
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Photos placed in horizontal position
with even amount of white space

between photos and header Parallel Graph Coloring

Erik G. Boman, Siva Rajamanickam
Sandia National Labs

SIAM CS&E ‘15

SAND2015-1822C

Background: Graph Coloring

 Given a graph G(V,E), find a
coloring c:VN such that
no two adjacent vertices
have the same color.

 We wish to (approximately)
minimize the number of
colors.

 Exact solution is NP-hard

 But linear-time greedy
methods work well in
practice!

Applications: Parallel
scheduling, register allocation,
sparse matrix ordering,
preconditioning, AD

Software

 Often embedded within other software (not exposed).

 General-purpose libraries:
 Zoltan(2): Load balancing and combinatorial scientific computing.

 ColPack: Focus on automatic differentiation.

 cuSparse 7: GPU only.

 Easy to implement serial greedy but parallel is harder

 Our goal: Portable parallel shared-memory coloring for wide
range of architectures (multicore, MIC, GPU)

3

Parallel Algorithms

 The serial greedy algorithm is inherently sequential; very
difficult to parallelize.

 The two most important parallel algorithms:
 Jones-Plassmann (’93): Color sequence of independent sets.

 Gebremedhin-Manne (‘00): Speculative/iterative coloring. To improve
parallelism, allow some mistakes (coloring conflicts); go back and fix
them later.

 We prefer GM due to less synchronization
 #colors are similar for both.

 GM was shown faster on distributed-memory (Bozdag et al, 2008).

 Conjecture this is true on shared-memory, too.

4

Multithreaded: Iterative
Greedy Algorithm

5

Credit: Gebremedhin & Pothen

Implementation Issues

 Conflict resolution options:
 Serial: When #conflicts is small, recolor these vertices in serial.

 Parallel: Iterate and recolor until all conflicts resolved.

 How to find smallest available color:
 Typically, a “forbidden” array is used but this requires a lot of memory

 max-degree is often too pessimistic upper bound, especially for power-
law graphs.

 Limited fast memory on GPU.

 Dynamic reallocation too expensive on Xeon Phi and GPU.

 We chose to examine a fixed chunk of colors (64) at a time. May need
multiple passes.

6

Kokkos Programming Environment

Challenge: How to write parallel code that is portable to CPU,
MIC, GPU, and future architectures?

 We use Kokkos, a new library for performance-portable
manycore programming

Key features:

 Write code once, many back-ends (e.g., OpenMP, CUDA)

 Portable C++11 library

 Data-parallel constructs well supported

 Helps with data placement (“first-touch”)

 Tasks under development

7

Strong scaling (audikw1)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 4 16 32
threads

time spec

total time

8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

14 28 57 114 228
thr.

time spec

 total time

Sandybridge (16 cores) KNC (57 cores)

GPU Issues

 Kokkos makes porting to GPU easy
 Same source, no CUDA necessary

 Need either UVM or explicit deep_copy from/to host/device

 Coloring algorithm:
 #conflicts scales with #threads, so we may need many iterations to

resolve all conflicts (serial resolution impractical)

 Kernel launch time is high relative to coloring time

 Have to assume data is already on the device

9

Conclusions

 The speculative GM coloring method scales well on both
multicore CPU and Intel Xeon Phi

 Observed #conflicts increases with concurrency (as expected)

 Quality (#colors) remains almost constant

 Useful paradigm for massively multithreaded graph
algorithms

 GPU version in progress

 Kokkos provides portability and saves development time

 Plan open-source release

 Results are non-deterministic and non-repeatable. Get used
to it!

10

Backup slides

11

Serial Greedy Algorithm

Procedure Greedy(G(V,E))

Allocate bool forbidden[]

for each v in V do

forbidden[*] = false

for each w in adj(v) do

forbidden[color[w]] = true

color[v] = min {i>0 | forbidden[i] == false}

End

Greedy coloring depends on the order vertices are visited. Good
heuristics are Largest-First (LF) and Smallest-Last (SL). In parallel,
we cannot impose any ordering (without limiting parallelism).

Results for CPU

1 thr. 4 thr. 16 thr. 32 thr.

Time
speculative

0.27 0.10 0.04 0.02

Time conflict
detection

0.13 0.05 0.02 0.02

Time conflict
resolution

0 2e-5 3e-5 8e-5

Total time 0.41 0.14 0.05 0.04

#colors 54 60 60 63

#conflicts 0 3 27 42

13

Platform: Intel Sandybridge, 16 cores
Graph: audikw1 (944K vertices, 39M edges)
Algorithm: GM with parallel conflict resolution

Results for MIC

14 thr. 28 thr. 57 thr. 114 thr. 228 thr.

Time
speculative

0.11 0.06 0.03 0.02 0.01

Time conflict
detection

0.23 0.13 0.06 0.04 0.02

Total time 0.34 0.19 0.09 0.06 0.04

#colors 60 63 61 61 60

#conflicts 22 50 107 277 553

#iterations 1 1 1 2 2

14

Platform: Intel Xeon Phi (KNC, 57 cores)
Graph: audikw1 (944K vertices, 39M edges)
Algorithm: GM with parallel conflict resolution

