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ABSTRACT 

 
Optical designers assume a mathematically derived statistical distribution of the relevant design 
parameters for their Monte Carlo tolerancing simulation. Presented are measured distributions using 
lens manufacturing data to better inform the decision-making process. 
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1. INTRODUCTION 
 

Generating optical tolerances in lens design software such as Code V or Zemax begins by modeling a perturbed optical 
system to capture the effect of simultaneous changes in lens radius, center thickness, and other critical parameters in 
amounts matching the lens manufacturer’s stated capabilities. The analyst would assume a statistical distribution of the 
relevant parameters for the Monte Carlo simulation. In some cases, the assumed distributions do not resemble the 
distributions that occur in lens manufacturing. For example, optical designers assume a center thickness tolerance that is 
symmetric about the nominal value, but lens manufacturing brings parts to tolerance, not nominal. The best option would 
use actual manufacturing data to build a statistical distribution for the Monte Carlo simulation. Understanding true 
distributions will have other beneficial consequences. The designer or manufacturer could easily predict the cost of 
changing a particular tolerance (as a result of lost yield) for a given manufacturing process.  
 
Code V1 offers the designer a relatively conservative default choice of uniform distribution for the TOLMONTE analysis 
(i.e., Monte Carlo perturbations of the system to derive tolerances), although other choices, such as a truncated Gaussian 
distribution, are available. However, all of the readily available options use distributions symmetric about the nominal 
value. The TOR option (i.e., wavefront differential tolerancing) also permits an END option that only allows for worst-
case values of ±T where T is the maximum permissible tolerance.  

 

 
Figure 1. Binned and smooth histograms from a typical lens batch with 22 lenses. The vertical axes of all binned histograms  
are normalized. 

 
Measured lens data do not fit neatly into any mathematically derived format (Fig. 1). Often, measured distributions are 
bimodal, indicating more than one process is at work, and distributions generally do not drop to zero at the edges. Taken 
together, these two facts suggest some of the lenses are polished a second time to pass inspection. The factors that 
influence the shape of the distribution include shape (convex/concave), softness of the glass, the precision grade, the  
R-number (radius to diameter ratio), and the size of the batch (how many lenses being produced in the run). Manufac-
turers typically leave center thickness larger than the nominal value in case rework is needed. Manufacturing can only 
remove material, so radii are ground and polished starting larger (i.e., flatter) than nominal for a convex surface and 
smaller than nominal for a concave surface. Because of the rework phenomenon, the combined mixture distribution for 
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radius looks very much like a slightly biased uniform distribution. The center thickness data on the other hand, show a 
strong preference to be thicker than the nominal value. 
 
The fact that the mean value of center thickness is offset from the intended nominal value would create systematic 
deviations from the intended overall metric, such as wavefront error. This fact can be exacerbated because the 
optomechanical mounting assumes that the nominal value is also the expected value. The end result is a systematic error 
in the distance-to-next value between optical surfaces.  
 
As the lens manufacturer ramps up from prototyping to large-scale production, defined here as a >20x increase in batch 
size, the nature of these errors and the resulting measurement distribution shape may change. Fabrication choices depend 
on order quantity to address daily output and often price targets. 
 
In order to compare lens data for a variety of conditions, center thickness and radius data were normalized from ±T to 
±1. The surface irregularity and wedge data were normalized to (0, 1). The normalization also has the effect of removing 
the possibility of revealing proprietary data (not a small consideration). One would expect that as the absolute value of 
these tolerances gets tighter, the normalized standard deviation would increase compared to the interval (and in some 
cases this is true). One would also expect that as the batch size increases, the distribution shape would more closely 
resemble a truncated Gaussian distribution, but this is shown not to be true. 

