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* First part of the talk:
* Overview of semiconductor physics and power
electronics
 Why are wide-bandgap (WBG) and Ultra-Wide-
Bandgap (UWBG) semiconductors good for power
electronics?

e Second part of the talk:
* Overview of Sandia’s new Grand Challenge LDRD on
Ultra-Wide-Bandgap semiconductors for power
electronics
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What are Semiconductors?
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Doping and pn Junctions
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“Free” electrons

Doping of Si:
Extra electron = n-type
Missing electron = p-type
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Bipolar and Field-Effect Transistors
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What Are Power Electronics?

= Power electronics: Application of solid-
state electronics for routing, control,
and conversion of electrical power

e Current power electronics
are limited by the
properties of Silicon

Passive transformers Power Electronics — semiconductor devices
(dumb) Active switching (smart) New system capabilities
<] Power semiconductor devices
d::fe are enabled by:
jnductort * Higher switching
e frequency (enables
é Dmdez% rotere T L better SWaP)
N * Lower power loss
% * Higher temperature
3 operation
by b > Motivation for
g: : ][ WBG/UWBG
5 semiconductors

Time
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Power Electronics Volume and Weight (i) e

Considerations

Magnetics Thermal
management

Passive elements -y ‘ i’ \
and thermal :
management

comprise the bulk

of the volume and
mass of a power
converter

Semiconductor
Capacitors switches




Higher Switching Frequency Enables Reduction ()&=
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in Passive Element Volume and Weight

Power semiconductor devices
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DC input
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Switch
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Dramatic Reduction in Power Converter ()=
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Volume with Increasing Bandgap
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SiC is 10% the volume and weight of Si 10°
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UWBG PE may result in another order-of-magnitude
SWaP improvement compared to WBG PE




Heat Generation from Semiconductor (@)

Conduction and Switching Losses

OFF ON OFF A real circuit will
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Semiconductor Devices Are NOT () s

Ideal Switches
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Breakdown Voltage and Figure-of-Merit Are () =,

Strong Functions of Critical Electric Field

Anode Electric field
EC
Drift o
region 5
Ron = [Wp
Substrate Critical electric field

Cathode for avalanche breakdown

e Off-state: Integrate electric field to get breakdown voltage: V, = W,E/2 (1)

e Gauss’ law: eE. = qNy W, (2)

e On-state: Current transport due to carrier drift, resistance R, = W,/cA
Conductivity o = qu,n = gu,Ny assuming complete dopant ionization
Specific on-resistance R, ., = R,,A = W,/c - R,,A =W,/ qu . N, (3)

on,sp

e Combining (1) and (2) gives dependence of V; on N, and E.: Vp = eE2/2gN,

e Combining (1), (2), and (3) one obtains the unipolar "figure-of-merit:’:\
Ron,sp = 4VBZ/8“nEC3 — VBZ/Ron'sp = gunEC3/4 — Depends on Depends on

cube of E, square of E.




The Critical Electric Field is Large for
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WBGs and Even Larger for UWBGs
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FOM = V;2/R
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How Do WBGs and UWBGs Lead to Higher
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Switching Frequency and Lower Loss?

Specific on-resistance (mQcm?)

The scaling that results from the properties of WBG and
UWBG materials can utilized to optimize for switching

Unipolar Figure-of-Merit for Various Materials
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Smaller area results in less
capacitance

Gives a faster switching
transient and lower loss per

switching cycle

Si
15x15mm? GaN
100 kHz 6x9mm?
6 MHz

LTLNEAR

LTM4602HVY

MModule
283423 OT0GMY

~ 75% smaller

r———

.‘ali..’;.r"" 1 k

- e o
e -/’E‘ & ';‘.
i

2 e L A2 R T
1.2 kV, 12 A switch



Sandia’s LDRD Program ) .

LDRD: Laboratory Directed Research & Development

e Sandia’s sole source of discretionary R&D funds

e LDRDs “promote creative and innovative R&D that
attracts exceptional research talent”

e Purpose is “to create... the development of a
technical expertise within programs deemed by
Sandia Management as important to the future
of the Laboratories, DOE, and the nation”

e “Grand Challenge” is a special class of LDRD;
typically two new starts per year
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A New Grand Challenge Is Investigating the Next M) &,

Generation of Materials for Power Electronics

Unipolar Figure-of-Merit for Various Materials
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llI-Nitride Semiconductors Are Ideal WBG
and UWBG Materials

Fundamental Materials Capabilities
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This Project Builds on 15 Years of Forefront (@)=,

Wide-Bandgap Research at Sandia

1999-2006: 2003-2007: high power 2009-2014: DOE EFRC for
Comprehensive US amplifiers, UV emitters SSL Science
Technology Roadmaps

