
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

DHARMA:	
 Distributed	

asyncHronous	
 Adap6ve	
 Resilient	

Management	
 of	
 Applica6ons	

Janine	
 Benne(,	
 Robert	
 Clay,	
 John	
 Floren,	
 Ken	

Franko,	
 Saurabh	
 Hukerikar,	
 Samuel	
 Knight,	
 Hemanth	

Kolla,	
 Greg	
 Sjaardema,	
 Nicole	
 SlaGengren,	
 Keita	

Teranishi,	
 Jeremiah	
 Wilke	

	

	

	

SOS	
 19,	
 Park	
 City,	
 UT	

March	
 3,	
 2014	

	

SAND2015-1754C

Mission	

  Address	
 challenges	
 at	
 extreme-­‐scale	
 that	
 seem	

intractable	
 with	
 current	
 PMs	
 	

 Minimize	
 data	
 movement	

  Performance	
 portability	

  Composability	
 +	
 fault-­‐tolerance	

  Focus	
 #1:	
 Evaluate	
 exis6ng	
 PMs	

  Uintah:	
 SPMD	
 structured	
 mesh	
 with	
 on-­‐node	
 DAG	

  Legion:	
 Decoupling	
 of	
 logical	
 algorithm	
 and	
 physical	

implementa6on,	
 DAG	
 automa6on	

  Charm++:	
 Communica6ng	
 parallel	
 objects	

  Focus	
 #2:	
 Develop	
 AMT	
 capability	
 to	
 fill	
 poten6al	
 gaps	

in	
 exis6ng	
 PMs	

	

	

	

2	

  Overdecomposi6on	
 and	
 latency	
 hiding	

  Data	
 pipelining	
 –	
 operate	
 on	
 data	
 as	
 soon	
 it	
 is	

ready	
 to	
 use,	
 not	
 when	
 en6re	
 giant	
 chunk	
 arrives	

  Programmer	
 produc6vity:	
 No	
 more	
 deciding	
 how	

much	
 work	
 between	
 MPI_Isend	
 and	
 MPI_Wait	

  No	
 universal	
 data	
 structures	
 –	
 leave	
 app-­‐specific	

  Fault-­‐tolerance	

3	

Why	
 pursue	
 yet	
 another	
 AMT?	

3	
 key	
 efficiency/produc6vity	
 challenges	

Why	
 pursue	
 yet	
 another	
 AMT?	

3	
 key	
 efficiency/produc6vity	
 challenges	

  Overdecomposi6on	
 and	
 latency	
 hiding	

  No	
 universal	
 data	
 structures	
 –	
 leave	
 app-­‐specific	

 Make	
 it	
 possible	
 to	
 use	
 Kokkos,	
 Raja,	
 TiDA,	
 or	

whatever	
 else	
 app	
 developers	
 dream	
 up	

  Flexible	
 C++-­‐	
 transport	
 layer	
 with	
 flexible	

protocols	
 and	
 data	
 structure	
 slicing/subsets	

  Fault-­‐tolerance	

4	

  Overdecomposi6on	
 and	
 latency	
 hiding	

  No	
 universal	
 data	
 structures	
 –	
 leave	
 app-­‐specific	

  Fault-­‐tolerance	

  “Virtualiza6on”	
 beyond	
 just	
 pointers	
 -­‐	
 seman6c/
logical	
 names	

  Assume	
 SPMD	
 structure	
 dominates	
 problem	
 –	

task	
 collec6on	
 approach	
 of	
 Krishanmoorthy	
 et	
 al.	

  Efficient	
 global	
 agreement	
 collec6ve	
 –	
 simplify	

failure/recovery	
 model	
 to	
 assume	
 every	
 agrees	
 at	

the	
 same	
 6me	
 on	
 who	
 has	
 failed	

5	

Why	
 pursue	
 yet	
 another	
 AMT?	

3	
 key	
 efficiency/produc6vity	
 challenges	

  Overdecomposi6on	
 and	
 latency	
 hiding	

  No	
 universal	
 data	
 structures	
 –	
 leave	
 app-­‐specific	

  Fault-­‐tolerance	

6	

Why	
 pursue	
 yet	
 another	
 AMT?	

3	
 key	
 efficiency/produc6vity	
 challenges	

All three unified through a
key-value store providing

asynchronous
communication, data flow,

and fault-tolerance

BeGer,	
 faster,	
 cheaper	

Food	
 for	
 thought:	

1)  How	
 far	
 would	
 changes	
 propagate	
 to	
 make	

op6miza6ons	
 to	
 a	
 single	
 compute	
 kernel	
 in	
 your	
 large	

code?	
 E.g.	
 Do	
 you	
 have	
 to	
 blow	
 up	
 the	
 en6re	
 code	
 to	

do	
 beGer	
 cache	
 blocking	
 or	
 6ling?	

