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H in GB Engineered Materials

Grain	boundary	engineered	materials	offer	a	promising	route	
to	mitigate	hydrogen	embrittlement

 Recent	work	by	Bechtle†,	and	Oudriss‡,	demonstrate	the	
benefit	of	grain	boundary	engineered	materials	in	reducing	
embrittlement

 How	does	the	observed	variety	of	twins	make	effect	H	the	
degree	of	H	segregation?

10 microns

†Acta.	Mat.	57(14)	p.	4148,	2009							‡Acta Mater.	60(19)	p.	6814,	2012

Image	provided	by	D.	Medlin
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Atomistic Models Support Higher Length Scale
Modeling Efforts

Mesoscale and	continuum	crack	growth	models	rely	on	
many	assumptions	about	hydrogen	segregation	at	grain	

boundaries
 Thermodynamics

 The	actual	dependence	of	free	energy	on	structural	deviations	from	ideal	GBs	is	
unknown

 H	Segregation
 There	is	little	segregation	to	(111)⟨110⟩ (coherent)	twins	
 Degree	of	hydrogen	segregation	to	non-ideal	twins	is	unknown

Present	efforts	focus	on	Σ3-like	GBs
1. Misoriented	Twins

 Symmetric	rotation	of	grains	about	(111)⟨110⟩ (coherent)	twin	(–15° < θ <	+15°)		

2. Inclined	Twins
 Fixed	grain	orientation,	with	boundary	plane	rotated	from	the	(111)⟨110⟩

(coherent)	to	
(112)⟨110⟩ (lateral)	twin	(0° ≤	Φ ≤	90°)	

 Enthalpies	calculated	via	LAMMPS molecular	dynamics	code	using	Angelo,	Moody,	
and	Baskes†Ni-Al-H	EAM	potential

3†	Mod.	Simul.	Mater.	Sci.	Eng.	3 p.	289,	1995



Misoriented Twin Grain Boundaries

†Phil.	Mag.	Lett.	85	(8),	387–394,	2005

Definition: Misoriented GBs are produced
by a symmetric rotation of grains about
(111)⟨110⟩ (coherent) twin
(–15° < θ < +15°)

 Misoriented GBs	are	generated	
by	disconnections	that	come	in	
two	classes:
1. Exterior
2. Interior

 This	terminology,	due	to	
Marquis	&	Medlin,† refers	to	the	
decomposition	of	the	±⅓⟨111⟩
disconnection.
 Exterior	disconnections	

disassociate	and	emit	extended	
stacking	faults

 Interior disconnections	retain	
compact	core	
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Fundamental Structural Difference Between 
±⅓⟨111⟩ Disconnections

Superposition	of	these	disconnections	allows	for	the	rotation	of	the	grains	or	GB	plane

Exterior	Disconnection Interior	Disconnection

+⅓[111]	 –⅓[111	]	
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Asymmetric Enthalpy Dependence
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Temperature Dependence of GB Structure
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Stability of Extended Stacking Faults in 
Interior GBs
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Faults are frozen in
upon cooling, but
are they stable?



Helmholtz Free Energy Calculation
 Calculated	at	and	below	Debye	temperature	using	Frenkel-Ladd†

technique	with	Einstein	crystal	as	a	reference	state	as	implemented‡ in	
LAMMPS

 FL	technique	calculates	the	Free	Energy	difference	between	two	states	
described	by	a	Hamiltonian	with	a	switching	function

 Hamiltonian	switches	between	Einstein	crystal	and	crystal	described	by	
EAM	potential

 Since	the	Einstein	crystal	free	energy	is	known	analytically,	the	EAM	free	
energy	can	be	calculated	

 Einstein	crystal	is	modeled	by	attaching	a	spring	to	each	atom’s	equilibrium	
position	and	turning	off	interatomic	interactions	

 Calculated	at	higher	temperature	by	thermodynamic	integration	of	the	
Enthalpy	according	to	formalism	of	Frolov &	Mishin*

9
† D.	Frenkel and	A.J.C.	Ladd,	J.	Chem.	Phys.	81,	3188	(1984) *T.	Frolov	and	Y.	Mishin,	Phys.	Rev.	B	79,	045430	(2009)
‡M.	de	Koning	&	A.	Antonelli,	Phys.	Rev.	E	53,	465	(1996);	Phys.	Rev.	B	55,	735	(1997)



Compact Core Structure of Interior Disclinations 
Favored At Low Misorientation Angles

