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Why nano-emitter research?
@ Save energy

Talk: Attojoule optoelectronics —why and how

David Miller, Stanford University
IEEE Photonics Summer Topicals 2013

Information communication and processing growth:

« Energy per bit has to reduce
« At limits for electrical approaches

Lasers: can still reduce required electrical energy by reducing volume

@ Safe communication and quantum computing:
Single-photon sources

Types of light

Laser (random) Single-photon (antibunched)

> Time



Towards smaller and smaller lasers
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Model setup: Hamiltonian
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Model setup: Hamiltonian
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Approaches

Schrodinger Picture
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Approaches
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Overview: Chow & Jahnke, Progress in Quantum Electronics 37, 109 (2013)



Nano-emitter model: population dynamics and correlations
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Nano-emitter model: population dynamics and correlations
Correlations
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Interesting physics with nanolasers
Example 1: Laser threshold and thresholdless lasing

Most lasers P <<1

Spontaneous
# emission spectrum
2 2
23 3 3
‘ ‘ ‘ -y
n-1 n n+1

Some nanolasers B =1

0 m=0 0

>V
n-1 n n+1

All emission into single resonator mode

Spontaneous emission factor

Vi
B=——
YSp



Interesting physics with nanolasers
Example 1: Laser threshold and thresholdless lasing

Spontaneous emission factor

Most lasers P <<1

"

Spontaneous ﬁ -

# emission spectrum Vsp
0 m=0 0 10°

12 12 12
:‘% :‘3 T N
-V

n-1 n n+1 10

Some nanolasers pB=1 101

Laser-mode photon number

0 m=0 0 103 .
103 101 10 103
Pump rate (10!?s-1)
Questions:
Y} _
n-1 n n+1 1) Is thresholdless lasing real?
All emission into single resonator mode 2) What is lasing?

Early answer in Jin, Boggavarapu, Sargent, Meystre, Gibbs, Khitrova, Phy Rev A 49, 1994



Photon number

Photon number

104

Criterion for lasing
Nop = 50, Ay = 20meV

Input/Output

Current (A)

<— Conventional laser

<— Cavity-enhanced LED

) B=0.01
10- 1 1 1
107 105 103
Current (A)
104
Y. = 101052 <— Thresholdless laser
e Additional question:
- B=1 How to tell difference between
104 ! ! ! thresholdless lasing and non-lasing with
10-° 107 10

B <1 (with y-axis in arbitrary units)?



Photon number

Photon number

Criterion for lasing
Nop = 50, Ay = 20meV
Input/Output
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Photon number

Photon number

Criterion for lasing: g®(0)
Nop = 50, Ay = 20meV

Input/Output Photon correlation
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Photon number

Photon number

Criterion for lasing: g®(0)
Nop = 90, A, = 20meV
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Y. X coherence time

Other criteria for lasing

Population clamping

Coherence time )
and hole burning
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Photon number

Photon number

Other criteria for laser: stimulated emission

g

Light amplification by stimulated
emission of radiation
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Photon number

Photon number
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Other criteria for laser: stimulated emission

Light amplification by stimulated
emission of radiation
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Photon number

Photon number

Other criteria for laser: stimulated emission

g

Light amplification by stimulated
emission of radiation

» B=0.01
Y. = 1010s-1
1
i / 5x1011s-1
10'4 | | |
107 107 103
Current (A)
=1
104 P
Y. =100s1 o ®
— o
o
o
1 @
o o 0 0O
L . .o O = 5x10gl
e O
1042, .
10-° 107 10>

Current (A)

Nop = 50, Ay, = 20meV
Light: Science and Applications, online 29 August, 2014

dp,
— =—yn+1
dt 1410 )
Stimulated Spontaneous
emission emission
2.0
o =1
— pB=0.01
‘§~yc =5x 101st
S 15 '
>
g 15 0 1 PSRRI Ve NSRS
0.8 ] I ]
104 102 1 102 104

Photon number



Efficient, high power SSL via Auger mitigation with quantum nanophotonics
(or how to make a semiconductor dim-able headlight)
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Efficient, high power SSL via Auger mitigation with quantum nanophotonics
(or how to make a semiconductor dim-able headlight)

