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1. Risk Assessment. Review



Probabilistic Risk Assessment @

IPCC Workshop Report on Uncertainty and Risk (Manning, et al., 2004) Dyl
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 Probability Density Function (black) for largest impact in time interval
« Consequences (red) are an increasing function of asteroid size.
 Estimated cost is the area under the product curve (blue).

 Best estimate of largest impact is not the most important value.

« High-consequence “fat tail” dominates risk when there is a threshold.
 Biggest asteroids should be dealt with first.



Nature VOL 367 6 January 1994 REVIEW ARTICLE

Impacts on the Earth by asteroids and
comets: assessing the hazard

Clark R. Chapman & David Morrison

There is a 1-in-10,000 chance that a large (~2-km diameter) asteroid or comet will collide
with the Earth during the next century, disrupting the ecosphere and killing a large fraction of
the world’s population. Although impacts of this magnitude are so infrequent as to he beyond
our personal experience, the long-term statistical hazard is comparable to that of many other,
more famillar natural disasters, raising the question of whether mitigation measures should

be considered.

Asberoid diameler {m)
3 L k1 L= 300 1 Jui? w

Moty \ T T T T |

-\ _

~

Century S

Decade —
Tanguika -
Millenium — -

104 yr -

Typical iingac iInlerval

104 yr . -
10 yr | "-.__l .

T
0Ty T it

188 T T 1 T I [
T 0 108 w 10 e
THT eqiiiuakant yleld (MT)

FIG. 1 Typical intervals between impacts equal to or larger than the
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energy”. fmpact frequencies could be uncertain by a factor of 10 near
0.0 MT and by a factor of 3 for =100 MT'". The current impact rate
Is dominated by small-number statistics in the region of the dashed line.
Equivalent asteroid diameters are shown, assuming 20 km s * impact
velocity ard 3 g cm ® density.
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catastrophe.

The vncertainty w the threshold enerpy probably exceeds an
erder of magnitude above or below this value. As Turco er al™
wrole, in a noclear winter context, “the total impact . ., on hio-
logical communitics is more uncertzin [than are climatic effects)
hecause hitle 15 known about the effects of phyvsical stresses on
ccosystems . .. Thus, the important issue of synergisms belween
various ecological stressss | . will not be resolved, [s0] the glo-
bal biological impacts—and hence the human impacts—of
nuclear war will remain as the principal uncertainties,” To reflect
such uneertaintics, as well as uncertainties in chmate modelling
and in other physical and chemical effects of an impact, we adopt
{Table 1) a possible range of thresholds from 1.5 = 10 to 107 MT
{0.6-5 km diameter), It would take a very unfavourable combi-
nation of paramcters coupled with an assumption that human
society is very fragile, to imagine that an object with a diameter
of £0.5km could produce a F-]“h‘” catastrophe; on the other
hand, a =5 km object would™ create a global firestorm and
s much darkness from stratospheric opacity that vision would
ceasc—an cnvironmental holocaust certainly exceeding any
defimition for the onset of global catastrophe.

Hazard analysis

The area of mortality sssociated with airbuersts or groundbursts

from objects larger than our 30-m (10 MT) threshold for pene-
tration into the lower atmosphere depends on terrain, nature of
habitation, altitude of blast, and so on. (Here we ignore iron
meteoroids, which account for <3% of falls and whose potential
for cratering the Earth’s susface has been well studied by Shoe
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Type of event
High atmospheric break-up

Tunguska-like events

Large sub-global events

Low global threshold
Nominal global threshold
High global threshold

Rare K/T scale events

Diameter of
impactor

<50 m
50-300 m
300-600 m
300-1.5 km
300-5 km
=600 m
>1.5 km
>S5 km

>10 km

Energy
(MT)

<9
9-2.000
2,000-1.5 x 10*
2,000-2.5 > 10°
2,000-10
1510
2x10°
10°

10

Typical interval

(yr)
NA
250

35x10°
2% 10"
25« 10"
?x10*
5x10°
6x10°

10"

TABLE 2 Fatality rates and scale of impact for three different estimates of global threshold
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What Is frequency of Tunguska-scale events?

