> 8 FAULTSDEVELOPERS

% EXECUTIONBARADIOM

(:3 SYSTEMS REPLICATION

5 ERRORS}{IETEROGENEOUS

3 SYNCHRONOUS
cPROGRAMMING MODEL

HIGH PERFORMANCE COMPUTING

RESEARCH MEAN TIME TO FAILUREMPL OJ

ARCHITECTURES?

RESILIENCE; =
EFFICIENTCO\SISTE\T E 5;”
SCALE:
CHALI F\I(FALGORITHM 5
FAULT TOLERANCE
§ FAILURE O*
TECHNOLOGY 2
DISTRIBUTEDS
BREARTHROUGH™
REDUNDANCY

Sandia
National
Laboratories

Exceptional
service

in the

national

interest

DHARMA: Distributed
asyncHronous Adaptive Resilient
Management of Applications

Janine Bennett, Robert Clay, John Floren, Ken
Franko, Saurabh Hukerikar, Samuel Knight, Hemanth
Kolla, Greg Sjaardema, Nicole Slattengren, Keita
Teranishi, Jeremiah Wilke

SOS 19, Park City, UT
March 3, 2014

A"D

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

SAND2015- \

Mission) .
= Address challenges at extreme-scale that seem
intractable with current PMs

= Minimize data movement
= Performance portability
= Composability + fault-tolerance
= Focus #1: Evaluate existing PMs
= Uintah: SPMD structured mesh with on-node DAG

= Legion: Decoupling of logical algorithm and physical
implementation, DAG automation

= Charm++: Communicating parallel objects

"= Focus #2: Develop AMT capability to fill potential gaps
In existing PMs

Why pursue yet another AMT?) i,
3 key efficiency/productivity challenges

= Overdecomposition and latency hiding

= Data pipelining — operate on data as soon it is
ready to use, not when entire giant chunk arrives

= Programmer productivity: No more deciding how
much work between MPI_Isend and MPI_Wait

= No universal data structures — leave app-specific
= Fault-tolerance

Why pursue yet another AMT?) i,
3 key efficiency/productivity challenges

= Overdecomposition and latency hiding
*= No universal data structures — leave app-specific

= Make it possible to use Kokkos, Raja, TiDA, or
whatever else app developers dream up

= Flexible C++- transport layer with flexible
protocols and data structure slicing/subsets

= Fault-tolerance

Why pursue yet another AMT?) i,
3 key efficiency/productivity challenges

= Overdecomposition and latency hiding
= No universal data structures — leave app-specific

= Fault-tolerance

= “Virtualization” beyond just pointers - semantic/
logical names

= Assume SPMD structure dominates problem —
task collection approach of Krishanmoorthy et al.

= Efficient global agreement collective — simplify
failure/recovery model to assume every agrees at
the same time on who has failed

Why pursue yet another AMT?) i,
3 key efficiency/productivity challenges

= Overdecomposition and latency hiding

= No universal data structures — leave app-specific
= Fault-tolerance

All three unified through a
key-value store providing
asynchronous
communication, data flow,
and fault-tolerance

Better, faster, cheaper)
Food for thought:
1) How far would changes propagate to make
optimizations to a single compute kernel in your large

code? E.g. Do you have to blow up the entire code to
do better cache blocking or tiling?

2) You may do anything in MPI. But can you?

= Better = Faster = Cheaper = more productive
programmers

= Better = Faster = Cheaper = express more about your
code to give compilers, runtime more to work with

= Case study of Legion + S3D

Development platform of the future? @,

= Whichever code makes it easy to express your algorithm
correctly AND makes it easy to tune hardware mapping

"= Don’t just rely on DSL or compiler to bridge usability gap

Answer your question with another question:

= Legion runtime overheads? Does it map well to SPMD?

How difficult will the mapper interface be in practice?
Fault-tolerance even with non-idempotent tasks?

= Uintah: Domain constrained? Internode load balance?

= Charm++: Works great for MD at large scale/contact app
at medium scale. Large, unstructured mesh problems?

= Dharma: KV-store overheads? Burden on programmer?

Shared Me Task Parallel) i,

Laboratories

Mandala
Venn Diagrams

Cilk-NOW
Legion
Scioto

Distributed CnC, HPX open“c’:IE
Dharma pen
Memory Charm++ OpenACC
PTaslil(| Shared
daraiie MPI1/OpenMP,
MPI/Kokkos Memory Data
Parallel
MPI
MapReduce
UPC
CAF

Distributed Memory Data Parallel

Mandala
Venn Diagrams

derives ecified

Runtime {. User-

UPC

Implicit DAG

What features help and what) s,
features get in the way?

Explicit vs. implicit DAG?

User-defined or runtime-derived DAG?
Runtime-specific data structures?
Pointers or higher-level logic?

Tasks communicate or isolated kernels?

Direct collectives or collectives DAG-
unrolled as part of DAG?

Checkpoint strategy? Cascading rollback?

Restrictions make most sense in light g
of fault tolerance

= |f nothing fails, you don’t need to restrict the design

= Can relax restrictions with bookkeeping and fine-grained
checkpoints, but is that too much bureaucracy?

= Burst buffers/tools like SCR make AMT a LOT easier than

before — “asynchronous” checkpoint

Task Schedule
Node A Node B

Task Schedule
Node A Node B

:) e,
Concluding thought:

Each AMT runtime is not just a tool. It is a hypothesis.
Each new application/science domain is an experiment.
Best AMT design will be decided ex post facto, not ab initio

1) Assert hypothesis

2) Controlled experiment
3) Refine hypothesis

4) Repeat

13