 
Our study examined seven lens batches. The word “batch” in this context refers to an order of nominally identical lens 
elements. In this study, the word “aggregate” refers to the statistics of all of the batches or lens elements mixed together. 
The manufacturing process for the batches was not disclosed. The lens data were supplied by Optimax Systems, Inc. All 
lenses were ground from flat cylindrical stock. Batches ranged in size from 13 to 48 lenses, totaling 182 lenses; of the 14 
surfaces produced, eight were convex and six were concave. The R-number ranged from 0.8 to 15. The glass hardness is 
hypothesized to be an important factor in the distribution shape, but the present study did not include glass hardness as a 
parameter. 

 
The subject of optical tolerancing has a rich history2, but there are no available studies that connect the parameters of 
lens grinding and polishing probability density function (PDF) data to the tolerancing practices of optical engineers. 
Juergens3 states that the engineers at Raytheon routinely look at lens production data from their suppliers and feed the 
resulting PDF estimations back into their Code V Monte Carlo tolerancing analysis. But these data are not available to 
the public. In fact, design houses vigilantly guard their optical designs, and fabrication houses are not anxious to give 
competitors insight into the true capabilities of their manufacturing practices. 

 
2. ANALYSIS METHODS 

 
Two general approaches exist for analyzing this type of data: parametric and nonparametric methods. Any method needs 
to consider the facts that the data are, by nature, bounded on some interval and may be bimodal. 
 
2.1 Parametric methods 
 
In a parametric approach the analyst selects a distribution, such as the Gaussian or Pearson, and then estimates the 
parameters for the distribution. There are special distributions for bounded data sets, such as the Beta distribution, but 
this distribution does not appear to be applicable for the data under consideration. Another way of analyzing bounded 
data is to truncate a non-bounded distribution. Generally speaking, the truncation of a distribution f(x) restricts the 
support to the interval (xmin, xmax). The new truncated version of f(x) is given by f(x)/(F(xmax) – F(xmin)), where F(x) is the 
cumulative distribution function of f(x). 
 
To clear up a confusing point, must mention that the standard deviation parameter one would use as an input into a 
Gaussian distribution is not the same as the standard distribution of the truncated Gaussian distribution. As you might 
imagine, the truncated Gaussian distribution starts resembling the uniform distribution (Fig. 2) as the standard deviation 
parameter goes to infinity. Our intuition regarding the meaning of the standard deviation is confounded when a 
distribution is truncated.  



 

Bimodal data can be modeled using a mixture of two distributions. A well-known test case of bimodal data is the wait-
times between eruptions of the Old Faithful Geyser.4–7 If we use a mixture of two Gaussian distributions to analyze the 
data, we need to estimate five parameters: two means, two standard deviations, and a weighting parameter. Several 
methods exist for estimating these parameters by using the function EstimatedDistribution in the Mathematica software 
package,8 including the “maximum likelihood” and “method of moments” algorithms. Similar functions exist in other 
software.7 Mixture distributions are implemented in Mathematica using the function MixtureDistribution. As the number 
of parameters increases, numerical problems also increase and the parameter values would have more variance.9 Having 
said that, if there are reasons to suspect that the underlying data distributions are mixtures of Gaussian or non-Gaussian 
functions, these algorithms represent a reasonable approach. In the case of the batch lens data, it was decided that 
truncated mixture distributions did not describe the data shape very well so this approach was abandoned. A wise 
colleague commented: “Forget about math for a minute and listen to what the data is saying. The distributions for any 
particular lens run cannot be fit into any neat category; it is inherently messy.” 
 

 
Figure 2. Gaussian distributions, truncated at (–1, 1). Note that σ is the standard deviation parameter whereas 𝜎 is the standard 
deviation of the truncated distribution. 

