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1. The Limiting Factor — Potential
J Growth simulation tests

CdTe on Si
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J. Oh, and C. H. Grein, J. Cryst. Growth, 193, 241 (1998).
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M. Nakamura, H. Fujioka, K. Ono, M. Takeuchi, T.
Mitsui, and M. Oshima, J. Cryst. Growth, 209, 232(2000).

Because amorphous phase is the issue, fitting finite crystalline phases may never
solve the problem

1. J.
2. P
3. R.

Tersoff, Phys. Rev. B, 39, 5566(1989). — for Si (amorphous growth, but can re-crystallize at 2200 K through bulk transformation).
A. Ashu, J. H. Jefferson, A. G. Cullis, W. E. Hagston, and C. R. Whitehouse, J. Cryst. Growth, 150, 176(1995). — for GaAs.

mith, Nucl. Instru. Meth. B, 67, 335(1992). — for GaAs.



1. The Limiting Factor — Potential
J Growth simulation tests
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A Zn-Cd-Hg-S-Se-Te Potential
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Current parameterization requires human involvement. Need new algorithm to replace that
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Insights Gained from MD Simulations

(a) t=16 ps (§ ~ 0.04, carbon diffusion) (b) t =480 ps (§ ~ 0.43, graphene nucleation)
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MD simulations indicate: defects
form at the graphene edge
throughout the growth, not when
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@:Cu e:C ~10A

White and green circlecs highlight
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Top Carbon Potentials

@ optB86b-vdW DFT (scaled)
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 REBO (Brenner et al), ReaxFF (van Duin and Goddard et al), and EDIP
(Marks et al) are top literature carbon potentials

 REBO appears to capture better carbon structures than ReaxFF (which i1s
optimized for C-H molecules)

* The growth simulation capability is unique to our BOP parameterization



1. The Limiting Factor — Potential
J Chemical reactions

Realistic %ﬂ ﬂ
Temperature 9 &
w @ﬁ %5 « MD traditionally for
v 9] &% physical processes;
¢ 9 \g % * Transferrable potentials
€

e g can predict chemical
processes;
*H, + 120, - H,0
= g: :_53‘?; combustion reaction was
T y recently demonstrated by
= ' Caltech using ReaxFF;

e - . V=20 * Fidelity of future potentials
= o V=30 is expected to enable more
S s V;;:ﬂ i and more chemical reaction
. s i erf::: . simulations.
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T. Cheng, A. Jaramillo-Botero, W. A. Goddard, 111, and H. Sun, JACS, 136, 9434 (2014).



Towards MD Simulations of Combustions

Involving C-H-O-N
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Potential from: A. C. T. van Duin, S. Dasgupta,
F. Lorant, and W. A. Goddard III, J. Phys.
Chem. A, 105, 9396 (2001).

~409 citations.

Progress by ReaxFF 1s to be commended. Still long way to go.
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Chemical Reaction Simulations Using Our
Bond Order Potential (BOP)

Hydrogen crystal to H, gas H,+H—>H+H, energy profiles
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The BOP we developed has captured the H,+-H—>H+H, reaction about 1-2 years ago, paper
has been published: X. W. Zhou, D. K. Ward, M. Foster, J. A. Zimmerman, J. Mater. Sci.,
50, 2859 (2015).
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1. The Limiting Factor — Potential
1 Beyond EAM for metals

Al-Cu potential

Al has a high stacking fault energy (122-144 mJ/m?) that cannot be captured by EAM

Our BOP Mishin et al’s EAM*

(Ysr = 133 mJ/m?) (ysf 141 mJ/mZ)
| E. of lattice Al_fcc | 0.20 - .
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* Phys. Rev. B, 59, 3393 (1999); 83, 054116 (2011).



Incorrect Cu—Al Heat of Solution in Literature

(a) Al-Cu phase diagram

(b) crystal structure of the 6 and 6’ phases
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The Cu—Al heat of solution should be the energy change for dissolving 1 molecule of
Al,Cu in Al, rather than 1 atom of Cu in Al!