~45. sSsSLS

F
ﬁ SOLID- STATE LIGHTING SCIENCE

“+ 8.1166

Source Gate

Light Emitting ENERGY FRONTIER RESEARCH CENTER
Diodes (LEDs) for ‘ /AI°'2Ga°'8N
General — . 2.0 al m
Illumination = sectonges G2 (2Hm)
f\W o0 = _ Sapphire substrate

oA~ 2006-2008: DOE /EERE

National Center for SSL
=T 2003-2012: DOE-Funded
Collaborations with industry
2000-2004: Grand

Challenge LDRD

GeneSiC SiC Thyristors

Data scale
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Our GC LDRD: A New Class of Power Electronics, @Lh

Based on Materials and Device Science Foundation

¥

Fundamental
Physics of
Reliability

Power Device
Realization

log(oo) (r.u.)

L
wwwwwwwwwwwwwwww
32 34

e Several technical teams closely linked and working towards a common goal
* Project initiated October 1, 2014 and will run for three years




Epitaxial Growth Science for UWBG L=,

Materials Synthesis

“oF lccLorn || “rae ™« AlGaN with Al > 30%
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g | £ .+ Strategies for controlling
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Lattice constant a; (A)

* Epitaxial design for
polarization engineering

Fig. 12.12. Bandgap energy versus lattice constant of 1II-V nitride semiconductors at
room temperature.




Fundamental Physics for State-of-the-Art ()
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Performance and Reliability

Physics of 2DEG formation in

10 o [§yr- T rrrrryprrrryrrrrprrropr T T T4
UWBG heterostructures | | RN
i Temperature dependence _— ;¢ |
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breakdown is consistent ]
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Electrical characterization and
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Fundamental Studies of Defect Physics
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Sandia has one of only a few systems in the country
to characterize deep-level defects throughout the
entire bandgap of UWBG semiconductors

Submitted to EMC 2015




. . . Sandia
Advanced Concepts, Design, and Fabrication L=,

for Novel Power Devices

@ Lateral device
Source Drain . .
— Advanced gate stack engineering for

---------------------------------- normally-off operation

20EG channel
{_urmm‘felectric - * Novel field plate designs for high breakdown
voltage

 Thermal properties (experiments and

p* s Vertical device
* Growth of thick, low-doped drift layers on
various substrates
* Fundamental physics of point and extended
_ defects, carrier transport, and breakdown

Ohmic metal * Field termination structures

Channel / buffer

n- drift region

¢ SANDIA PROPRIETARY



Sandia
National
Laboratories

Device Design and Fabrication

High electric field at corners of doped regions
Elctc Fiek leads to premature breakdown

High

Numerical simulation of field-termination
structures in GaN PiN diode result in
optimized design prior to fabrication

:
|

Optimized
equal
peak field
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Submitted to EMC 2015




Sandia
National
Laboratories

AlGaN/GaN HEMT Reliability
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Submitted to IRPS 2015




High-Voltage DC and Switching Test L=,

Characterization
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Civilian Application Space for WBG () s

and UWBG Devices

Ultra WBG

Vertical SiC -
Lateral GaN
.tical Si

Operating 600V 1200V 10s of kV MV
Voltage Motor drives PV inverters Electric grid HV-DC
Electric vehicles ‘ Electric rail transmission and
Grid-level energy storage fault protection

Airplanes
* Higher voltages,

lower resistive
losses

4

* Increase grid resiliency

* Reduce or eliminate passive * Less resistive energy loss

components (capacitors, inductors) - Replace expensive IGBT /

Thyristor stacks

* Spectral purity extends motor
lifetime

* Operate at higher temperatures
without liquid cooling




Example: WBGs and UWBGs for Increased Grid () &=

Efficiency and Resiliency

A modern, resilient electric grid with integrated renewable power sources
requires power electronics and power inverters

Higher

frequencies DC-DC Boost

Converter Voltage Source

Inverter

i

AC Out

gl

Lower
transmission loss

Fewer
series-
connected
switches

Smaller
capacitors
and inductors

Greater open circuit
voltage (V,. = 1000 V)

General Atomics, 10/30/2012 SNL workshop




Military Application Space for WBGs and UWBGs: ()&=
Next-Generation US Navy Power Needs

| et
LIAB |

(UISANAVY 2 JOHNFRWILLCI

E,.

USS Zumwalt

Higher degree of electrification
desired in a SWaP-constrained
environment

USS Gerald R. Ford




Questions?

Contact information:

Bob Kaplar
Sandia National Labs
505-844-8285

rikapla@sandia.gov