 
2.2 Nonparametric methods 
 
Nonparametric methods avoid assumptions regarding the shape of the PDF that describes the data in question. But as we 
shall see, a few assumptions inevitably creep in. Binned histograms and nonparametric methods are often used in 
exploratory data analysis. The kernel density estimate (KDE) is an established nonparametric method for finding the 
shape of the PDF for a data set with unknown properties,  
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where f(x) is the PDF estimate, K is the kernel function, xi is abscissa value of the ith data point, n is the number of data 
points, and h is a smoothing parameter that is usually called the bandwidth. The popular Gaussian kernel was used for 
this analysis, 



 

 𝐾(𝑢) = 1
√2∙𝜋

𝑒−
1
2𝑢

2
. (2) 

 
The Silverman rule4 is often used to calculate the optimal bandwidth h, 
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where 𝜎 is the calculated standard deviation of the data set and n is the number of data points. There are other important 
methods for estimating the optimal bandwidth, for example the Sheather-Jones method.10,11 In a sense, the KDE 
algorithm behaves like a low pass filter that attenuates features smaller than the bandwidth h. If h is far below the 
Silverman optimum, the resulting PDF will have increased roughness and reflect the randomness within the data rather 
than its intrinsic structure. For a given bandwidth h, more data points will reduce the roughness of the estimated PDF. An 
interesting consequence of the Silverman rule is that reducing h to resolve small features in the data would require a very 
large increase in the number of data points. Roughness is a statistical parameter that is calculated as 
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What are the hidden assumptions in the KDE method and the Silverman rule? The KDE method assumes that the data set 
is either unbounded, or if it is bounded that the PDF drops to zero at the edges. The KDE method makes no assumptions 
about the shape of the distribution (i.e., uni-modal or multi-modal). The Silverman rule assumes that the data are close to 
a Gaussian shape (therefore unbounded and uni-modal). Interestingly enough, Bernard Silverman was also captivated by 
the bimodal “Old Faithful” problem.4 Our problem involves bounded data that does not drop to zero at the edges and 
may be bimodal. But all is not lost; there is a body of knowledge to guide us through these difficulties.7,12,13 
 
Fig. 3 shows PDF approximations generated by the KDE method (also called smooth histograms) of a uniform 
distribution with 5000 random data points over the interval (–1, 1). These plots were created in Mathematica using the 
Histogram and SmoothHistogram functions, and the SmoothKernelDistribution function to generate the PDF estimates. 
The truncation in the middle plot was done using the TruncationDistribution function. The bounded PDF plot on the 
right was generated using an undocumented feature in Mathematica 9: SmoothKernelDistribution [data, 0.25, 
{“Bounded”, {–1, 1}, “Gaussian”}]; the value 0.25 defines the bandwidth h and the “Gaussian” option defines the kernel 
function as being Gaussian. The region in Fig 3a outside the (–1, 1) interval is called spillover, and it constitutes about 
10% of the overall PDF. The truncation algorithm was used in Fig. 3b to cut away the spillover. The underestimated 
region to the right and left in Fig. 3b demonstrates the “edge bias” effect. This effect and ways to fix it are a subject of 
ongoing research.12,13 The “Bounded” option on Fig. 3c removes the edge bias, but Wolfram Research will not discuss 
how this option is implemented in Mathematica. 
 
Part of the problem with edge bias has to do with the fact that a data point in the middle has an influence that goes in two 
directions whereas a data point on the edges has an influence that goes in only one direction. Again we see that our 
intuition is confounded by edges. 
 

 
Figure 3. Left to right: standard KDE algorithm, truncated KDE algorithm, bounded KDE algorithm; shown with binned 
histograms (ordinate dimension normalized to the PDF function) for comparison. 
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It is interesting that much of the research concerning bounded and mixture distributions7,13,14 focuses on the multivariate 
case. We have been concerned with the univariate data. Whereas the realities of boundedness and bimodality are merely 
annoying in the univariate case, they are positively vexing in the multivariate case. 
 
