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>
L <10 ®m Length Scale L >10"°m
Nanoscale Mesoscale
* Atomistic * Simulation of * Fourier’s law is
Simulation (i.e. Boltzmann typically valid when
I\/IoIequar Transport Equation the phonon mean
Dynamics) (e.g. Monte Carlo, free path ( O(100 nm)
e Capture the physics Lattice Boltzmann) in silicon at 300K) is
of defects, * Phonon relaxation much smaller than
surfaces, relaxation times and the characteristic
times, dispersion dispersion relation length scale of the
relations, etc. must be known problem

e Limited in length
and time scales
Dispersion relation

Ab inito Scattering rate (pathways)



When Fourier’s Law Fails ) i

* Thermal energy is carried by atomic vibrations.

« Semi classical view: phonon (both wave and particle)

JE
« Graphene phonon mean >
free path: W / l /
A =~ 600nm’ 7
* Transport regimes Knr = A/L Knw = A/W
— Diffusive Kn <0.1 _
— Transition 0.1 < Kn <10 - e
d
— Ballistic Kn > 10 i
TPop, E., Varshney, V., and Roy, A. K., MRS Bulletin, 37, 1273-1281 (2012). 3




Boltzmann-Peierls Equation (BPE) @

= Thermal transport is balance of advection and scattering

8n(x, D> t) a?’L(X, q, s, t)
+v(q,s) - Vxn(x,q,s,t) =
at at scatt
11 117 1 o
— Z [(P(?/f;% 5 — P((;S,Z/S/) —|_ 5 <P§l/i/,q”s” _ Péllss ,q S )]
q/S/,q”S”

« Challenges for modeling BPE:
— High dimensionality (3 spatial, 3 velocity, time)
— Discontinuities

— Complicated scattering model

q//S// 27‘(‘ ~ "oy

Posas = 73 1Vs(—as, —d's',q"s )*n(gs)n(q’'s’)(n(q”s") + 1)
x0(—w(qgs) —w(q's") + w(q"s"))o(—a—q +q" + G)
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Simplification of BPE ) e,

ANALYSIS OF LATTICE T

- L] L] L] L]
Re | axatlo n tl me a p p roxim atlo n A fit of the data on high purity silicon using the Calla-
o way equation is shown in Fig. 2. The experimental
an n —n q data are taken from Holland and Neuringer® (1.7 to

_ 300°K), and Slack and Glassbrenner® (300 to 1633°K).
The two sets of data agree within two percent at room

ot

scatt T temperature. A fit at high temperature, obtained from
Eq. (8), is also shown. The value of (D\-+D3) is ob-
1 tained from the 1000°K data using Eq. (18).
eq __ In Fig. 3, the same silicon data are fit using the new
n - formulation. Each contribution is shown. The value of
eXp (hw / kB T) — 1 #7y is obtained from the 1000°K data using Eq. (17b).
«z is then obtained from the data near room tempera-
ture with the value of «ry taken into account. xro will
be insignificant at 300°K. krg is then obtained from the
best fit for the low-temperature data with xry and &g
= Analytical decomposition(not taken nto ccount, This procedure may seem somen'it
linearization) 4 4
. on U pd on
e o v(a.s) Van'l = |7
n = nd 4+ ned 5 +v(q,s xM 5
it scatt
= Energy Boltzmann
f = hwn En +v(q,s)  Vif = t
scatt

tHolland, M.G., Phys. Rev., 132, 2461-2471 (1963).
7T Baker, L. L. and Hadjiconstantinou, N. G., Phys. Fluids, 17, 051703 (2005).
T1T Péraud, J.-P. M. and Hadjiconstantinou, N. G., Phys. Rev. B, 84, 205331 (2011).