 θ ≤	8°
 Low	temperature	

structure	of	interior	
disconnections	(compact	
cores)	favored

 θ >	8°
 High	temperature	

structure	favored
 Change	in	character	of	

boundaries

 Transition	temperature	for	
favorability	of	high	
temperature	structures	is	
unknown
 Thermodynamic	integration	is	

used	to	calculate	free	energies	
above	300K

 Change	from	low	to	high	
temperature	form	occurs	occurs	
at	500–600K	in	MD	simulations

 High	temperature	structures	
could	form	during	during	
realistic	processing	conditions

10

High	T	Structure

Low	T	Structure



Faceting occurs at larger 
misorientation angles 
 Higher	angle	boundaries	

facet,	which	decreases	
their	free	energy

 Facets	lie	along	(111)	
planes
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Summary: 
Temperature Dependent Structure

Small	deviations	from	perfect	twin	boundaries	result	in	
substantial	changes	to	thermodynamics

 Misoriented	boundaries	may	be	constructed	of	two	
types	of	disconnections

1. Boundaries	consisting	of	interior	disconnections

 May	change	structure	at	high	temperature
(T≥600K	for	Ni)

 Boundaries	misoriented	by	θ ≥ 8° facet	along	(111)	
planes

2. Boundaries	consisting	of	exterior	dislocations

 Retain	structure	at	all	temperatures
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 H	concentration	and	
location	of	adsorption	
sites	are	determined	by	
Grand-Canonical	Monte	
Carlo
 Chemical	potential	set	to	

value	that	yields	desired	
concentration	in	bulk

 Details
 100,000	MC	steps	per	atom

 50%	of	steps	attempt	to	
add/remove	H

Calculating H Segregation
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Bulk	H	Concentration	vs.	Chemical	Potential	



Hydrogen Segregation is Highly Sensitive 
to Misorientation
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Hydrogen Segregates to Disconnection Cores
in Hydrogenated GBs
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Summary of 
Hydrogen Segregation To Vicinal Twins
Temperature	dependent	structures	have	little	impact	on	H	segregation	

excess	to	vicinal	twins

 H	segregation

 The	coherent	twin	has	a	very	weak	affinity	for	H	adsorption	
consistent	with	experimental	findings

 Segregation	behavior	and	energetics	of	boundaries	are	asymmetric	
with	respect	to	misorientation

 At	low	concentrations	(≈290	appm),	nearly	all	H	segregates	to	
disconnection	cores

 Ongoing	investigations

 Structure	and	Segregation	of	Hydrogen	to	inclined	twins

 Generation	of	H	adsorption	isotherms	for	Σ3-like	grain	boundaries
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QUESTIONS?

Thank	you	for	your	attention

cjobrie@sandia.gov
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Potential Validation

 Validation	of	Angelo,	Moody	&	Baskes† Ni-Al-H	EAM	
Potential
 Only	empirical	potential	available	for	Ni-H

 Effect	of	H	Inclusion	on	Thermodynamics	of	Boundaries
 ∑3	(Coherent	and	Lateral)	Twin Boundaries

 Coherent	(111):	

– Adsorption	favored	by	45.0	meV (oct. site)	or	47.9	meV (tet.	Site)

 Lateral	(112):	

– Adsorption	favored	by	-0.4eV,	but	varies	greatly.	

 Stacking	Faults

 Presence	of	H	decreases	SFE	from	88.8	mJ/m2 to	35.74	(oct. site)	or	
45.48	(tet.	site)

 H	prefers	octahedral	site	on	SF	by	82.4	meV and	tetrahedral	site	by	
74.3	meV when	compared	to	the	bulk

18†	Mod.	Simul.	Mater.	Sci.	Eng.	3 p.	289,	1995



Ni-H Potential Validation

Property VASP LAMMPS Reported Experiment

A0 [Å] 3.523 3.520 3.52 3.52

E0 [eV] -5.577 -4.450 -4.45 -4.45

B	[GPa] 192.240 - 180.33 180

Esf [mJ/m2] 124.201 88.800 89.000 125

Esolv(oct)	[eV] -2.170 -2.192
-1.865 -2.050

Esolv(tet)	[eV] -1.920 -1.783

Evac [eV] 0.911 - 1.59 1.6

∑3 (111) 83.622 50.340 - -

∑3	(112) - 806.93/1250.36 807/1165

Edge	Disc.	[eV/Å] - 1.005 1.03 -

Screw	Disc.	[eV/Å] - 0.756 0.80 -

Lomer Disc.	[eV/Å] - 1.386 1.40 -
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Multifaceted Faceting
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