How do we pick a reasonable bandwidth given that our data violate the assumptions underlying the Silverman rule? It 
seems natural to think of the bandwidth as a fraction of the bounded data interval. Fig. 4 shows the results of a data 
simulation. Data was randomly generated using a mixture of two Gaussian distributions with means centered on 0.66 and 
–0.6; standard deviations of 0.5 and 0.25; and weights equal to 1 and 0.25. The shape of this distribution is intended to 
mimic actual lens data. The Silverman optimal h was calculated to be 0.26; the standard deviation of the data was 
calculated to be 0.539; and 50 data points were used. The original PDF distribution is plotted along with KDE estimates 
using h = 0.5, 0.25, and 0.125. This plot shows several interesting features. Because the data are randomly generated, the 
histogram plot does not exactly match the original PDF mixture distribution. The KDE with the smallest h (0.125) has 
the most roughness and intersects seven of the eight histogram bin tops. The KDE with the largest h (0.5) shows the 
strongest attenuation, least roughness, and only intersects two of the bin tops. The KDE with the middle h value (0.25) is 
close to the Silverman optimum; it shows some attenuation, but captures the flavor of the underlying data as it is close to 
most of the bin tops. It was decided that an h value equal to 1/8th of the interval (0.25 for radius and center thickness, 
0.125 for wedge and irregularity) is a reasonable choice for the lens data in this analysis, and it appears to be close to the 
Silverman optimum in most of the cases.  
 
It could be argued that the decision to use 1/8th of the interval for an h-value is subjective. At this point we are less 
concerned with mathematical objectivity and more concerned with gathering insight into the data. For that reason it was 
thought that having the same h-value for all the batches would make comparisons easier. In the end we will be using 
parametric methods on the aggregate data as we develop recommendations for optical designers.  
 

 
Figure 4. Simulated data showing data histograms, the original distribution, and several KDE estimations.  

 
3. ANALYSIS RESULTS 

 
Because the number of lenses in a batch could influence the shape of the distribution, it was initially decided to equally 
weight large and small batches. As the data are normalized, it is possible to superimpose multiple smooth histograms to 
get a sense of an aggregate distribution. A smooth histogram was made from an equally weighted mixture distribution 
(Fig. 5) from all of the batch results. 



 

 
Figure 5. Individual (thin line) and mixture (thick line) smooth histograms for center thickness, convex, and concave radii.  

 
But the analysis in Fig. 5 begs the question: What would happen if we had simply mixed all the lens data together (equal 
lens weighting), and how would that be different from an equal weighting of the batches? As we see in Fig. 6, if we 
equally weight each lens or equally weight each batch, the aggregate distributions are almost identical. This would 
indicate that the aggregate distribution is not a strong function of batch size for a batch size of fewer than 50 lenses. 
However, it is possible that the batch distribution would assume a characteristic shape as the batch gets large enough, 
and the manufacturing process becomes mature enough.  
 
Notice that the messiness of the individual lens data settles down considerably when the aggregate distribution is 
considered. The convex and concave radius data show a weak asymmetry, but the center thickness shows a strong 
asymmetry. We know anecdotally that convex radii tend to be larger and concave radii tend to be smaller when the glass 
is ground from flat stock. But this effect is much smaller than we had initially imagined. One might be tempted to think 
of the center thickness as a right-shifted truncated normal distribution, but this wouldn’t work because of the strong left 
tail, which is strong because fabricators occasionally make mistakes that require more grinding than desired.  
 

 
Figure 6. Equal batch weighting (solid) versus equal lens weighting (dashed) of aggregate PDF’s for center thickness, convex, 
and concave radii. 

 
Because the number of lenses in this study is rather small, it was not possible to tease out the factors that influence the 
distribution shapes in any great detail. We do see a slight difference in distribution shape between convex and concave 
radii. We also see that that the irregularity data fall into groups according to the precision grade (Figs. 7 and 8). In this 
case, the precision grade is described by a root mean squared (RMS) specification. As stated earlier, the irregularity and 
wedge data was normalized to a (0, 1) interval. Table 1 summarizes the findings of Figs. 5, 7, and 8. 
 