Monte Carlo Simulation of BPE

on on
E i V(q, S) | vxTi B [a] scatt

\

~~

Advection

= Not limited to relaxation time
approximation

= Particle representation of distribution
function, “phonons”

(X q,St eﬂzéx_mz Q)éss%
= Time splitting: advect then collide

Adiabatic

= Stochastic sampling—heat fluxin cell m

— 1Veff Z h/w q'w q’L? )

C
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Monte Car‘o
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ot T L
N AT AT N
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AT [Con, nuum| Y v Ballis, ¢
To Variance-Reduced
Monte Carlo
o>
"
Ketf = %
AT
Kn [ .01 A Kn [0 10 >
Kn= —
L
Lambda/L Je instead of gx 7




Variance Reduction for BPE ) e

= Analytic decomposition and energy BPE
4 = fwn — fuwn®d
= Particles now represent deviational energy

fd(X7 q., s, t) ~ Z Eeffai(s(x — X (t))5(q _ qi)css,si

= Sampling consists of stochastic part and
analytic part—energy density in cell m:

— 4 eq
Uy, = U, + U
~—

noisy
. Z{i|xi60ell m} Eeffo-j
Veell

Low Variance Deviational Simulation Monte Carlo (LVDSMC):
Baker, L. L. & Hadjiconstantinou, N. G. Phys. Fluids, 17, 051703 (2005). T

Homolle, T. M. M. & Hadjiconstantinou, N. G. J. Comput. Phys., 226, 2341-2358 (2007). cold

Péraud, J.-P. M. and Hadjiconstantinou, N. G. Phys. Rev. B, 84, 205331 (2011). 8

Adiabatic
Adiabatic

exact

U, + 14




Variance Reduction Example 1: ).
Line heating

= 10 nm line heating semi- Temperature Particl
. e . - . articies
infinite silicon domain Soroue

= Automatic and intelligent
focusing of computational
effort

= Areas at equilibrium are
simulated exactly with no
computational cost o




Variance Reduction Example 2: h
Silicon Nanopore (Temperature Field)
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Structure is spa, ally
periodic

Non-Variance- €&
Reduced

Variance-
Reduced

130nm Kn= .97



Variance Reduction Example 2: ).
Silicon Nanopore (Heat Flux)

Heat flu in x -direc, onx Heat flu in y-direc, on

2

* Periodic structure in x-direc, on
**Heat(ﬂu rorma | iz ed by bulk heat
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Relaxation Time Approximation and
Graphene

4 ~ . i
10°} Seel }em"’lu only, BTE 1 4000F

4500

-
-
-
- -
-

L

W

(=1

o
T

Potential

U only, SMRT

Kleme“su only, SMRT

KlemensU only ,SMRT

S Poie/'“mlmu. BTE

~ -
. -~ -
Potential _ . TS=o_ 1

Thermal Conductivity (W/m.K)
Thermal Conductivity (W/(m.K))
[§]
g

N+U, SMRT
1500
—_— 0 e
K]emenst‘ SMRT
500 Potentlalmu’ full BTR
250 300 350 400 450 500 550 600 650 950 300 350 400 450 500 550 600 650
Temperature (K) Temperature (K)

(a) (b)

FIG. 5. (Color online) Thermal conductivity variation with temperature. (a) The different curves are labeled in accordance with the corresponding approxima-
tion employed. The dotted lines correspond to values obtained from the solution of the phonon BTE while the solid lines denote thermal conductivity computa-
tions performed under the single mode relaxation time approximation. (b) Comparison of computed thermal conductivity with experimental data.

= Single mode relaxation time (with either phenomenonlogical
rates or ab-initio calculated rates) dramatically under-predicts

thermal conductivity
12



Beyond the Relaxation Time
Approximation

13




Ab Initio thermal transport 1) .

= Analytical decomposition, energy BPE, spatially
homogeneous, time independent, 1d temperature gradient
(dT/dx), linearize RHS

Of\+dT A
OT dx  27h2

S/,S,,

< (3 = I+ (o = PO+ (B4 2+ 1D F50)

Aue
A B2 Z /d2q/’V3( A, N )‘H)| d(—wx + wx + war)

x (- (f)w + v DS+ (= PO+ (- fA)fA”)
where (q,s) — A, a+q" =q" + G for first term and

A2q’ [Vs(= X, =N, X)) 26 (—wx — wa + war)

_|_

q=q +q" + G for second term

14




Anharmonic interaction term L
p’ This is by far the biggest computational expense
It is made managable by:

1) Calculating the force constants from the
atomistic simulation beforehand

2) Discretizing wavevector space to allow a finite
number of interaction

- 3) Tabulating the interaction term for all allowable 1/2
interactions at the beginning of a run ,’

