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Introduction

The standard paradigm for seismic event monitoring breaks the event detection
problem down into a series of processing stages that can be categorized at the
highest level into station-level processing and network-level processing algorithms
(e.g., Le Bras and Wuster (2002)). At the station-level, waveforms are typically
processed to detect signals and identify phases, which may subsequently be updated
based on network processing. At the network-level, phase picks are associated to
form events, which are subsequently located. Waveforms are typically directly
exploited only at the station-level, while network-level operations rely on earth
models to associate and locate the events that generated the phase picks. We refer
to the class of methods that are based entirely on picks at the network level as ‘pick-
based methods’, following Pesicek et al. (2014). Individual detection, association,
and location algorithms, earth models, and wave propagation models have become
increasingly sophisticated with time and pick-based methods remain the workhorse
at operational seismic monitoring centers.

An alternative class of methods, which we refer to here as ‘stack based methods’,
operates directly on the waveforms themselves, eliminating the step of deriving a
set of picks at each station. Stack-based methods include a class of methods that can
be referred to as Reverse Time Migration methods. These methods generally consist
of a grid search over possible event hypotheses in space and time, where migration
is used to focus waveform energy received at several stations back to the seismic
source. Often, such methods are based on a few specific phases and require
relatively simple travel-time predictions through earth models to align the energy
(e.g., Kao and Shan, (2004), Baker et al. (2005)). A variant on this approach, which is
less suitable for real-time event detection purposes, involves time reversal of the full
wavefield using full wave modeling methods (e.g., Gajewski and Tessmer, (2005)).
Another more empirical class of stack-based methods exists that is based on
correlation using heavily processed stacks of observed data and therefore does not
require a velocity model. Shearer (1994) outlined an approach for event detection
that used a time-versus-distance image of the long-period teleseismic wavefield
from known events as a matched filter to identify new events. His matched filter was
constructed using an STA/LTA operator to heavily smooth the data and accentuate
phase arrival times. Building on this work, Young et al. (1998; 1996) developed a
method that they referred to as the Waveform Correlation Event Detection System
(WCEDS). The WCEDS algorithm effectively fuses traditional detection, association,
and location steps in a single algorithm. The method was subsequently implemented
at a local scale by Withers et al. (1999). The WCEDS implementation described in



these earlier studies was based on the construction of synthetic stacks, rather than
the empirical stacks described by Shearer (1994).

The main advantages of pick-based methods are related to speed, and to the fact
that they work relatively well for detecting large events when using sparse
networks. Stack-based methods typically involve a grid search over time and
location to find events, and are therefore intrinsically slower. A major limitation of
pick-based methods is that phase picks can be in error if the onset of the arrival is
misidentified, which is relatively common when the signal-to-noise ratio is low. The
phase of the pick can also be erroneous. Further, the association of picks can break
down when there are a large number of individual events that are closely spaced in
time and space, which is typical during aftershock sequences. For detecting
relatively weak signals with a sensor network that is relatively dense, stack-based
methods should outperform pick-based methods. Further, the speed advantage
associated with pick-based methods is becoming increasingly irrelevant as
computers continue to become faster and cheaper.

In this paper we revisit the stack-based method outlined by Shearer (1994), Young
etal. (1998; 1996), and Withers et al. (1999) using a high density local and regional
network in Utah. We compare the results obtained using our implementation of
WCEDS with results from a pick-based method run by the University of Utah
Seismograph Stations (UUSS), demonstrating that WCEDS detects many events that
are not present in the UUSS catalog.