Why do the irregularity data separate so neatly according to precision grade? To some extent, you are seeing the result of 
a process, not a tolerance. The fabricator has a small number of discrete finishing processes to choose from, and each has 
a “best expected outcome” that the process is capable of yielding. Magneto-Rheological finishing for example is 
expected to yield irregularity under 0.07 λ RMS, and if parts with a looser tolerance are run using these processes the 
measured irregularity fall well below expectation. In effect, the customer gets a better result than his optics code 
accounts for. To take advantage of this effect, the optical engineer would need an intimate understanding of the particular 
supplier process advantages and limitations. 
 
National Security Technologies, LLC (NSTec) procurement is governed by the U.S. Department of Energy (DOE) rules. 
We have to be very careful not to violate these rules as we try to understand our suppliers. Any conversation between an 
engineer and supplier during a procurement cycle could potentially give that supplier an advantage during a bid process, 
and would be a violation. But by knowing the supplier process statistics, you can estimate a cost factor due to reduced 



 

yield given that some of the lenses will be rejected if you pick a tolerance that the chosen process cannot fully support. 
Of course, this idea presupposes that the supplier has a good statistical understanding of his own process statistics, and 
this might not be the case. In general, process advantages and limitations is part of what gives a particular supplier 
competitive advantage, so the optics industry has incentives that prohibit the dissemination of this information.  
 
Supplier/consumer relationships are very complex in the optics industry. The vendor that supplies metrology equipment 
to a fabricator like Optimax may also buy lenses from Optimax and fabricate lenses that compete with Optimax. NSTec 
has a very simple relationship with Optimax—they sell lenses, we buy lenses. This is partially why we were able to co-
author this study (procurement rules aside). If the optics industry is to collectively move to a deeper understanding of 
how fabrication and design are related, we will have to overcome structural problems in our industry. 
 
Fig. 8 shows plots of edge thickness deviation (ETD). In general, optical engineers are less concerned with how wedge is 
measured and are more concerned with the angular boresighting effect. A wedge measurement is often a mechanical 
indicator runout measured on one optical surface near the clear aperture with the other optical surface properly mounted 
on a spindle and a zero-runout condition on the edge diameter. Hence the term “edge thickness deviation” since the 
runout measured is the change of edge thickness per revolution. Special care should be taken to make sure the quantity 
that is toleranced in the design program is measurable and then properly specified on lens drawings. 
 
Statistics is not necessarily a comfortable subject for the precision engineer. Engineers prefer to view the world as a 
Newtonian, deterministic place, actively engaged in creating methodologies to force the world to conform to this view, 
and what better place to showcase these impressive accomplishments than optical fabrication? Yet, even in this sacred 
garden we see randomness if we know where to look, and not just any randomness, but bimodal—shocking! Let’s 
suppose for a moment the thick line in Fig. 9 is known to be the master PDF and individual lens batches were just 
random expressions of the master. This supposition is embodied in the plot on the right in Fig. 9, but the plot on the left 
shows smooth histograms generated from actual lens data. Note the concave data plots in Figs. 5 and 9 are identical. So 
to what extent is lens manufacturing an exercise in pure randomness, and to what extent is it predictable and 
deterministic?  
 

 
Figure 7. Irregularity mean versus standard deviation. Notice the high precision tolerances separate nicely from the low  
precision tolerances.  

 



 

 
Figure 8. Superimposed smooth histograms for two precision grades of irregularity and edge thickness difference. The 
wavelength used for measuring the irregularity is λ, usually 632.8 nm. Batch smooth histograms are shown with thin lines, 
equally weighted mixture distributions shown with a thick line. 

