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Overview

 MCMC Methods, DRAM

 Community Land Model

 Results and Implementation

 Next Steps
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Bayesian Formulation

 Generate posterior distributions on model parameters, given
 Experimental data 

 A prior distribution on model parameters

 A presumed probabilistic relationship between experimental data and 
model output that can be defined by a likelihood function

3

)|()()|(  dLdf 

Model parameters Observed 
Data

Likelihood function which 
Incorporates the model

Prior parameter
distribution



Bayesian Formulation
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 Experimental data = Model output + error

 If we assume error terms are independent, zero mean Gaussian random 
variables with variance 2, the likelihood is: 

 How do we obtain the posterior? 

 It is usually too difficult to calculate analytically

 We use a technique called Markov Chain Monte Carlo (MCMC)

 In MCMC, the idea is to generate a sampling density that is 
approximately equal to the posterior. We want the sampling density 
to be the stationary distribution of a Markov chain.  
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Markov Chain Monte Carlo 
 Metropolis-Hastings is a commonly used algorithm

 It has the idea of a “proposal density” which is used for generating Xi+1 in 
the sequence, conditional on Xi. 

Sample a candidate Y from the proposal density function qY(Y|Xi)

Calculate the acceptance ratio 

If (Xi,Y)U, set Xi+1=Y, else set Xi+1=Xi.

Increment i.

 Implementation issues: 

 How long do you run the chain

 How do you know when it is converged

 How long is the burn-in period

 How do you tune it for an optimal acceptance rate, etc.?
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Markov Chain Monte Carlo 
 MCMC depends on asymptotic behavior of the chain.  Ideally, you want to 

run for 100,000+ samples.  COMPUTATIONALLY VERY EXPENSIVE!
 Typically, a limited number of model runs are used to generate a surrogate model and 

the MCMC sampling is performed on the surrogate

 We want to avoid surrogates

 Limitation of MCMC:  it is inherently sequential.  

 We want to exploit some parallelism by using multiple chains

SOLUTION:  PARALLEL DRAM on the actual CLM model

 DRAM:  Delayed Rejection Adaptive Metropolis

 MCMC algorithm with two features: 

 Delayed Rejection:  don’t reject right away…another chance

 Adaptive Metropolis:  Update the proposal covariance periodically 
based on the accepted samples from the chain
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Parallel DRAM
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Full formula given in 
“Solonen et al. 
“Efficient MCMC for 
Climate Model  
Parameter Estimation:  
Parallel Adaptive 
Chains and Early 
Rejection.  Bayesian 
Analysis (2012) 7(2), 
pp. 1-22.



CLM Model with simulated observations
 Varying Fdrai from 0.5 to 2.0

 Simulated observations at Fdrai = 1.0

 Likelihood involves differences of Latent Heat over 12 months

 Double-humped and discontinuous likelihood function can be 
a challenge
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CLM Model:  8 chain MCMC
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CLM Model:  Posterior histogram
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Convergence of percentiles from posterior
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Pushed-forward Posterior
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Results w/ surrogate – synthetic data

 Surrogate infers the right Fdrai value (see MAP values) but ..

 Convergence is slow – take 4x longer
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CLM Model with Actual 2003 data
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Difficulty with flat likelihood 
function and parameter insensitivity 
over a large region:  
convergence hard to assess.



Conclusions
 Bayesian calibration even with 1-parameter is non-trivial with 

a multi-modal likelihood function

 Differences between the actual and surrogate CLM are 
important:  in many cases, surrogates will not be sufficient, 
could take longer to converge, and could converge to 
incorrect values

 Parallelism necessary for running MCMC on expensive 
simulations with no surrogate

 We need to run larger scaling studies

 Next steps:  DREAM and DRAM integration.  We will 
“preconditon” the proposal covariance by running DREAM for 
some number of samples, using the individual chains to 
generate a high-quality proposal covariance for DRAM.
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