Method

The WCEDS algorithm is based on correlating processed incoming data against a
historical time-versus-distance stack of the seismic wavefield. In contrast with
traditional waveform correlation methods, seismograms are heavily processed
using a bandpass filter and application of an STA/LTA operator (Withers et al.,
1998). Traditional correlation methods are very powerful for detecting and locating
repeating events but do not provide a general solution for broad-area regional
monitoring. The STA/LTA operator has the advantage of enhancing phase arrivals
and smoothing the time series to remove high-frequency effects that are strongly
dependent on specific events and/or source-receiver paths. Furthermore, because
the STA/LTA operator removes absolute amplitudes, site calibration errors are
removed. Rather than exploiting wiggle-for-wiggle correlations, the WCEDS
formulation exploits the time delays between phases, in addition to their smoothed
temporal characteristics, as a function of source-receiver distance. In this paper we
assume that the evolution of the STA/LTA processed waveforms varies only with
distance. This is equivalent to assuming a 1D velocity structure, although we note
that no velocity model is used in the formulation.

Assume that we have a set of N seismograms from different stations in a network

that have been filtered by an STA/LTA operator, such that the i’th seismogram can



be written as ai(t)z P[xi(t)] , where xi(t) is the bandpass filtered vertical-

component waveform for the 7’th station and P[. . ] represents the STA/LTA

operator. The objective is to detect and locate events on this set of processed
seismograms in a moving time window.

The method is based on the construction of an empirical stack of observed STA/LTA
processed seismograms from historical events recorded across a network. By using
a catalog of events recorded by a network, we process historical data with an
STA/LTA filter and construct a time-versus-distance stack of these data. The stack is

stored as an N, XN, matrix, M, where N, is the number of distance bins and N, is

the number of time bins. Each element of M represents the mean value of STA/LTA
from the entire catalog of historical data in a given time, distance bin. Based on the

formulation described by Young et al. (1996) and Withers et al. (1999), P, is

calculated from:
P,=(M-D) -diag(w), 1)

where D isa N, x N, matrix that contains all the processed data for an entire
network in a moving time window such that each element represents the processed
data at a given time for a given station; N, is the number of stations; P isa N.xN,
matrix containing elements, D, that equal the product of the processed seismogram
at a specific station with the stack at a given distance; and w is a vector of distance
weights of length N . By parameterizing a region of study by a series of grid nodes,
the correlation value, c, for a given grid node can subsequently be found by

summing the relevant terms in P_and normalizing:
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The relevant indices of terms in P for each grid node are stored in a lookup table.

The N,xN, matrix (where N¢ is the number of latitudes and N, is the number of
longitudes) containing the correlations at all the grid nodes is referred to in this
paperas C .With w =1, the dot product formulation in Equation (1) would

account for spreading and attenuation as the STA/LTA amplitudes at each station,
and in the stack, intrinsically include these effects. However, the averaging effect of
Equation (2) can result in missing small events, because they may be only detected



by a few stations. To compensate for this, we weight by the inverse of the great-
circle distance from the i'th station, A, such that w, = Ai‘1 . This strategy is

equivalent to down-weighting observations with large source-receiver separation
that are less likely to have detected an event and is not an attempt to mimic real
attenuation and spreading.

For a given origin time hypothesis (to), event detection and location is implemented

by finding peaks in C  and determining if those peaks meet some criteria suitable

for event detection. Because multiple events may be consistent with the same origin
time hypothesis, we implement an iterative peak finding algorithm that is based on
the approach outlined in Young et al. (1996). The algorithm begins by finding the

latitude ((/)p) and longitude (lp) of the largest peak in C_, and assigning an event

hypothesis: E, = (d)P,lP,to). Next, a masking matrix with dimensions N, XN, X, is

defined to track station/distance pairs associated with the event hypothesis.
Elements in X representing stations detecting the event, at their associated great-

circle distances to E o, are flagged. The correlation matrix, C, is then recalculated

using Equation 2, but neglecting terms in P, with corresponding flags in X, and the

process is repeated until there are no more peaks above some threshold.