1/ //)

1'b

J
4

*NOTE: enforced symmetrization leads to changes
0T 20% in transport properties VAL



Brillouin Zone Discretization (2D) @&

) Par%llelepiged unit cell

Discretization chosen so
that momentum
conservation is exactly

. . . . First Brillouin zone
SatISfIEd on g”d pOIntS N ° ¢  Irreducible First Brillouin zone

Energy conservation is C
achieved by regularizing
the delta function (linear

triangle method) Y A
The result is the BPE as a O S
linear system of
equations

vi- Vufi* =) Bif;




lterative Solution (Brief History) @&

= 1995: Sparavigna formulated iterative solution
= 2003: Sparavigna published potential for silicon (2 & 3 body)

= 2004: Broido matches Si/Ge thermal conductivity (Keating
model)

= 2005: Broido shows Tersoff and ED off by factor of 2, SW by
factor of 4 for Si thermal conductivity

= 2007: Broido matches Si/Ge thermal conductivity with ab-
initio calculations

= 2010: Lindsay and Broido use optimized Tersoff for graphene
= 2011: Singh shows failure of SMRT in graphene with Tersoff
= 2014: Lindsay uses ab-initio force constants for graphene

17
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Map of a few relevant graphene ) S,
simulations

4
Line.a_ri.zed BPE [ Lindsay 2014
Ab-initio S

S

(@)

g=
Linearized BTE £ Lindsay 2010
Empirical O Seol 2010

% Singh 2011

2

©

O
SMRT W1 Ghosh 2008 .

Nika 2009 Aksamija 2010 Landon 2011
=
Fidelity of Spatial integration
Homogeneous Arbitrary Geometry 18




Linearized Ab Initio Phonon Low ) s
Variance Deviational Simulation
Monte Carlo (LAIP-LVDSMC)

o fd
J

= How do you simulate the discrete deviational energy BPE with
the matrix scattering operator?
= LHS: Advection in MC
= RHS: ???




LAIP-LVDSM Collision Operator ).

o fa
]z

= Solution is analytic! Toy problem
d d 10,r---.x....‘... | | _f1 eig
[+ AL = Piy(A1) fi(1) | T %8 |
J g_ o f?step {
= Generator matrix S o | a fpster
o0 Atk y % ~0—-a— 8- -0~ « Ty step
P(At) =P =) :FB 5
k=0
= Additional overhead, but minimal o 50 100 150

Time (unitless)

runtime cost

20




LAIP-LVDSMC Collision Algorithm  [@J.

flt+At) =) Pj;iAt) (Z (27;_> ) £a(t)

1 n=0

= Particle in state 7, with sign o L

- . : Plot of lant: Pj;
= Transition from 4, to p with ot of Cumulant Z' jil

p—1 D 1.4—
Z |Pji| <RP; < Z | Pjil -
j=1 j=1 |
= Assign a new sign 08/
o' = sgn(P,;0) RP; Zj
" If ¢/ # ogenerate 2 at § with 0nl
sign o 0
= Collision step is exact and
energy conserving 21
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LAIP-LVDSM Algorithm ) i

Inltlallze

/[S”‘”“"'e]\

Scatter Advect

Adiabatic
Adiabatic

Tcold




The devil is in the details (hnumerics) @
= Anharmonic term is not properly symmetric
6]Va,sym (A, X, A7) 2 = [VB (A, N, N2+ [Va (X, A A7)
Vs, N, AP+ VBV, A N2
+ V3NN NP 4 [V, N\ 2.

= Transfer matrix, B, does not describe momentum and energy
conservation

~ q:z:z Qy.i
ZBw:A'#O =0y, #0 D By =40y #0
Lagrange multiplier enforce conservation
N > N qzx,i qy,i
Bz'j — ij + Bij' 257;3' = —Aj — w—i)‘w,j - wLZ_Ay,j
_ Z 1 dz i ' qy,i 7 ~ _ ~ AN _
1 7 wl 7 Ww; .
dz i Z q:z: .1 Z 4z, zCIy 7 )\J 1%
dy,i q:zz,zq , 1 q 2 )\ ) QA
| 2i e Zzw—f Zzﬁz ] e
23




Graphene Material Model

(0] [cm‘1]
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Dispersion Relation

%"?‘@\oz\e\}‘ e
£
/
A/A
!/ \
1/ A |
f. Y

Circles: M. Mohr, et al., Phys. Rev. B 76, 035439 (2007).