 
 
Table 1. Mean and standard deviation data for radii, center thickness, irregularity, and wedge 
 Mean Standard Deviation Comments 
Convex radius 0.0898 0.5569 Normalized to (–1, 1) 

Concave radius –0.0559 0.5559 Normalized to (–1, 1) 

Center thickness 0.3367 0.5046 Normalized to (–1, 1) 

Irregularity 0.5748 0.2168 Tol = 0.025 λ RMS, data normalized to (0, 1) 
Irregularity 0.2722 0.1463 Tol = 0.11 λ RMS, data normalized to (0, 1) 

Wedge 0.2497 0.1818 Measured using ETD, data normalized to (0, 1) 
 
 
 

 
Figure 9. Measured (left) and generated (right) data. The superimposed smooth histograms on the left come from individual lens 
batches; the aggregate mixture PDF is the thick line. On the right, the individual batches with 30 data points (a typical lens batch 
size) were randomly generated from the aggregate PDF distribution. 

 
 

4. CONCLUSION 
 

This modest pilot study seeks to document the shop statistics that could help optical engineers more properly tolerance 
systems. In the process, we worked with statistical methods and tools not well known in the optics community. We have 
been forced to come to grips with economic realities that have prevented prior studies of this type being attempted. And 
we have had to confront deterministic engineering paradigms that have prevented us from thinking about the very 
statistical methods that could help us the most. 
 
There was a time, before computer design codes were invented, when optical designers and fabricators worked together 
under the same roof, or might have even been the same person, but we don’t have to go back to the time of Galileo or 
Spinoza. The separation of fabrication from design is really a modern phenomenon. Yes, computer codes have surely 



 

helped us, but we have also separated the craftsman and the designer. Perhaps we should think about taking a step 
towards re-establishing that collaboration in spite of the structural problems that exist in our industry. 
 
Lens fabrication is the result of highly skilled labor, but glass is a rather truculent material, and modern optical designs 
can be very demanding. We have something to learn from quirky physical processes like the classic bimodal “Old 
Faithful” data. But the individual batch statistics for radius are 36% unimodal. Batch statistics sometimes have a clumpy 
character. A careful inspection of the sample batch plotted in Fig. 1a shows that the smaller mode has very little 
variance. Opticians are learning about how the particular glass reacts as they rework the material. We see in Fig. 5 that 
individual batch distributions occasionally have a character that seems very different from that of the aggregate 
distribution. We also see in Fig. 9 that the differences between batch statistics and aggregate statistics are much larger 
than one would predict from a Monte Carlo simulation. Hence, batch statistics are a fascinating mixture of deterministic 
lens polishing and unexpected randomness. 
 
Despite the small size of this study, certain basic trends can be noted. “Your lenses are always fat.” It sounds like one of 
those horrible subjects we avoid discussing in mixed company during dinner parties. Center thickness does not seem to 
be the most important optical parameter, but when errors occur systematically they can have a powerful effect. Center 
thickness affects the optomechanical distance-to-next parameter that governs lens spacing, and systematic center 
thickness errors lead to unpredicted focus and spherical aberration. 
 
We can see the effects of process on statistical outcomes, particularly irregularity and radius. With irregularity, we see 
the precision class determines the fabrication process, which, in turn, affects the statistical outcome. With radius, we see 
a weak correlation between shape (convex/concave) and statistical outcome due to how the lenses are ground. We 
suspect glass hardness or softness is an important statistical parameter but do not have the data to support this assertion. 
This could be an area of further work. 
 
We have shown uniform distribution is actually a reasonable approximation for radius tolerances. We can see a weak 
asymmetry in the data, and the asymmetry is supported anecdotally by an understanding of the grinding process. But the 
numerical value for the asymmetry could easily be within an error bar.  
 
Specific recommendations follow in the Appendix A. We hope that this pilot study encourages more lens suppliers to 
share fabrication data. 
 

Appendix A 
 

In order to apply the data presented here, the aggregate statistical distributions need to be parameterized in a way that can 
be used by an optical tolerancing program. The parameters for the concave and convex radii distributions were estimated 
using the Mathematica function “EstimatedDistribution” with the “MaximumLikelihood” option without problems. The 
“MethodOfMoments” option was tried without success. The “EstimatedDistribution” function is actually a local 
optimization that benefits from a judiciously chosen starting point. The results of this analysis are shown in Fig. A-1. 
 