The full algorithm, which is represented as a flowchart in Figure 1, can be
conceptualized as a nested loop where the outer loop iterates over different origin
time hypotheses and the inner loop iterates over all location hypotheses at that
origin time that exceed a correlation threshold. In addition, the algorithm includes
logic that reconciles the results obtained at different origin time hypotheses. We use

P and P to refer to weighted and unweighted products, and C and C to refer to

correlation matrices evaluated using each type of product. The weighted product is
used for event detection because it enables the detection of small events that may
only be detected at a few stations; this is demonstrated in the Results section. The
un-weighted product is used for event location because it intrinsically accounts for
propagation times and amplitude reduction due to attenuation and spreading at the
observing stations and does not bias the location through weighting by station
distance. Only stations with products exceeding a specified threshold given the trial
location obtained from the weighted correlation matrix are used for estimating the
un-weighted correlation matrix for event location; this prevents the location being
biased by noise observations. Event hypotheses generated for a given origin time
hypothesis are compared with earlier event hypotheses to determine whether they
represent new events or improved estimates of previous hypotheses; the associated
logic is shown inside the red box in Figure 1. The final output of the algorithm is a
catalog that contains a complete set of self-consistent event hypotheses.



Events with arrivals within a given processing time window but with origin times
that are inconsistent with t, (i.e.,, where t, < origin time < t0+NTdt ,with dt as the

sampling rate) can result in artifacts in the calculated correlations. We have found
that such artifacts can be effectively removed by comparing weighted correlation
matrices with the corresponding un-weighted correlation matrices evaluated using
detecting stations. When the origin-time hypothesis is correct, both weighted and
un-weighted correlation maps are consistent with an event occurring in
approximately the same location. However, for an incorrect origin-time hypothesis,
weighted and un-weighted correlation maps look quite different because the peak
un-weighted correlations occur systematically at time delays consistent with a more
distant event yet the corresponding location solution is strongly down-weighted in
the weighted correlations. Thus, by comparing locations obtained both with and
without weighting we can identify artifacts by the difference in location between

these two solutions - referred to as 51.

An estimate of the best event location is a natural byproduct of the event detection
system described above. To obtain an estimate of the best point location, we note

that the resolution of the peak location ((/)P,lp) is limited by the discretization of the

grid, and increasing the number of nodes adds significant computational burden. To
avoid these issues we resample C on a finer-resolution set of nodes and smooth the
function using a 2D Gaussian filter to achieve finer location resolution without
significant additional computational cost. This strategy is found to provide
improved estimates of location, even when the original 2D function of C is spatially
aliased. While the location estimates in WCEDS do not currently provide a formal
statistical estimate of the associated uncertainty we plan to explore strategies for
providing such assessments in future. Further enhancements that are planned for
future work are discussed in the Discussion section.

This event detection scheme contains a number of parameters that must be tuned
for a specific application based on an assessment of the desirable trade-off between
the number of false alarms and the number of missed events. As such, WCEDS is no
different from any other algorithm for seismic event detection, although we note
that the number of parameters is lower than for most pick-based methods (e.g., Le
Bras and Wuster, (2002)), partly because the detection, association, and location
algorithms are effectively merged in WCEDS. The parameters that one might tune
for a given application include the filter parameters, STA/LTA window durations,
weighted network correlation threshold, the station correlation threshold, the move
distance, and two thresholds that are designed to ensure that only the result from

the origin time hypothesis most consistent with a specific event are stored (A and

A).

Dataset and Construction of a 1D stack



In this paper we focus on the application of WCEDS to one day of data from the
permanent regional seismic network operated by the University of Utah
Seismograph Stations (UUSS), coinciding with the period of time that USArray
Transportable Array (TA) seismic stations was deployed in Utah. We use data from
2007 and 2008 to construct our historical time-versus-distance stack. During this
time period, there were seismic stations at a total of 140 locations in Utah (Figure
2). The precise constellation of stations changed with time as TA stations were
moved. The UU network is distributed along the N-S trend of seismicity, while the
TA network is distributed as a semi-regular grid across the region. In 2007 and
2008 there are a total of 5595 events listed in the UUSS catalog (Figure 2). The
earthquake magnitudes are small, ranging from <0 to 3.93 with a median magnitude
of 1.38.