Impact Energy, MT
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What Is frequency of Tunguska-scale events?

Nuclear-weapon-scaled yield (15 Mt) with power-law size distribution: ~1000 years

Impact Energy, MT
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What is frequency of Tunguska-scale events?
Nuclear-weapon-scaled yield (15 Mt) with 2011 survey distribution: ~10,000 years

Impact Energy, MT
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1. Airburst Physics



LAAS are not point explosions

Unlike bombs, low-altitude airbursts...
...generate upward ballistic plumes
...generate downward vortex rings
...enhance heat transport to surface
...carry mechanical energy downward

...have anisotropic radiation patterns



Two types of Low-Altitude Airburst

Lbyan Desert Glass 0
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Type 1: Below threshold Type 2: Above threshold
Scorches and blows down trees Vaporizes trees and melts rocks
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1908 Tunguska Airburst

“Experimental” data demonstrate that event was below threshold

5 Megaton Airburst (3D)

Observed pattern

15 Megaton Airburst (3D)
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What is frequency of Tunguska-scale events?
Directed airburst yield (=5 Mt) with 2011 survey distribution: ~1000 years

Impact Energy, MT

" 10" 10° 10° 10°
10 - LLILILU | II' |ILILL |ILILL I III| LILILILL LILBLLU | II‘ LILILL LLILL IIII| |ILILL 1

§ v  Stuart 2001
2 Tunguska A Harris 2002 10°

o b T Brown et al. 2002
- %@@ ——= Constant power law
_ Werner et al. 2002 ”
- Discovered to 7/21/10 10° E

1000-yr ... (L. Vs S o O = 23000yt
event T - AN « S event
< : e i 8

10' £ s 2 3
[~ = (4] m
B o o
- S . E
- I: 1Dh

10° @
: Absolute Magnitude, H S 10°

(W I I N I T T T I T T T T A I O

0 e
31302928272625242322212019181716151413 121110 9

Diameter, Km



What is frequency of Tunguska-scale events?
Directed airburst yield (=5 Mt) with 2011 survey distribution: ~300 years
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3. The Chelyabinsk Airburst



US Government sensors

U START OF REPORT HUTTHITEATTT

FOR PUBLIC RELEASE Distribution A
Bolide: On 15 February 2013
Sensors detected the following indications of a meteoroid entry into Earth's atmosphere:
a. Dateltime at peak brightness: 15 February 2013/03:20:33 GMT
b. Location at peak brightness: Latitude 54.80 N, Longitude 61.10 E
c. Altitude at peak brightness: 23.3 km
d. Velocity at peak brightness: 18.6 km/sec
e. Approximate total radiated energy: Under Assessment
f. Pre-entry velocity vector (ECF): X= +12.8 km/sec; Y = -13.3 km/sec;

Z=-2.4 km/sec

90 KT TNT

LTI END OF REPORT T

http://jpl.nasa.gov/fireball







['he trajectory, origin and airburst behaviour
of the Chelyabinsk fireball
‘ PAGES 202,235 & 238

Iy



A 500-Kkiloton airburst over Chelyabinsk and an
enhanced hazard from small impactors

P.G. Brown"?, J. D. Assink®, L. Astiz*, R. Blaauw”, M. B. Boslough®, J. Borovi¢ka’, N. Brachet®, D. Brown®, M. Campbell- Brown’,
L. Ceranna’, W. Cooke'?, C. de Groot-Hedlin®, D. P. Drob", W. Edwards'?, L. G. Evers'™'%, M. Garces™, J. Gill', M. Hedlin*,

A. Kingery'®, G. Laske*, A. Le Pichon?, P. Mialle®, D. E. Moser®, A. Saffer'®, E. Silber!, P. Smets'*'%, R. E. Spalding®, P. Spurny’,
E. Tagliaferri'’, D. Uren', R. J. Weryk', R. Whitaker'® & Z. Krzeminski'