The convex and concave radii data were fit to a normal distribution, N [μ, σ] truncated to the (–1, 1) interval, where μ is 
the mean parameter, and σ is the standard deviation parameter. The concave and convex parameterized distributions 
shown in Fig. A-1 are N [–0.3118, 1.3101] and N [0.5907, 1.4312] respectively. 
 
The center thickness distribution is difficult to fit and in most cases failed to converge using the “EstimatedDistribution” 
function. The center thickness data was eventually fit by maximizing the “LogLikelihood” function with the global 
optimization search function “NMaximize”, subject to the appropriate constraints. The equations (A-1) and (A-2) are two 
successively more complex approximations with improvements in the log-likelihood metric also shown. Equation (A-1) 
is a truncated normal function; equation (A-2) is a weighted mixture with two components: a truncated normal (N) and a 
uniform distribution (U) spanning the interval (–1, 1). 
 



 

 
Figure A-1. Center thickness, concave, and convex radii parameterized distributions fit to the raw aggregate data. The parametric 
approximation is thick, the nonparametric approximation is dashed. 

 
The center thickness distribution parameterized distribution is  
 
PDFCT = N [2.908, 1.3101]     (log-likelihood = –94)    (A-1) 
 
or 
 
PDFCT = 0.639×N [0.625, 0.315] + (1–0.639) ×U [–1, 1] (log-likelihood = –87)    (A-2) 
 
What happens if we look at the radius data without regard to figure (convex/concave)? These data are displayed in  
Fig. A-2. The mean and standard deviation for the aggregate data are 0.026 and 0.56, respectively. The data was fit to N 
[0.180, 1.483], truncated to the (–1, 1) interval using the maximum-likelihood method.  
 
The wedge (measured using ETD) and irregularity data were all fit to a normal distribution, N [μ, σ] truncated to the (0, 
1) interval. These distributions are N [0.0607, 0.2843] for ETD; N [0.2497, 0.1651] for irregularity (tolerance = 0.11 λ 
RMS); and N [0.5990, 0.2522] for irregularity (tolerance = 0.025 λ RMS). Comparisons of the results together with 
binned histograms are shown in Fig. A-3. 
 
 

 
Figure A-2. Parametric (thick) and nonparametric (dashed) approximations for radius (convex and concave combined) data.  

 



 

 
Figure A-3. Wedge and irregularity plots. The thick lines are parametric; the dashed lines are nonparametric approximations. 

 
It is interesting to note that the parametric and nonparametric approximations are noticeably different in some cases, 
particularly the middle irregularity data of Fig. A-3. How can this be? The nonparametric distributions for irregularity 
and wedge were created using an h-bandwidth of 0.125. An examination of the standard deviation parameter generated 
by the maximum likelihood estimate shows that they are relatively close to the bandwidth. If you think of the standard 
deviation parameter as a feature size, the nonparametric estimate becomes less accurate if the feature size is too close to 
the bandwidth. So what should we believe? The choice of h = 0.125 was a subjective decision, and one could argue that a 
better choice exists. But reducing the bandwidth h also has the consequence of increasing roughness. We could say that 
that the Silverman rule provides an objective choice of bandwidth, but we have already shown that the Silverman 
estimate uses assumptions that are violated by the type of data we are examining. We could use the bandwidth estimate 
method of Bouezmarni,14 but this method has not necessarily been universally accepted. The maximum likelihood 
estimate was able to resolve a relatively small standard deviation, but the choice of using the normal distribution two-
parameter system is also a subjective decision. We are left with the uncomfortable realization that modeling choices 
cannot always be objectively supported. In reality, optimal bandwidth estimation methods like Silverman,4 Sheather-
Jones,10 Bouezmarni,13 and parametric estimation methods like maximum-likelihood, are tools that help us to make those 
subjective choices, and we have to decide which is best. 
 