Two Problems of Literature Al-Cu Potentials

(a) BOP (b) ADP (Mishin et al's EAM)

X *BOP *ADP

0.6 - 0.6 1 Al + AlCu(B2)

£.8 + . . . . 0.8 . . . ,
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(c) EAM-CY (by Cai and Ye) (d) DFT
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(1) without growth simulation (or simulated annealing) tests, there is no way to ensure the
lowest energy compared with ANY other configurations; (2) it is the two-phase mixture,
but not the Al,Cu compound, that must have the lowest energy.



Growth Simulation Tests on BOP

Crystalline growth of 6°-Al,Cu
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Growth Simulation Tests on the Current
Best Potential (Mishin et al)

T=700K T=600K
T vioon  Al,Cu-0’ Phase E=0.T'eV T y-1001] Al,Cu-0 Phase E=0.1eV
= R=2.0 nm/ns = R=2.0 nm/ns
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ADP: F. Apostol and Y. Mishin, PRB 83, 054116 (2011)



1. The Limiting Factor — Potential
] Database potentials

Two of the most cited articles!:2 that I have co-authored contain the EAM database for Cu,
Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti, and Zr

1. X. W. Zhou, H. N. G. Wadley, R. A. Johnson et al, Acta Mater., MD-based BTIBD growth method

49, 4005 (2001). (by CVC, Inc.)
2. X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, Phys. Rev. B, <
69, 144113 (2004). %
° ° ° ° [_
MD prediction of improved synthesis ‘B rareet
(giant magnetoresistive spin valve) /B sniend
a) 3DA MD (constant ener ¢) MD (modulated ener 'I . (§
()TDyll’lm | (b) MD ( ay) (i D (modulated gy) ; —-:I__

i O O

g 95
§ §8.5 f
7
z [110] 10A § 8 -
X. W. Zhou, and H. N. G. Wadley, J. Appl. Phys., 84, 2301 (1998). E’r.s —
I have developed a growth simulation enabling Zn- T m we e e e o
: Soaking Temperature (deg C)
Cd_Hg_S_Se_Te pOtentlal (Phys Rev. Ba 889 085 3099 -+~ IBD - SOTa/45NiFe/10CoFe/27Cui10CoF &/ 18NiFe/1 00FeMn
2013). Is seeking to develop a similar database L BTIBD 42  SOTVONIFa 0CoF 27t OCoF s 20NiFa100Fab

potential for III-V. T. L. Hylton, et al, IEEE Trans. Mag., 36, 2966 (2000).



1. The Limiting Factor — Potential
1 Temperature dependent potentials

Rayleigh-Taylor Richtmyer—Meshkov Kelvin—Helmholtz
instability instability instability

The electron Force Field method recently developed by Caltech (Goddard’s group)
begins to address this: A. Jaramillo-Botero, J. Su, A. Qi, W. A. Goddard III, J.

Comp. Chem., 32, 497, (2010)

I am seeking opportunities to work on this. The idea is to address atoms and
electrons explicitly, allowing the temperature effect on interatomic potential to be
incorporated without violating Newton’s law
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1. The Limiting Factor — Potential
] State-of-the-art potentials

8 ]
ReaxFF
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o E
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EM |
Stillinger-Weber Cx ==
L | | |
1980 1990 2000 2010

Year Published

Single CPU cost.

