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Background: Graph Coloring

 Given a graph G(V,E), find a 
coloring c:VN such that 
no two adjacent vertices 
have the same color.

 We wish to (approximately) 
minimize the number of 
colors.

 Exact solution is NP-hard

 But linear-time greedy 
methods work well in 
practice!

Applications: Parallel 
scheduling, register allocation, 
sparse matrix ordering, 
preconditioning, AD



Software

 Often embedded within other software (not exposed).

 General-purpose libraries:
 Zoltan(2): Load balancing and combinatorial scientific computing.

 ColPack: Focus on automatic differentiation.

 cuSparse 7: GPU only.

 Easy to implement serial greedy but parallel is harder

 Our goal: Portable parallel shared-memory coloring for wide 
range of architectures (multicore, MIC, GPU)
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Parallel Algorithms

 The serial greedy algorithm is inherently sequential; very  
difficult to parallelize.

 The two most important parallel algorithms:
 Jones-Plassmann (’93): Color sequence of independent sets.

 Gebremedhin-Manne (‘00): Speculative/iterative coloring. To improve 
parallelism, allow some mistakes (coloring conflicts); go back and fix 
them later.

 We prefer GM due to less synchronization
 #colors are similar for both.

 GM was shown faster on distributed-memory (Bozdag et al, 2008).

 Conjecture this is true on shared-memory, too.
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Multithreaded: Iterative 
Greedy  Algorithm 
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Credit: Gebremedhin & Pothen



Implementation Issues

 Conflict resolution options:
 Serial: When #conflicts is small, recolor these vertices in serial.

 Parallel: Iterate and recolor until all conflicts resolved. 

 How to find smallest available color:
 Typically, a “forbidden” array is used but this requires a lot of memory

 max-degree is often too pessimistic upper bound, especially for power-
law graphs.

 Limited fast memory on GPU.

 Dynamic reallocation too expensive on Xeon Phi and GPU.

 We chose to examine a fixed chunk of colors (64) at a time. May need 
multiple passes.
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Kokkos Programming Environment

Challenge: How to write parallel code that is portable to CPU, 
MIC, GPU, and future architectures?

 We use Kokkos, a new library for performance-portable 
manycore programming

Key features:

 Write code once, many back-ends (e.g., OpenMP,  CUDA)

 Portable C++11 library

 Data-parallel constructs well supported

 Helps with data placement  (“first-touch”)

 Tasks under development
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Strong scaling (audikw1)
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GPU Issues

 Kokkos makes porting to GPU easy 
 Same source, no CUDA necessary

 Need either UVM or explicit deep_copy from/to host/device

 Coloring algorithm:
 #conflicts scales with #threads, so we may need many iterations to 

resolve all conflicts (serial resolution impractical)

 Kernel launch time is high relative to coloring time

 Have to assume data is already on the device

9



Conclusions

 The speculative GM coloring method scales well on both 
multicore CPU and Intel Xeon Phi

 Observed #conflicts increases with concurrency (as expected)

 Quality (#colors) remains almost constant

 Useful paradigm for massively multithreaded graph 
algorithms

 GPU version in progress

 Kokkos provides portability and saves development time

 Plan open-source release 

 Results are non-deterministic and non-repeatable. Get used 
to it!

10



Backup slides
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Serial Greedy Algorithm 

Procedure Greedy(G(V,E))

Allocate  bool forbidden[]

for each v in V do

forbidden[*] = false

for each w in adj(v) do

forbidden[color[w]] = true

color[v] = min {i>0 | forbidden[i] == false}

End

Greedy coloring depends on the order vertices are visited. Good 
heuristics are Largest-First (LF) and Smallest-Last (SL). In parallel, 
we cannot impose any ordering (without limiting parallelism).



Results for CPU

1 thr. 4 thr. 16 thr. 32 thr.

Time 
speculative

0.27 0.10 0.04 0.02

Time conflict
detection

0.13 0.05 0.02 0.02

Time conflict 
resolution

0 2e-5 3e-5 8e-5

Total time 0.41 0.14 0.05 0.04

#colors 54 60 60 63

#conflicts 0 3 27 42
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Platform: Intel Sandybridge, 16 cores
Graph: audikw1 (944K vertices, 39M edges)
Algorithm: GM with parallel conflict resolution



Results for MIC

14 thr. 28 thr. 57 thr. 114 thr. 228 thr.

Time 
speculative

0.11 0.06 0.03 0.02 0.01

Time conflict
detection

0.23 0.13 0.06 0.04 0.02

Total time 0.34 0.19 0.09 0.06 0.04

#colors 60 63 61 61 60

#conflicts 22 50 107 277 553

#iterations 1 1 1 2 2
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Platform: Intel Xeon Phi (KNC, 57 cores)
Graph: audikw1 (944K vertices, 39M edges)
Algorithm: GM with parallel conflict resolution