Triangles: J. Maultzsch, et al., Phys. Rev. Lett. 92, 075501 (2004).

= Harmonic and anharmonic force constants from DFT/DFPT

Gruneisen Parameter

Sandia
National
Laboratories

Force constants used were calculated by Sangyeop Lee using code he and Keivan Esfarjani developed.

See: Esfarjani, K. and Chen, G., Phys. Rev. B, 84, 085204 (2011).

24



Validation: SMIRT )

0 Steady state

01
1 d 0 — d
ot +v; Ve fi +vi-Vaf, = Bijf;dij
Diffuse Boundary
s 6"c°’¢"°c°°”“ “““ v U0 |
\E\/)j E>/‘ — » [c)e Q’ .
3 ‘Ji i 0.8 1 ?,°
C; 815 o)
‘ é @ X
X 00'9'00.0.000'0'
77 Diffuse Boundary tk'/ﬁ 06 - '00-0- o.o.o -
w o e
- e ©
”\; 0.4¢
o MC:Kn~10 §
------ Analytic: Kn~10 v 0.2
o MC: Kn~1 i
------ Analytic: Kn~1 I
o MC: Kn~0.1 0
------ Analytic: Kn~0.1 0 % 1




Validation: Homogeneous

6000

5000 |

4000 f

k (W/mK)

2000

1000

4 0 steady

2ff + ;- Vaf] :ZBijf;‘i‘Fz—.

0 homogenous boundary\

J J

3000 |

lterative Solution
# — — — SMRT Solution

— —
T e ——— e

300 400 500 600 700
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Model K (W/mK) % ZA|% TA |% LA |% 20

% TA

% LA

No Boundary Scattering 3600 86.1|9.10 |2.47| 2.37

-0.02

-0.02

Boundary (L,=10 um) 2999 [83.1|10.8 |3.57| 2.63

-0.02

-0.02

Singh et al. 3216 | 88.9] 7.53 | 2.85]| 0.007

Lindsay et al. 3435 |75.7]15.1 9.17

References:
Lindsay, L., et al. Phys. Rev. B, 82, 115427 (2010)
Singh, D., J. Appl. Phys., 110, 094312, (2011)

* Ghosh, S., et al. Appl. Phys. Lett., 92, 151911 (2008)

¢ Balandin, A. A, et al. Nano Lett., 89, 902-907 (2008)
Chen, S., et al. ACS Nano, 5, 321-328 (2011)

* Lee, J.-U. et al. Phys. Rev. B, 83, 081419 (2011)

* Faugeras, C., et al. ACS Nano, 4, 1889-1892 (2010)
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Study: Graphene Kinetic Size Effects .

/Boundary Scattering\/ Temperature Jump \

JE("S)/ \ g \
€
n
@\Dﬁ Bou
\@
3 — Craphite Graphite
% /@\ Heat Sink Heat Sink

\ T Diffuse Bou / K Graphene /

27




Finite Width Effects ) e,

T\\ - [ _( Homogeneous model:
NS
\\

— 17 , :
8 oo |0fi = B, f4 + 2(vi) 1
Diffuse Bour’ndarQ/ ”; 0.8 :g at scatt R W
§ o, KnW~0.1
JE \ L*/ﬁ 0.6 ,o'o'o- .O.o'o l
f R = R o,
= [~) ‘Q
% Ay = 0o "o
’I’) Diffuse Bou,ndary .!,
3P 0.2 |
‘ 1 0-0© 00 0+0'0'90-000'0:0-0 '0-0-0-0.¢9
-
0 1 0 ' ' ' '
10 K1 0 0.2 0.4 0.6 0.8 1
g

= Decreased transport region extends a few A into the domain
= For 6 um wide ribbons average transport is reduced by 10%

= Homogeneous scattering approximation introduces 10-30%
error

28




Finite Length Effects ) .

