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Why nano-emitter research? 

Information communication and processing growth: 

Talk:  Attojoule optoelectronics – why and how 

              David Miller, Stanford University 

            IEEE Photonics Summer Topicals 2013 

Save energy 

• Energy per bit has to reduce 

• At limits for electrical approaches 

1 

Lasers: can still reduce required electrical energy by reducing volume 

Safe communication and quantum computing: 2 

Single-photon sources 

Time 

Laser (random) Single-photon (antibunched)  

Types of light 
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VCSEL 

Photonic crystal 

(Courtesy of Willie Luk, Sandia National Labs) 

Micro- or nano-cavity 

(Adapted from a figure by Lu et al., UIUC) 
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Schrödinger Picture 
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Heisenberg Picture 
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Approaches 
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𝑨 = 𝑻𝒓 𝝔𝑨 =  𝒏, 𝒋 𝝔 𝒋′, 𝒏′ 𝒏′, 𝒋′ 𝑨 𝒋, 𝒏

𝒏,𝒋,𝒏′𝒋′

 

Basis: |𝒋, 𝒏  

𝑷𝒏 = 𝒏, 𝟎𝑿 𝝔 𝟎𝑿, 𝒏 + 𝒏, 𝟏𝑿𝒔 𝝔 𝟏𝑿𝒔, 𝒏 + 𝒏, 𝟐𝑿𝒔𝒔 𝝔 𝟐𝑿𝒔𝒔, 𝒏 + … 

Photon 
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Expectation values: 

Photon statistics: 
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Single particles Correlated pairs Correlated 3-particle clusters 

+ + + ... Cluster expansion: 

Approaches 
Quantum-dot configurations 

𝟎𝑿 𝟏𝑿𝒔 𝟏𝑿𝒔𝒔 𝟏𝑿𝒔
+ 

Overview: Chow & Jahnke, Progress in Quantum Electronics 37, 109 (2013) 
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Nano-emitter model: population dynamics and correlations 
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Emphasis now is on correlations involving light-matter 

interaction instead of Coulomb interaction 

Nano-emitter model: population dynamics and correlations 
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Spontaneous emission factor 

Interesting physics with nanolasers 

Most lasers     << 1 

Some nanolasers     = 1 
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Example 1: Laser threshold and thresholdless lasing 
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Questions: 

1) Is thresholdless lasing real? 

2) What is lasing?  

Interesting physics with nanolasers 

Most lasers     << 1 
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Example 1: Laser threshold and thresholdless lasing 

Early answer in Jin, Boggavarapu, Sargent, Meystre, Gibbs, Khitrova, Phy Rev A 49, 1994 
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Second-order intensity 
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Criterion for lasing: g(2)(0) 
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Criterion for lasing: g(2)(0) 
NQD = 50, inh = 20meV 
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 = 1, NQD = 50, inh = 20meV 

Other criteria for lasing 
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Other criteria for laser: stimulated emission 

Light amplification by stimulated 

emission of radiation 
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Other criteria for laser: stimulated emission 
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Light: Science and Applications, online 29 August, 2014 



Efficient, high power SSL via Auger mitigation with quantum nanophotonics 

(or how to make a semiconductor dim-able headlight) 
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Nanolaser or Photonic crystal laser 
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Interesting physics with nanolasers 

Most lasers     << 1 

Some nanolasers     = 1 
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Example 1 

Thresholdless lasing 

Example 2 

Single-photon generation 

Most QD-laser active regions 

Few- QD active regions  

Nonclassical light 
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Cavity enhancement: 

Directionality and Purcell 



Single-photon source 

High-Q cavity 

Previous 

emission 

Too much cavity 

Bunching 

Substrate 

Mirror 
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quantum dot 
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emission time 

Error-free but slow 

Substrate 
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photon 
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Substrate 

Cavity enhancement: 

Directionality and Purcell 

What is the right Q? 