Most large (over a kilometre in diameter) near-Earth asteroids are
now known, but recognition that airbursts (or fireballs result-
ing from nuclear-weapon-sized detonations of meteoroids in the
atmosphere) have the potential to do greater damage’ than prev-
iously thought has shifted an increasing portion of the residual
impact risk (the risk of impact from an unknown object) to smaller
objects®>. Above the threshold size of impactor at which the atmo-
sphereabsorbs sufficient energy to prevent a ground impact, most of
the damage is thought to be caused by the airburst shock wave’, but
owing to lack of observations this is uncertain®’. Here we report an
analysis of the damage from the airburst of an asteroid about
19 metres (17 to 20 metres) in diameter southeast of Chelyabinsk,
Russia, on 15 February 2013, estimated to have an energy equivalent
of approximately 500(%100) kilotons of trinitrotoluene (TNT,
where 1 kiloton of TNT =4.185%10"*joules). We show that a widely

referenced technique®™ of estimating airburst damage does not
reproduce the observations, and that the mathematical relations’
based on the effects of nuclear weapons—almost always used with
this technique—overestimate blast damage. This suggests that earl-
ier damage estimates®® near the threshold impactor size are too
high. We performed a global survey ofairbursts of a kiloton or more
(including Chelyabinsk), and find that the number of impactors
with diameters of tens of metres may be an order of magnitude
higher than estimates based on other techniques®’. This suggests
a non-equilibrium (if the population were in a long-term collisional
steady state the size-frequency distribution would either follow a
single power law or there must be a size-dependent bias in other
surveys) in the near-Earth asteroid population for objects 10 to
50 metres in diameter, and shifts more of the residual impact risk
to these sizes.

ACCORDING TO BROWN ET AL. (2013)
« Damage per airburst event is greater than previously thought
 Number of NEOs in 10-meter range may be order of magnitude greater!
* Integrated NEO risk is shifted to small (10-50 meter) asteroids




4. Alrburst Observation Statistics
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Cumulative number impacting Earth per annum
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What Is frequency of Tunguska-scale events?

Directed airburst yield (=5 Mt) with Brown et al. (2013) airburst statistics: ~100 years

Impact Energy, MT
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5. Asteroid Observation Statistics

> 4
jon & -



Completion or Redetection ratio
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Impact Energy, MT
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6. Risk Assessment. Updated
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Point-source airbursts (green curve)

2010 population (red & blue curves)
Total probabilistic risk = 1363/year (risk based on no discovery)

Best estimate = 6-m asteroid “about as likely as not”
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Directed airbursts (green curve)
2014 population (red & blue curves)
Total probabilistic risk = 1427/year (risk based on no discovery)
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Directed airbursts (green curve)
2014 population (blue curve)
Total probabilistic risk = 1427/year (risk based on no discovery)

Previous graph was plotted on wider scale
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Directed airbursts (green curve)
2014 population (blue curve)

Total probabilistic risk = 145/year (based on current survey)
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Directed airbursts (green curve)
2014 population (blue curve)
Total probabilistic risk = 36/year (based on new survey)
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7. Uncertainty Reduction Strategies

rid O
sl



Transition surveys to short-warning after
completion of George E. Brown survey

Risk will be dominated by airbursts after completion of the next
survey.

Chelyabinsk (~20 m) asteroids pass within geosynchronous orbit
every two years and within lunar orbit nearly once a week.

A Tunguska-sized asteroid (~40 m) passes within a lunar distance
several times a yeatr.

A survey optimized to discover and count these objects would
rapidly reduce the uncertainty in their populations.

Such a survey would also be the most likely way to save lives.

A short-warning survey would also provide opportunities for airburst
model validation, data collection on high-pressure properties of
asteroids, meteorite collection, and adventure/astronomy tourism!



Questions?

i T

\ - 4
Watch anis) Space
— 3

© Don Davis