We use all 77 earthquakes with magnitudes greater than 2.5 in the UUSS catalog to
generate the 1D stack represented previously by M (Figure 3). We note that none of
these events are present in the 1-day period in which we have tested WCEDS. Since
large events should be more precisely located than small events, and have better
SNR, we use these events in constructing M. Errors in the stack will map to errors in
our resultant event catalogs, although by using a large number of observations in
generating the stack, errors should be reduced via averaging. Based on all event-
receiver paths from the 77 events, a total of 8951 STA/LTA processed waveforms
are used to construct the stack, which is shown in Figure 3. We process data using a
simple recursive STA/LTA filter (Withers et al., 1998). First, the data are filtered
from 0.5 to 4 Hz with a bandpass Butterworth filter. Next, the data are filtered using
STA/LTA filter parameters of STA=3s, LTA=60 s (tuned following Trnkoczy (2012)).
The matrix, M is formed by averaging all STA/LTA values in time/distance bins. We
choose time bins of duration equal to 0.05 s and distance bins of 10 km. Slices
through M at every 10 km interval are shown in Figure 3. Three dominant phases
are clearly seen, corresponding to Pg, Pn, and Lg. The Pg/Pn crossover distance is
~200 km, with a very sharp onset at closer distances. The Lg phase is characterized
by a much more emergent onset. We emphasize that no assumptions are made
about what phases are present: they just emerge from the stack according to how
they are represented in the observed data and with the appropriate relative
amplitudes. This is very different from pick-based models, where a decision must be
made about what phases to use and travel time curves for each phase must be
developed or obtained.

Application of WCEDS and comparison with the UU catalog

For evaluating the WCEDS algorithm described above, we show the results obtained
by applying the method to 1-day of data (09/18/2007 00:00 - 09/19/2007 00:00)
at UU network stations, allowing direct comparison with the UUSS catalog. The
selected day contained 47 events in the UUSS catalog, with magnitudes between



0.42 and 1.74 and the majority of events (43) forming a tight geographic cluster
around 39.43°N, 111.21°W near the center of the region of study.

A number of events in the UUSS catalog can only be detected on the basis of
Equations 1 and 2 when using the distance-weighting operator, w . The benefit of
using this operator is demonstrated in Figure 4; a correlation peak associated with
an event in the UUSS catalog at 39.4°N, 111.2°W is enhanced when distance
weighting is applied. The event can be observed as a local peak in the network
correlation time series in this case but for other cases there is no evidence of the
event until distance weighting is applied. Because distance weighting can enhance
the detection of small events, the peak distance-weighted network correlation is
used as the primary event detection criteria as described above and in Figure 1.

The calculated value of maX(Cw) for the 1-day period is shown in Figure 5. The

distribution of values over the 1-day period varies between 0.01 and 0.06 with a
mean of 0.019; the largest events are readily detected by setting a threshold deep in
the tail of the distribution (>0.04), while reducing the threshold naturally results in
detecting more events at the cost of increasing the false alarm rate. A
comprehensive analysis of the probability of detection and false alarm is beyond the
scope of this paper, our goal is to evaluate how the results obtained using the
WCEDS methodology described above compare with the UUSS catalog for the period
of study. To this end, we note that each UUSS event directly corresponds to a peak in

max(Cw) . However, there are many more peaks than events in the UUSS catalog.

Furthermore, the 47 events in the UUSS catalog do not correspond to the 47 largest
peaks in Figure 5. In particular, one of the UUSS events corresponds to a relatively
low amplitude peak, while there are numerous larger peaks that are not associated
with events in the UUSS catalog. This suggests some difference in the sensitivity of
WCEDS and the pick-based method used by UUSS for detecting events.

