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Background: Graph Coloring ).

= Given a graph G(V,E), find a
coloring c:V=2N such that
no two adjacent vertices
have the same color.

= We wish to (approximately)
minimize the number of
colors.

= Exact solution is NP-hard

= But linear-time greedy Applications: Parallel
methods work well in scheduling, register allocation,
practice! sparse matrix ordering,

preconditioning, AD




Software )

= Often embedded within other software (not exposed).
= General-purpose libraries:

= Zoltan(2): Load balancing and combinatorial scientific computing.
= ColPack: Focus on automatic differentiation.
= cuSparse 7: GPU only.

= Easy to implement serial greedy but parallel is harder

= Qur goal: Portable parallel shared-memory coloring for wide
range of architectures (multicore, MIC, GPU)




Parallel Algorithms h) =,

= The serial greedy algorithm is inherently sequential; very
difficult to parallelize.

= The two most important parallel algorithms:
= Jones-Plassmann ('93): Color sequence of independent sets.
= Gebremedhin-Manne (‘00): Speculative/iterative coloring. To improve
parallelism, allow some mistakes (coloring conflicts); go back and fix
them later.
= We prefer GM due to less synchronization
= Hcolors are similar for both.
= GM was shown faster on distributed-memory (Bozdag et al, 2008).
= Conjecture this is true on shared-memory, too.




Multithreaded: lterative
Greedy Algorithm

Proc IterativeGreedy (G = (V, E))
U is set of vertices to be colored, and R to be recolored
while U is not empty
1. Speculatively color vertices
for v € U in parallel
for each neighbor w of v
Mark color[w] as forbidden to v
Assign smallest available value to color[v]
2. Detect conflicts and create recoloring list
for v € U in parallel
for each neighbor w of v
if color[w] = color|[v]
add higher-numbered vertex to R
U=R
end proc

Credit;: Gebremedhin & Pothen
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Implementation Issues ) .

= Conflict resolution options:
= Serial: When #conflicts is small, recolor these vertices in serial.
= Parallel: Iterate and recolor until all conflicts resolved.

= How to find smallest available color:

= Typically, a “forbidden” array is used but this requires a lot of memory

= max-degree is often too pessimistic upper bound, especially for power-
law graphs.

= Limited fast memory on GPU.
= Dynamic reallocation too expensive on Xeon Phi and GPU.

= We chose to examine a fixed chunk of colors (64) at a time. May need
multiple passes.




Kokkos Programming Environment @

Challenge: How to write parallel code that is portable to CPU,
MIC, GPU, and future architectures?

= We use Kokkos, a new library for performance-portable
manycore programming

Key features:

= Write code once, many back-ends (e.g., OpenMP, CUDA)
= Portable C++11 library

= Data-parallel constructs well supported

= Helps with data placement (“first-touch”)

= Tasks under development



Strong scaling (audikw1)

Sandybridge (16 cores)
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KNC (57 cores)
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GPU Issues
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= Kokkos makes porting to GPU easy

= Same source, no CUDA necessary

= Need either UVM or explicit deep _copy from/to host/device

= Coloring algorithm:

#conflicts scales with #threads, so we may need many iterations to
resolve all conflicts (serial resolution impractical)

Kernel launch time is high relative to coloring time
Have to assume data is already on the device




Conclusions )

= The speculative GM coloring method scales well on both
multicore CPU and Intel Xeon Phi

= QObserved #conflicts increases with concurrency (as expected)
= Quality (#colors) remains almost constant

= Useful paradigm for massively multithreaded graph
algorithms

= GPU version in progress
= Kokkos provides portability and saves development time
= Plan open-source release

= Results are non-deterministic and non-repeatable. Get used
to it!




Backup slides ) e,
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Serial Greedy Algorithm 5.

Procedure Greedy(G(V,E))
Allocate bool forbidden(]
foreachvinVdo
forbidden[*] = false
for each w in adj(v) do
forbidden[color[w]] = true
color[v] = min {i>0 | forbidden[i] == false}
End

Greedy coloring depends on the order vertices are visited. Good
heuristics are Largest-First (LF) and Smallest-Last (SL). In parallel,
we cannot impose any ordering (without limiting parallelism).




Results for CPU

Platform: Intel Sandybridge, 16 cores

Graph: audikw1 (944K vertices, 39M edges)
Algorithm: GM with parallel conflict resolution

Time 0.27 0.10 0.04 0.02
speculative

Time conflict 0.13 0.05 0.02 0.02
detection

Time conflict 0 2e-5 3e-5 8e-5
resolution

Total time 0.41 0.14 0.05 0.04
#colors 54 60 60 63
#conflicts 0 3 27 42
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Results for MIC

Platform: Intel Xeon Phi (KNC, 57 cores)
Graph: audikw1 (944K vertices, 39M edges)
Algorithm: GM with parallel conflict resolution
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14 thr. 28 thr. 57 thr. 114 thr. 228 thr.
Time 0.11 0.06 0.03 0.02 0.01
speculative
Time conflict 0.23 0.13 0.06 0.04 0.02
detection
Total time 0.34 0.19 0.09 0.06 0.04
#colors 60 63 61 61 60
#conflicts 22 50 107 277 553
#iterations 1 1 1 2 2




