation algebraic
multigrid (AMG) preconditioner implemented in the Trilinos package ML (R.
Tuminaro, C. Siefert, J. Hu).
NOTE: though very robust, the convergence of the AMG preconditioned
CG may deteriorate if 1. the computational grid is unstructured/anisotropic,
2. the diffusion parameter is highly non–smooth.

The diffusion parameter
Given the covariance function cov(x,x′) with eigenvalues and eigenfunctions
λn and vn(x), the parameter a(x,y) is defined via truncated Karhunen–Loève
(KL) expansion:

a(x,y) = a0 + e
∑N

n=1
√
λnvn(x) yn with cov(x,x′) = e−

‖x−x′‖22
L2 .

Single–Parameter results

For Ω = [0, 1]2, L = 0.1, N = 3, and y ∈ RN such that yn ∼ U(−25, 25), we
solve F (U, Y) = 0. In the table below we report the realizations yi, ∆a(yi) =
maxΩ a(x,yi)−minΩ a(x,yi), the condition number of the FE diffusion matrix
κ(Di) and the number of CG iterations itsi to reach convergence. In the
figures below we report, for y6, y8, and y9, a(x,y) and u(x,y).

sample ∆a(yi) κ(Di) itsi
y1 = (8,−21, 18) 2.1600e+03 1.1062e+07 47
y2 = (−11,−16, 9) 5.9669e+03 1.8700e+07 69
y3 = (−14,−8,−11) 2.5747e+03 5.9703e+06 61
y4 = (22,−15, 4) 2.9942e+00 3.7685e+04 27
y5 = (−20, 12, 14) 5.8283e+04 1.1907e+08 97
y6 = (−1, 4, 6) 1.3962e+01 7.7359e+04 28
y7 = (−14,−22, 9) 6.5345e+04 1.9956e+08 93
y8 = (−23, 22, 11) 7.6637e+05 1.7142e+09 113
y9 = (−18, 6, 1) 8.1776e+03 9.3598e+05 57
y10 = (1,−1,−7) 7.3972e+00 4.9348e+04 27
y11 = (−6, 20, 16) 2.0276e+04 7.8380e+07 80
y12 = (−13,−10,−9) 1.9646e+03 4.8397e+06 58
y13 = (−9,−22,−4) 9.1691e+03 3.1937e+07 77
y14 = (11, 17, 23) 1.6592e+03 8.7855e+06 43
y15 = (2,−5,−22) 9.0591e+03 3.9393e+06 35
y16 = (6,−19, 16) 1.2703e+03 6.4215e+06 43

−20
−10

0
10

20

−20

0

20

−20

−10

0

10

20

E1

E2

E3

E4

Figure: Samples y1–y16 grouped by
mutual distance.

0

0.5
00.20.40.60.8

0

10

20
a(x,y6)

0
0.5

0

0.5

0

5

10
x 10

5
a(x,y8)

0
0.5

0

0.5

0

500

1000 a(x,y9)

0

0.5

1

0
0.5

1

50

100

150
u(x,y6)

0
0.5

1

0

0.5

1

20

40

60

u(x,y8)

0
0.5

1

0

0.5

1

10

20

30 u(x,y9)

Note: when we form the ensemble system, the convergence of the linear solver
is dictated by the sample that requires the highest number of iterations in a
single–sample solve and, in most of the cases, is even worse.
GOAL: find an efficient grouping strategy.
Idea: use a grouping strategy that aggregates samples requiring similar number
of iterations. We introduce three grouping strategies based on
1. Variation of the diffusion parameter over Ω;
2. Condition number of the FE diffusion matrix ;
3. Mutual distance of the samples in the space.

Ensemble results

Using the strategies 1., 2., and 3. we group the samples in 4 ensembles,
E1, E2, E3,E4, of size m = 4. We report the results in the table below.
Strategy 0. refers to grouping based on the number of iterations; rj is related
to the ratio between the cost of the ensemble approach and the single–sample’s

m itsj
(speed–up) ∑m

i=1 itsi
= rj

(speed–up)
.

Ensembles itsj rj κ(Dj)
0. E1 = {10, 4, 6, 15} 34 1.16 κ(DE)=7.6198e+06

E2 = {14, 16, 1, 9} 59 1.24 κ(DE)=1.1562e+07
E3 = {12, 3, 2, 13} 99 1.49 κ(DE)=3.1937e+07
E4 = {11, 7, 5, 8} 188 1.96 κ(DE)=2.9381e+09

1. E1 = {4, 10, 6, 9} 56 1.91 κ(DE)=7.5931e+06
E2 = {15, 16, 14, 12} 59 1.32 κ(DE)=1.0875e+07
E3 = {1, 3, 2, 13} 100 1.57 κ(DE)=4.9514e+07
E4 = {11, 5, 7, 8} 188 1.96 κ(DE)=2.9381e+09

2. E1 = {4, 10, 6, 9} 56 1.91 κ(DE)=7.5931e+06
E2 = {15, 12, 3, 16} 65 1.32 κ(DE)=1.3379e+07
E3 = {14, 1, 2, 13} 95 1.61 κ(DE)=5.1755e+07
E4 = {11, 5, 7, 8} 188 1.96 κ(DE)=2.9381e+09

3. E1 = {10, 9, 15, 6} 57 1.55 κ(DE)=4.7551e+06
E2 = {13, 16, 1, 4} 79 1.63 κ(DE)=8.3199e+07
E3 = {2, 7, 12, 3} 105 1.49 κ(DE)=2.0333e+08
E4 = {8, 5, 14, 11} 170 2.04 κ(DE)=4.1230e+09

CONCLUSION
•Our approach allows us to
achieve a significant speed–
up for several architectures
and different ensemble sizes.
•To exploit the speed–up an
effective grouping strategy
is mandatory.
•Strategy 1. seems to be the
most promising when the
smoothness of parameters
affects the convergence of
linear solvers.

Future work: application to hierarchical stochastic collocation methods for UQ.

Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy¹s National Nuclear
Security Administration under contract DE-AC04-94AL85000.

SAND2015-1763C