Varying the thresholds required by WCEDS we can experiment with different
scenarios. As mentioned previously, the most important threshold is the peak
distance-weighted network correlation threshold. The secondary thresholds (move

distance, A_,and A ) enable us to reject false events associated with an incorrect

origin-time hypothesis and have been tuned to minimize such false events without
rejecting real events in the period of study. We use values of 6, =20km, A =50

m:

km, and A, =10 s and explore below the effects of varying the peak distance-

weighted network correlation threshold, which has a much stronger influence on
the results. By choosing the minimum threshold such that all events in the UUSS
catalog are detected (c = 0.0285), we find 128 new events. By manually reviewing
each of these events through plotting record sections, we find that 49 of these new
events do not have clear arrivals at more than one station with a moveout consistent
with the derived location and origin time. Thus, with a threshold of 0.0285 there are
at least 79 new events detected that are not reported in the UUSS catalog with a



possible false alarm rate of 49/day (we note that some of these false alarms may be
real events that are only detected at one station or else are buried in noise).
However, raising the threshold to ¢ = 0.035, we miss only one UUSS event and detect
61 new events, of which 9 are possible false alarms. By setting the threshold such
that we obtain no possible false alarms, we still detect more events than are listed in
the UUSS catalog but we start missing additional UUSS events. For example, with a
threshold of 0.04 we obtain 70 events, of which 43 are in the UUSS catalog.
Examples of events detected by WCEDS at different peak distance-weighted
correlations are shown in Figure 6.

To gain an understanding of the effect of station coverage on event detection with
WCEDS, we show in Figure 7 how the number and distribution of detecting stations
influences the detection of an example event that was observed out to ~50 km. The
event is present in both UU and WCEDS catalogs with consistent event hypotheses
(Location = 39.43°N, 111.21°W; Origin time = 2007/09/18 17:00:50.89). The event
magnitude in the UU catalog is 1.06; there are 9 stations with visible signals in the
UU network. By sequentially removing stations with observed waveforms it is seen
how the peak correlation decreases as detecting stations are removed. With two
local stations we could detect the event but the threshold would need to be set at
approximately 0.02; such small events are likely associated with a large number of
correlation peaks in the 1-day period studied in this paper (Figure 5). While the
example in Figure 7 demonstrates that WCEDS is capable of detecting events
observed by very few stations, a more comprehensive study of the network false
alarm rate than is provided above would be desirable before running WCEDS at
such a sensitive level.

A comparison of the locations of events detected by WCEDS, using a threshold of
0.0285, and the locations of events in the UUSS catalog is shown in Figure 8. As
noted before, the largest concentration of events in the UUSS catalog is confined to a
relatively tight cluster centered on ~39.6°N, 111.2°W. This cluster is associated with
137 events in the WCEDS catalog, suggesting that WCEDS is detecting a number of
additional events associated with an active fault system during the period of study.
Additional clusters of WCEDS events can be identified, suggestive of additional
repeaters during the 1-day period. Some of these clusters are associated with only
one or no events in the UUSS catalog.

Discussion and Conclusions

The stack-based method presented in this paper, which builds on an earlier work by
Shearer (1994), Young et al. (1996), and Withers et al. (1999), has the advantage
that it can detect events across a network without requiring phase picks or a
velocity model. The only requirement is a set of prior events with high-quality
locations and origin times from which to construct an empirical time-versus-
distance image of the processed seismic wavefield. By processing the data with an
STA/LTA operator, the image is relatively insensitive to the precise source



mechanism or location and is more representative of the travel-time characteristics
of the seismic phases in a given region.

