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Grain Boundary Mobility 1) .

= Conventional wisdom is that thermally activated GB
motion is described by a single activation energy

= Recent work regarding mobility shows the great variety
of temperature (in)dependent behavior

= Olmsted, et al. (2009), calculated GB mobility for a set of 388
boundaries at 1400K

= Homer, et al. (2013), classified their temperature dependent
mobility into categories based on the shape of their Arrhenius
mobility plot a 10000
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Simulated GB Motion is Caused by an e,
Orientation—dependent Driving Force

= None of the boundaries examined exhibit shear coupling

= (GBs are planar and driven by orientation dependent driving forcet
= |mplemented as fix orient/fcc’ in LAMMPS

= Mobility is defined as: M =v-p
= Velocity is determined by averaging many boundary velocities
= Pressure is determined by thermodynamic integration of driving force

= Atoms are colored by slip-vectort
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Arrhenius Plots of Mobility for Select%m,
GBs

Laboratories

|.  Thermally Activated [I. Non-Thermal
1. Single Activation Energy 1. Antithermal
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Straight-forward case of a Linear
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Is the 2-activation energy barrier an
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artifact of the plot?

= |f two barriers exist, then we should see
a difference in the propagation
mechanism at ~800K

= Slip-vector analysis does not indicate a

difference between mechanism above
or below 800K
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No indication for the existence of

two activation energy barriers
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Antithermal Boundary
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= Extremely high mobility




Motion mechanisms of GBs with

Sandia
'I'l National

Laboratories

¥ ‘v,‘ ’
PRGN )
1000K x& & -
s e
(OO
X NG

)

" X
i
)
® xSl
N A
o N g
) (N

ox’

Roughening boundaries
are only mobile above
the roughening
temperature

= GB migration is blocked
at 800K by formation of
bands

= At 1000K the boundary
moves by the nucleation
and growth of islands




Dynamic Roughening Behavior 'S@
Driving Force Dependent
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= Driving force dependence
59 (54 2)/(2 10) occurs below Tr
- = Mobility plot does not show

—
%)

| a transition at Ty, but
800K inspection of atomistic

- configurations does
st/ High driving force f = Small migration distances

lead to large deviation of
mobility values

= Migration Mechanism
= Nucleation and growth of
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Driving Force affects a noticeable
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change in nucleation mechanism at T
up =0.005 eViat. u, = 0.025 eV/at.

Nucleation of highly localized and highly slipped regions gives way to the

formation of numerous distributed island nuclei at higher driving forces 10




Contrast between roughening and e
non-roughening behaviors
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Static and Dynamic Roughening Thermally activated and
boundaries propagate by the antithermal boundaries migrate by
nucleation and growth of islands dislocation mediated mechanisms

= Boundary position moves

= Boundary position moves non- uniformly
uniformly = Mechanism can be
= Low temperature (static) or low cooperative or local

force (dynamic)

= Few nuclei consisting of highly
slipped atoms

= Strong crystallographic alignment

= High temperature (static) or
high force (dynamic)

= Many nuclei of consisting of
slightly slipped atoms



Grain Boundary Mobility: .
More than the slope of a line
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= Mobility is a complicated phenomenon not easily classified by a
unique activation energy

= Characterization of motion mechanism by features of mobility plot is
insufficient to determine atomistic mechanism of motion

= Tracking motion of individual atoms to determine mechanism is
difficult and to easily misses important collective motion
= Recommended characterization approach
= Utilize metrics (e.g. slip-vector)

» Focus on collective behavior of atoms
= In lieu of trying to match the motion of atoms to explain an ‘activation energy’

mechanisms inform our understanding of what crystallographic
parameters govern mobility?