Fundamental limit to efficiency, rate and error? 
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Single-photon purity and emission rate 
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3   Scaling with electron-light coupling 
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Concern: Extraneous quantum dots 
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Concern: g(2)(0) as measure of error 



1010 1011 

Emission rate (s-1) 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

g
(2

)  
(0

) 

1 QD 

2 QDs 

3 QDs 

From calculating photon statistics 

Gies, Jahnke, Chow (submitted) 

Single-photon emission probability 
 = 

Multi-photon emission probability 
Single-photon purity:  
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g(2)(0) vs. emission rate 

(by increasing cavity-Q) 

Concern: g(2)(0) as measure of error 



Single-photon emission probability 
 = 

Multi-photon emission probability 
Single-photon purity:  

> 1 QD in cavity 

From calculating photon statistics 

Gies, Jahnke, Chow (submitted) 
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Conversion from g(2)(0) to  :  nontrivial 

D2 

D1 
Stop 

Start 

Hanbury-Brown-Twiss 
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Photon statistics 

𝒂†𝒂†𝒂𝒂  g(2)(0)  :  

  : 



Dimmed laser beam versus single-photon source 
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Light-carrier correlation 

Leading terms: 𝜹 𝒄†𝒄𝒂†𝒂 , 𝜹 𝒃†𝒃𝒂†𝒂 , 𝜹 𝒃†𝒄†𝒂†𝒂𝒂  

? Increasing single-photon production rate with few-emitter active region? 
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Light-carrier correlation 
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? Increasing single-photon production rate with few-emitter active region? 

 wave ? 
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Correlations and photon statistics in nanocavity emitters 

Approach • Quantized light and carriers 

• Consistent account of light-carrier correlations 

• Combination of intensity & g(2)(0) gives definitive description of lasing 

• There is no thresholdless lasing 

Nanolasers 

Bridge: tradeoff among efficiency, rate and error 

Disconnection: 

Ideal Applications 

Quantum communications 

• Challenges in fabrication and modeling 

• Questions concerning present measure of performance 

𝒆−
𝜶 𝟐

𝟐  
𝜶𝒏

𝒏!
𝒏

|𝒏   , 

Single-photon 

|𝒏  

Dimmed laser 

𝜶 𝟐 ≪ 𝟏 

Single-photon sources 

Chow, Gies & Jahnke, Light: Science and Applications, online 29 August, 2014 

Chow & Jahnke, Progress in Quantum Electronics 37, 109 (2013) 



Other applications of modeling approach 

Gain medium engineering 

Chow, Lorke & Jahnke, ‘Will Quantum Dots Replace Quantum Wells As the Active 

Medium of Choice in Future Semiconductor Lasers?’ IEEE J. Selected Topics in 

Quantum Electron. 17, 1349 (2011). 

BEC and Atomtronics 
Chow, Straatsma & Anderson, ‘An engineering design tool for atomtronic circuits’ 

(in preparation). 

Quantum optomechanics 

Carmele, Kabuss & Chow, ‘Highly detuned Rabi oscillations for a quantum dot in a 

microcavity,’ Physical Review B 87, Rapid Communication, 041305 (2013). 

Solid state lighting 

Chow, Novel LED Model Offers New Insights, Compound Semiconductor Magazine, July, 2014. 
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Single-particle energy 

 & carrier-phonon interaction  

Many-body 

carrier-carrier 

interaction 

Light-matter 

interaction 

(Dipole approx.) 

Hamiltonian for semiconductor quantum dots in nanocavity 
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Optical cavity 
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950 nm emission 
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Experimental setup 

Photonic crystal 

Micro- or nano-cavity 

(Adapted from a figure by Lu et al., UIUC) 

(Courtesy of Willie Luk, Sandia National Labs) 
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Electronic structure 

Optical 

transition 

𝒌⊥ 

E 

𝝍𝒆 𝐫 = 𝑪 𝐫  𝐫  
1
2 , 𝒔𝒛  𝒄𝒆 

𝝍𝒉 𝐫 = 𝑽 𝐫 𝐫 𝑚  𝒄𝒉 
+ Adjoint 

Hole and electron 
annihilation operators 

Second quantization 

𝑬 𝐫 = 𝝐  
ℏ𝝂

𝟐𝝐𝒃𝑽
𝑾 𝐫  𝒂 + 𝒂†   

Photon annihilation 

and creation operators 

Radiation field Carriers 

Photons 

Nanocavity 

Substrate 

dots 
Quantum  ℘ ∙ 𝑬   

Nano-emitter model – setup: time-independent part  

Optical mode 


