SAND2015-1822C

Sandia

Exceptional service in the national interest @ National
Laboratories

Parallel Graph Coloring

Erik G. Boman, Siva Rajamanickam

Sandia National Labs
SIAM CS&E ‘15

(7' \‘.\,) U.S. DEPARTMENT OF M/n ' ' Dg’ﬁ
£ 7 A’ o Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
U/ENERGY M VA2

Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.




Background: Graph Coloring ).

= Given a graph G(V,E), find a
coloring c:V=2N such that
no two adjacent vertices
have the same color.

= We wish to (approximately)
minimize the number of
colors.

= Exact solution is NP-hard

= But linear-time greedy Applications: Parallel
methods work well in scheduling, register allocation,
practice! sparse matrix ordering,

preconditioning, AD




Software )

= Often embedded within other software (not exposed).
= General-purpose libraries:

= Zoltan(2): Load balancing and combinatorial scientific computing.
= ColPack: Focus on automatic differentiation.
= cuSparse 7: GPU only.

= Easy to implement serial greedy but parallel is harder

= Qur goal: Portable parallel shared-memory coloring for wide
range of architectures (multicore, MIC, GPU)




Parallel Algorithms h) =,

= The serial greedy algorithm is inherently sequential; very
difficult to parallelize.

= The two most important parallel algorithms:
= Jones-Plassmann ('93): Color sequence of independent sets.
= Gebremedhin-Manne (‘00): Speculative/iterative coloring. To improve
parallelism, allow some mistakes (coloring conflicts); go back and fix
them later.
= We prefer GM due to less synchronization
= Hcolors are similar for both.
= GM was shown faster on distributed-memory (Bozdag et al, 2008).
= Conjecture this is true on shared-memory, too.




Multithreaded: lterative
Greedy Algorithm

Proc IterativeGreedy (G = (V, E))
U is set of vertices to be colored, and R to be recolored
while U is not empty
1. Speculatively color vertices
for v € U in parallel
for each neighbor w of v
Mark color[w] as forbidden to v
Assign smallest available value to color[v]
2. Detect conflicts and create recoloring list
for v € U in parallel
for each neighbor w of v
if color[w] = color|[v]
add higher-numbered vertex to R
U=R
end proc

Credit;: Gebremedhin & Pothen

Sandia
National _
Laboratories



Implementation Issues ) .

= Conflict resolution options:
= Serial: When #conflicts is small, recolor these vertices in serial.
= Parallel: Iterate and recolor until all conflicts resolved.

= How to find smallest available color:

= Typically, a “forbidden” array is used but this requires a lot of memory

= max-degree is often too pessimistic upper bound, especially for power-
law graphs.

= Limited fast memory on GPU.
= Dynamic reallocation too expensive on Xeon Phi and GPU.

= We chose to examine a fixed chunk of colors (64) at a time. May need
multiple passes.




Kokkos Programming Environment @

Challenge: How to write parallel code that is portable to CPU,
MIC, GPU, and future architectures?

= We use Kokkos, a new library for performance-portable
manycore programming

Key features:

= Write code once, many back-ends (e.g., OpenMP, CUDA)
= Portable C++11 library

= Data-parallel constructs well supported

= Helps with data placement (“first-touch”)

= Tasks under development



Strong scaling (audikw1)

Sandybridge (16 cores)

Sandia
National _
Laboratories

KNC (57 cores)

0.45 0.4
0.4 \ 0.35
0.35 . 0.3 \
03 \ time spec ' \ time spec
: \ 0.25
0.25 \ —total time 0.2 \ — total time
0.2 | N\
) 1e \ 0.15 \
0.1 \ 0.1
0.05 ; 0.05 \
0 T T I 0 : ' ' I |
1 4 16 32 14 28 57 114 228
threads thr.




GPU Issues

Sandia
r.h National

Laboratories

= Kokkos makes porting to GPU easy

= Same source, no CUDA necessary

= Need either UVM or explicit deep _copy from/to host/device

= Coloring algorithm:

#conflicts scales with #threads, so we may need many iterations to
resolve all conflicts (serial resolution impractical)

Kernel launch time is high relative to coloring time
Have to assume data is already on the device




Conclusions )

= The speculative GM coloring method scales well on both
multicore CPU and Intel Xeon Phi

= QObserved #conflicts increases with concurrency (as expected)
= Quality (#colors) remains almost constant

= Useful paradigm for massively multithreaded graph
algorithms

= GPU version in progress
= Kokkos provides portability and saves development time
= Plan open-source release

= Results are non-deterministic and non-repeatable. Get used
to it!




Backup slides ) e,




Sandia

Serial Greedy Algorithm 5.

Procedure Greedy(G(V,E))
Allocate bool forbidden(]
foreachvinVdo
forbidden[*] = false
for each w in adj(v) do
forbidden[color[w]] = true
color[v] = min {i>0 | forbidden[i] == false}
End

Greedy coloring depends on the order vertices are visited. Good
heuristics are Largest-First (LF) and Smallest-Last (SL). In parallel,
we cannot impose any ordering (without limiting parallelism).




Results for CPU

Platform: Intel Sandybridge, 16 cores

Graph: audikw1 (944K vertices, 39M edges)
Algorithm: GM with parallel conflict resolution

Time 0.27 0.10 0.04 0.02
speculative

Time conflict 0.13 0.05 0.02 0.02
detection

Time conflict 0 2e-5 3e-5 8e-5
resolution

Total time 0.41 0.14 0.05 0.04
#colors 54 60 60 63
#conflicts 0 3 27 42

Sandia
National
Laboratories



Results for MIC

Platform: Intel Xeon Phi (KNC, 57 cores)
Graph: audikw1 (944K vertices, 39M edges)
Algorithm: GM with parallel conflict resolution

Sandia
National
Laboratories

14 thr. 28 thr. 57 thr. 114 thr. 228 thr.
Time 0.11 0.06 0.03 0.02 0.01
speculative
Time conflict 0.23 0.13 0.06 0.04 0.02
detection
Total time 0.34 0.19 0.09 0.06 0.04
#colors 60 63 61 61 60
#conflicts 22 50 107 277 553
#iterations 1 1 1 2 2