Recommendations 
 
Because the aggregate radius data are so close to the uniform distribution, for simplicity we recommend that the uniform 
distribution is a reasonable option for radius tolerancing. Note that the uniform distribution is already a common option 
in many optical design programs. However, the center thickness distribution is strongly asymmetrical with a mean value 
of 0.337 T (Table 1) for the lenses measured in this study. This asymmetry is supported anecdotally as well. Lenses have 
traditionally been toleranced in a symmetric manner with the nominal value ±T where T is the tolerance value. The issue 
here is that the nominal value is known a priori to be smaller from the expected value (if the tolerance zone is 
symmetric), and this is a problem. Another approach would be to tolerance the center thickness with nominal +0.663 T 
and –1.337 T where T in this case is half of the total tolerance zone and the nominal value is assumed to be equal to the 
expected mean. The optical designer would also need to use an asymmetric PDF in his tolerancing program to support 
the asymmetric tolerance zone. Admittedly, this is a fairly radical change from the established practice, and the 
implications for the various optical design programs would have to be investigated. But in the end we would have lenses 
that are closer to the nominal value in most cases, although in extreme cases some of the lenses would be further away 
from the nominal.  
 

 
Figure A-4. The structure of an asymmetric center thickness tolerance zone. The smaller symmetric zone would be  
CTnom± (1–α) T. 

 



 

The most common approach for tolerancing optics in Code V is the TOR option (wavefront differential tolerancing). The 
TOLMONTE option is also available, but being a true Monte Carlo method, it takes longer, so it is often used as a final 
check. There is no way to change the predefined tolerance distributions in the TOR option. However, one could apply a 
user-defined tolerance distribution in TOLMONTE through the UTOCHNG.seq file.15 
 
Using this approach (asymmetrical tolerancing), let us assume that the reader would normally tolerance the desired 
center thickness as CTnom ±T, the desired tolerance zone being 2×T. Instead, applying the TOR option with a uniform 
probability distribution, use TOR with the smaller symmetrical tolerance zone of CTnom ± (1–α) T. The data here suggests 
that a reasonable value for α is 0.337 (Table 1 and Fig. A-4). As a final check, apply TOLMONTE with the 
UTOCHNG.seq and equations (A-1) or (A-2). The final engineering drawings would need to be reformulated for the 
asymmetrical tolerance zone of CTnom +(1–α) T and –(1+α) T. 
 
We find that the probability of a lens center thickness in this study falling inside of the smaller symmetric zone is 86%. 
Mathematically this would be equivalent to Pr [(2α–1) T < x < T] for the center thickness probability distribution shown 
in Fig. A-1. Now we have a nominal value that is equal to the expected value but we have a 14% probability that the lens 
falls outside of the smaller symmetric tolerance zone. One could think of the asymmetrical part (2×α×T) as a safety 
bonus for the supplier. The intent is that, knowing the structure of the manufacturing probability distributions, the 
designer could loosen tolerances a bit and have a nominal optical design that is much closer to the expected as-built 
values for downstream optomechanical design work. 
 
There is a caveat, however. The preceding analysis is true for all of the lenses taken together. But the aggregate statistics 
are not necessarily reflected in the individual lens batches. In five of the seven batches, there are almost no examples of 
individual lens center thicknesses in the region from (–1, –0.5). But in two of the seven batches there were a significant 
number of lenses in this region; this is what caused the fat left tail in the aggregate distribution. We don’t know if there is 
a way of predicting if extra grinding/polishing is likely (i.e., thin lenses). We suspect that it is related to a combination of 
soft glass and stringent irregularity tolerances.  
 
In the case of wedge and irregularity, the desired nominal value is zero, but some deviation is allowed. It is possible that 
using the PDFs supplied here, tolerances could conceivably be loosened slightly, but this would depend on strong 
communication between the supplier and designer. This is particularly true for the less restrictive 0.11 λ RMS 
irregularity tolerance class. 
 
The reader is encouraged to work with his (or her) suppliers to see if these conclusions are applicable to specific 
situations. 
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