1. EAM (embedded-atom method);

2. MEAM (modified embedded-atom
method);

3. REBO (reactive empirical bond
order);

4. BOP (bond-order potential);

5. AIREBO (adaptive intermolecular
REBO);

6. ReaxFF (reactive force field);

7. COMB (charge optimized many-
body);

8. GAP (Gaussian approximation
potential)/SNAP.

S. J. Plimpton, and A. P. Thompson, MRS Bulletin, 37, 513 (2012)



2. MDD Derived Continuum Rules
] Misfit dislocation theory

(@) Traditional misfit dislocation theory (b) MD guided improved misfit dislocation theory
& 05 & 05
! : traditional continuum ® =< : improved continuum ®
50-4" e :S~130A,MD i E 041 o  :S~130A,MD ./ i
L ost i 0 1 “: 03} © S~65AMD s -
=3 ® %ﬂ '/ ®
2 02F 1 2 02r e
5 o ./ ‘_’_...--'"'"."'""f.
w @ L ®
q‘t‘i 0.1 F :/.’,/ T ,E 0.1 1 :é‘f i
5 5
E 0‘0 1 1 1 L L 1 1 E 0.0 L 1 1 L L il 1
=0 50 100 150 200 250 300 350 400 450 S0 50 100 150 200 250 300 350 400 450
film thickness 2h (A) film thickness 2h (A)
b Wrong definition 1. S 1 Correct definition
S
1 1 b

e Continuum misfit dislocation theory has been widely used since 1980°s

 MD simulations revealed that traditional continuum misfit dislocation theory is
incorrect in the definition of dislocation Burgers vector and dislocation spacing

* This example indicates that MD can “validate” and improve continuum models



3. Some Examples
d CdTe/CdS solar cells

1. CdTe/CdS solar cells have the lowest cost among all photovoltaic
technologies™;
2. Misfit dislocations are one of the primary defects;

3. BOP-based MD models have predicted dislocation-free CdTe/CdS solar cell
structures.

* K. D. Dobson, 1. Visoly-Fisher, G. Hodes, and D. Cahen, Solar Energy Mater. Solar Cells, 62, 295 (2000).
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BOP validation I;: CdTe/CdS defects

(b) Twin (c¢) Stacking fault

(a) Mismatch dislocations
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HRTEM from Y. Yan, R. G. Dhere, K. M. Jones, and M. M. Al-Jassim, J. Appl. Phys. 89, 5844 (2001).



BOP validation II: CdTe/GaAs defects

(a) BOP simulation (only Cd and the approximate “Ga” atoms are shown)

Ty [010]

CdTe

GaAs

—
ez [101] p— x [101]

J. J. Chavez, D. K. Ward, B. M. Wong, F. P. Doty, J. L. Cruz-Campa, G. N. Nielson, V.
P. Gupta, D. Zubia, J. McClure, and X. W. Zhou, Phys. Rev. B, 85, 245316 (2012).
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Dislocation-Free CdTe/CdS Solar Cells

Modern nano technology:

island growth

patterned oxide
underlayer substrate

—p: ~continuous (i.e., w = 00) CdTe film; wemm : ZnTe island (w < 90nm)

0.050 T T T T T T T T T »
|
0.045 | g,: island-substrate mismatch
—~ B =
0.045 | ¥ € =0.11,
BOP simulation: = 5 !
simuiation. < 0.035 § e .
o rd
o
2 0030 s/ CdTe/CdS ]
[72] =]
5 0025} T | .
fa
= 0.020 F & |
= §
§ 0015F @ p - i
& ZnTe g, =0.05
=2 0010 Y 7 ’ -
2
0.005 1
=0.01
0.000 F %

0 20 40 60 80 100 120 140 160 180 200

24 island width w (nm)



3. Some Examples
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Melt growth defect formation in CdTe
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o and 3 Dislocation Mobilit




Some Examples
d Towards improved LaBr;

3

Edge dislocation slip on <-1100>
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Dislocation slip on <0001>

(b) basal <1120> screw dislocation, T = 0K
y~(0001)

(a) basal <1120> edge dislocation, T =0 K
y-(0001)

* MD indicates that fracture cannot be prevented by promoting plastic
deformation, but can be retarded by inhibiting dislocation motion

* This is proven in our experiments where aliovalent doping provides resistance to
dislocation motion resulting in fracture free LaBr3 crystals

* A patent is issued and follow-on funding from NA22 is awarded
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