It is worth noting that the earlier work on WCEDS did not result in the method
becoming widely adopted, or motivate significant further research and development
of the algorithm. In part, we believe this was due to the limitations of widely
available computational resources at the time, which required a relatively sparse
resolution on origin time, and on the time-versus-distance image, compared with
what we have implemented in this paper. Further, the earlier studies were
implemented primarily on sparse global networks, with only the study by Withers et
al. (1999) focused on a (relatively sparse) local network. In this study we have
tested the methodology on a dense regional seismic network using a much finer
resolution on origin time and the time-versus-distance image. Further, we use an
empirical time-versus-distance image, rather than a synthetic time-versus-distance
image as utilized by Young et al. (1996) and Withers et al. (1999). The advantage of
an empirical image is that it exploits the actual temporal characteristics of the
different seismic phases in a given region; the disadvantage is the need for prior
data to construct such an image. Another modification implemented here, which
was not implemented in earlier studies, is the use of both distance-weighted and
unweighted images for enhancing the detection of weak events and mitigating
artifacts associated with events in the record that occur at a different origin time
than the one under test. As a result of some of these differences, the results obtained
here are much more compelling than in previous studies and clearly demonstrate
the improved sensitivity of WCEDS, compared with a traditional pick-based method,
to relatively low-magnitude events with a dense seismic network. Using WCEDS we
are able to detect many events that were not detected in the UUSS system, even
using a high threshold such that the false alarm rate is zero in the 1-day period. By
accepting a higher false alarm rate, the number of real events detected increases
significantly, but at the cost of requiring further analyst review. Further research is
required to develop improved strategies to reduce this burden and enable one to
drive down the detection limit further; our results suggest it is possible to detect
very small events detected by only one or two stations with this method.

The method outlined here contains some limitations that will be addressed in future
work. For example, we currently only utilize vertical-component seismograms but
note that the use of three-component data should further enhance the detection of
weak events, especially by incorporating information from phases that are not well
observed on vertical component seismograms, such as Sn. A second limitation is the
absence of depth in the parameterization scheme; depth variations will affect the
character of the regional wavefield and these effects are currently averaged out via
the stacking procedure. In this paper we focus on the application of WCEDS to a
region with shallow seismicity, thus depth effects are not expected to be significant.
A third limitation is the assumption of a 1D stack, which does not account for lateral
heterogeneity across a region. These limitations are not explored in detail in this
paper and are left for future research.



References

Baker, T., Granat, R., & Clayton, R. W. (2005). Real-time Earthquake Location Using
Kirchoff Reconstruction. Bull. Seism. Soc. Am., 95, 699 - 707.
doi:10.1785/0120040123

Gajewski, D., & Tessmer, E. (2005). Reverse modelling for seismic event
characterization. Geophys. J. Int.,, 163. d0i:10.1111/j.1365-246X.2005.02732.x

Kao, H., & Shan, S.-]J. (2004). The Source-Scanning Algorithm: mapping the
distribution of seismic sources in space and time. Geophys. J. Int,, 157, 589 -
594.do0i:10.1111/j.1365-246X.2004.02276.x

Le Bras, R., & Wuster, ]. (2002). IDC Processing of Seismic, Hydroacoustic, and
Infrasonic Data. Retrieved from

Pesicek, J. D., Child, D., Artman, B., & Cieslik, K. (2014). Picking versus stacking in a
modern microearthquake location: Comparison of results from a surface
passive seismic monitoring array in Oklahoma. Geophysics, 79(6).
doi:10.1190/GE02013-0404.1

Shearer, P. M. (1994). Global seismic event detection using a matched filter on long-
period seismograms. J. Geophys. Res., 99, 13713 - 13725.

Trnkoczy, A. (2012). Understanding and parameter setting of the STA/LTA trigger
algorithm. Retrieved from

Withers, M., Aster, R., & Young, C. (1999). An Automated Local and Regional Seismic
Event Detection and Location System Using Waveform Correlation. Bull.
Seism. Soc. Am., 89(3), 657 - 669.