2)  You	
 may	
 do	
 anything	
 in	
 MPI.	
 But	
 can	
 you?	

  BeGer	
 =	
 Faster	
 =	
 Cheaper	
 =	
 more	
 produc6ve	

programmers	
 	

  BeGer	
 =	
 Faster	
 =	
 Cheaper	
 =	
 express	
 more	
 about	
 your	

code	
 to	
 give	
 compilers,	
 run6me	
 more	
 to	
 work	
 with	

  Case	
 study	
 of	
 Legion	
 +	
 S3D	

7	

Development	
 planorm	
 of	
 the	
 future?	

  Whichever	
 code	
 makes	
 it	
 easy	
 to	
 express	
 your	
 algorithm	

correctly	
 AND	
 makes	
 it	
 easy	
 to	
 tune	
 hardware	
 mapping	

  Don’t	
 just	
 rely	
 on	
 DSL	
 or	
 compiler	
 to	
 bridge	
 usability	
 gap	

Answer	
 your	
 ques6on	
 with	
 another	
 ques6on:	

  Legion	
 run6me	
 overheads?	
 Does	
 it	
 map	
 well	
 to	
 SPMD?	

How	
 difficult	
 will	
 the	
 mapper	
 interface	
 be	
 in	
 prac6ce?	

Fault-­‐tolerance	
 even	
 with	
 non-­‐idempotent	
 tasks?	

  Uintah:	
 Domain	
 constrained?	
 Internode	
 load	
 balance?	

  Charm++:	
 Works	
 great	
 for	
 MD	
 at	
 large	
 scale/contact	
 app	

at	
 medium	
 scale.	
 Large,	
 unstructured	
 mesh	
 problems?	

  Dharma:	
 KV-­‐store	
 overheads?	
 Burden	
 on	
 programmer?	

8	

Distributed Memory Data Parallel

Distributed
Memory

Task
Parallel

Shared Memory Task Parallel

Shared
Memory Data

Parallel

Cilk-NOW
Legion
Scioto

CUDA
Kokkos

MPI/OpenMP,
MPI/Kokkos

MPI
MapReduce

UPC
CAF

Uintah

Cilk,
SMPs
TBB

CnC, HPX
Dharma

Charm++

OpenMP
OpenCL

OpenACC

Mandala	
 	

Venn	
 Diagrams	

Mandala	
 	

Venn	
 Diagrams	

User-
specified

DAG

Runtime
derives

DAG

Explicit DAG

Implicit DAG

MPI
Dharma

Dharma
Charm++

Legion
Uintah
SMPs

UPC

  Explicit	
 vs.	
 implicit	
 DAG?	

  User-­‐defined	
 or	
 run6me-­‐derived	
 DAG?	

  Run6me-­‐specific	
 data	
 structures?	

  Pointers	
 or	
 higher-­‐level	
 logic?	

  Tasks	
 communicate	
 	
 or	
 isolated	
 kernels?	

  Direct	
 collec6ves	
 or	
 collec6ves	
 DAG-­‐
unrolled	
 as	
 part	
 of	
 DAG?	

  Checkpoint	
 strategy?	
 Cascading	
 rollback?	

What	
 features	
 help	
 and	
 what	

features	
 get	
 in	
 the	
 way?	

Restric6ons	
 make	
 most	
 sense	
 in	
 light	

of	
 fault	
 tolerance	

  If	
 nothing	
 fails,	
 you	
 don’t	
 need	
 to	
 restrict	
 the	
 design	

  Can	
 relax	
 restric6ons	
 with	
 bookkeeping	
 and	
 fine-­‐grained	

checkpoints,	
 but	
 is	
 that	
 too	
 much	
 bureaucracy?	

  Burst	
 buffers/tools	
 like	
 SCR	
 make	
 AMT	
 a	
 LOT	
 easier	
 than	

before	
 –	
 “asynchronous”	
 checkpoint	

12	

Fails Restart

Task Schedule
Node A Node B

Task Schedule
Node A Node B

Concluding	
 thought:	

Each	
 AMT	
 run6me	
 is	
 not	
 just	
 a	
 tool.	
 It	
 is	
 a	
 hypothesis.	

Each	
 new	
 applica6on/science	
 domain	
 is	
 an	
 experiment.	

Best	
 AMT	
 design	
 will	
 be	
 decided	
 ex	
 post	
 facto,	
 not	
 ab	
 ini6o	

	

13	

1)  Assert hypothesis
2)  Controlled experiment
3)  Refine hypothesis
4)  Repeat