™M
%
3V :
f

Diffuse Bou (@ — Analytic Ballistic Limit ——Kn ~10
LAIP-LVDSMC —_Kn ~1
— — Diffusive limit N Kn ~0.1
* : - : . — L
1"(n) = 10" 10° 10" 107 |
Kn 0.5 1
L M

= Significant temperature jump for 6 um long ribbons
= Knudsen layer extends a few mean free paths into the domain

= Agreement with diffusive and ballistic’ limits

TBae, M.-H., et al., Nat. Commun. 4, 1734 (2013).
29




2D Kinetic Size Effects ) e

o KnL=11
0.8 S A Kn=1.1
0.6 “ o KnL=O.11 |
%q: ' ;
O
04f |:|
A A A
0.2 A A z
A
© o o o o o o
0 » '0 '1
10 10 10

KnW
= First explicitly 2D simulation of graphene with ab-initio

scattering

= Simulation stats: order 10’s of hours on 24 AMD Opteron 2.6
GHz cores, ~¥1 GB memory

30




Comparison to Experiment iL
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d. Cr/Au clamps

7L

__.KnW=O.4
Graphene Xuetal |
Xu, Y., Li, Z., and Duan, W., o | = .Ba}lllstlc
Small 10, 2182 (2014). 1077 1078 10

= Reasonable agreement with experiment

= Graphene ribbons 1.5 microns wide exhibit significant size
effect




Conclusions )

= We present an efficient method for solving spatially and time
dependent phonon transport problems with the linearized
three-phonon scattering operator.

= (lassical size effects reduce thermal transport in graphene
ribbons by 10-20\% for L, W of O(1um).

= The homogenous scattering approximation over-predicts size
effects by of 10-30% in the transition regime.

= Two dimensional size effects can be directly simulated




Acknowledgements ) S

Special thanks to Sangyeop Lee and Keivan Esfarjani for second and third
order force constants from DFT/DFPT for graphene

Financial Support from:
= NSF Graduate Research Fellowship Program
= NDSEG Fellowship
= MIT-Singapore Alliance

The author’s ongoing research is funded by Sandia National Laboratories
Laboratory Directed Research and Development Program. Sandia National
Laboratories is a multiprogram laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear
Security Administration under Contract DE-AC04-94AL85000.




Other work: TDTR
[

Reflected

— Probe:
Intensity
depends on
surface
temperature

— Incident
— Probe

Pump

Delay
time

Metal transducer

Probed material

= 400nm pulses heat surface

= Reflectivity (temperature)
probed by 800 nm pulse train

= Pump modulation varies heat
pulse penetration depth
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TaO, varying Growth Environment

N ou

TDTR Ratio (-V, /V_ )
E;C)

3% 02
a 6% O2
o 9% 02

Thermal Conductivity (W/mK)
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Delay Time (ps)

«  k(TDTR)
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elec

A K ., =K—K
vib elec
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Other work: 2 D Materials ) e

= Graphene Exfoliation monolayer

= Large area wet transfer of
graphene

= Temperature dependent
Raman spectroscopy of few
layer materials

= Raman peak positions are 1
sensitive to strain, M

temperature, and doping

ity (arb)

CvD
CVD on Epi

Resonant G peak in
twisted bilayer graphene

1000 1500 2000 2500 3000
Wavenumber (rel 1/cm) 35
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A Few Words on Convergence ) .
= Convergence of homogeneous solution

TABLE II. Convergence of the iterative solution thermal con-
ductivity with respect to discretization Ngige.

Ngide Kzz,SMRT Kyy,SMRT  Kzz Kyy
5 586.18 579.74 1474.41 1434.02
11 468.97 481.62 2b584.32 2533.65
21 510.51 530.40 3099.31 3013.94
31 515.51 535.35 3272.60 3160.60
41 513.87 533.38 3345.17 3237.89
51 515.01 534.18 3467.55 3336.47
61 514.84 533.81 3539.02 3397.62
71 514.42 533.30 3554.41 3401.23
81 513.13 531.91 3591.68 3444.19

= Convergence occurs more quickly for smaller structures

= Ratios converge by ~31 (e.g. Kest/K)

= Time splitting converges as At,

= Time step: less than 1/3 cell traversal time

= Spatial convergence: preferably >10 cells per mean free path