Withers, M., Aster, R., Young, C., Beiriger, J., Harris, M., Moore, S., & Trujillo, J. (1998).
A Comparison of Select Trigger Algorithms for Automated Global Seismic
Phase and Event Detection. Bull. Seism. Soc. Am., 88(1), 95 - 106.

Young, C., Beiriger, ]., Moore, S., Trujillo, J., & Harris, M. (1998). The Waveform
Correlation Event Detection System Project, Phase II: Testing with the IDC
Primary Network. Retrieved from

Young, C., Beiriger, ]., Trujillo, J., Withers, M., Aster, R., Astiz, L., & Shearer, P. M.
(1996). WCEDS: A Waveform Correlation Event Detection System. Retrieved
from

Young, C., Harris, M., Beiriger, ]., Moore, S., Trujillo, J., Withers, M., & Aster, R. (1996).
The waveform correlation event detection system project phase 1: issues in
prototype development and testing. Retrieved from

10



v

t,=t,+At

'

Form data matrix, D

|

T T
Calculate P= (M~D) and P = (M~D) -diag(w)

v
v

Is max(CW) > threshold?

i Yes

Calculate C using detecting stations

No: No (additional) event

only —E/ =(¢p,lp,t0)

N
Is 51 < threshold ? °
Is this a new event? iYeS
~
Event hypotheses in memory i

Is Ep within A, and A,
E, =() |

of any existing E?

No Yes
Add to Event hypotheses Is ¢ >C. ?
in memory
i Yes

Remove previous event
hypothesis from memory and

N

add new hypothesis to memory

J

!

Calculate C «—

Mask

out £
14
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Figure 2. (left) Map showing locations of 140 broadband seismic stations in Utah in
2007 and 2008 (yellow triangles are UU stations, green triangles are TA stations)
and locations of seismic events in the UUSS seismic catalog for the same two-year
time interval (red stars). (right) Distribution of magnitudes of all seismic events in
the two-year time interval.
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Figure 3. The 1D STA/LTA stack used for event detection in this study. The left panel
shows a map of the 8951 event-station paths that were used to construct the stack.
The event-station paths were formed from 77 M>2.5 events (red stars), where each
event was recorded on a subset of the 140 stations (yellow triangles). The right
panel shows slices through the stack matrix at intervals of 10 km. The Pn, Pg, and Lg
arrivals are labeled.
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Figure 5. A comparison between the WCEDS correlation function and origin time
estimates using data from the UU stations on 09/18/2007. Green lines are origin
times for all 47 events from the UU event catalog and red lines are origin times of

events detected by WCEDS given a threshold of 0.028. The distribution of max(CW)

is shown for the full 1-day processing run in the left panel. The correlation functions
obtained by applying WCEDS to both UU and TA stations together were virtually
identical but the correlation values were shifted slightly lower.
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Figure 6. Record sections of three example events detected by WCEDS. The top
panel shows an event that is also detected in the UUSS catalog. The center and lower
panels show two new events found by WCEDS. The corresponding peak distance-
weighted network correlations are, from top to bottom, 0.043, 0.043, and 0.027.
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Figure 7. An analysis of the effect of station distribution on the detection of a

magnitude 1.06 event in central Utah. The top left panel shows the WCEDS solution
using the full UU networkt. Stations that have visible recordings are shown by white
triangles and other stations are shown by black triangles. The remaining panels
show the corresponding solution for reduced sets of detecting stations: five (top
right), three (bottom left), and two (bottom right).
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Figure 8. A map showing locations of events detected by WCEDS (black stars are
WCEDS events determined to be real by an analyst; white stars are possible false
alarms) with a threshold of 0.0285, locations of events in the UUSS catalog (red
stars), and UU network stations (yellow triangles). The area denoted by the dashed
black box contains 43 events in the UUSS catalog and 137 events in the WCEDS
catalog. The largest discrepancy between a WCEDS location and UUSS location is 14
km, and is shown by the black line; the mean discrepancy in location is 3.8 km.
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