Conventional
laser
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Efficient, high power SSL via Auger mitigation with quantum nanophotonics
(or how to make a semiconductor dim-able headlight)

Conventional Nanolaser or Photonic crystal laser
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Interesting physics with nanolasers

Example 1
Thresholdless lasing

Most lasers P <<1

Spontaneous
# emission spectrum
0 m=0 0
12 12 12
3 3 3
‘ ‘ ‘ -y
n-1 n n+1

Some nanolasers pB=1

0 m=0 0

>V
n-1 n n+1

All emission into single resonator mode

Example 2
Single-photon generation

Most OD-laser active reqions

Few- OD active regions

Nonclassical light




Single-photon source

Error-free but slow
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Single-photon source

Error-free but slow Cavity enhancement:

I Directionality and Purcell

Excitation & [©®
spontaneous

)..._

emission time L@
Single
guantum dot @ @ <—|ntracavity
\. photon
N
Substrate Substrate

N N

Mirror Low-Q cavity



Single-photon source

Error-free but slow ~ Cavity enhancement: Too much cavity
Directionality and Purcell

\I 1 .
L ® O
Excitation & [@® ° ® |
spontaneous ® ]-Bunchlng
emission time L@ ® °
Single P . N _ s o N\
quantum dot o @® <—|ntracavity @ <— Previous
photon o
~ = - emission
Substrate Substrate Substrate
Mirror Low-Q cavity High-Q cavity

What is the right Q?

Fundamental limit to efficiency, rate and error?



Simulations
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g®@ (0)

1.0

0.8

0.6

0.4

Single-photon purity and emission rate

g@(0) vs. emission rate
(by increasing cavity-Q)
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Cavity-enhanced rate ~ 10°s1 (expt)
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v
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Only s-shell transition
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@ Scaling with electron-light coupling
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Concern: Extraneous guantum dots

g@(0) vs. emission rate
(by increasing cavity-Q)
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g®@ (0)

1.0

0.8

0.6

0.4

0.2

Concern: g®(0) as measure of error
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g®@ (0)
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Single-photon purity: m =

Concern: g®(0) as measure of error

Single-photon emission probability
Multi-photon emission probability

g@(0) vs. emission rate
(by increasing cavity-Q)
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From calculating photon statistics
Gies, Jahnke, Chow (submitted)




>1 QD in cavity
Single-photon emission probability
Multi-photon emission probability

Single-photon purity: m =

Purity vs. emission rate

(by increasing cavity-Q) g®(0) fails
10° 105
1QD
104+ 104 F |1 QP 2 ODs
| 3QDs
103 - 103 F '
= 102 | 2 QDs 3 QDs = 102 F
10t 10 \
1F 1 F
10_1 1 1 Lot 10—1 L L L L L 1
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Emission rate (s?) g®@ (0)

From calculating photon statistics
Gies, Jahnke, Chow (submitted)



Conversion from g®(0) to n : nontrivial

Hanbury-Brown-Twiss
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N .- Photon statistics

P, = (n,0X[g|0X,n) + (n, 1X¢|e|1X,,n) + (n, 2Xs|0|2Xs,n) + ...



Dimmed laser beam versus single-photon source

Dimmed laser light
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? Increasing single-photon production rate with few-emitter active region?
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? Increasing single-photon production rate with few-emitter active region?

2.0 20 QDs Light-carrier correlation
Leading terms: &(cTca’a),8(b"bata), 5(bTctataa)
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Correlations and photon statistics in nanocavity emitters

Approach < Quantized light and carriers
« Consistent account of light-carrier correlations

Nanolasers

« Combination of intensity & g(0) gives definitive description of lasing

 There is no thresholdless lasing

Single-photon sources Quantum communications
|deal Applications
Disconnection: Single-photon Dimmed laser
in) |a|? am ) al?
n e‘Tz—m, al? « 1
Vn!

Bridge: tradeoff among efficiency, rate and error

» Challenges in fabrication and modeling
» Questions concerning present measure of performance

Chow & Jahnke, Progress in Quantum Electronics 37, 109 (2013)
Chow, Gies & Jahnke, Light: Science and Applications, online 29 August, 2014



Other applications of modeling approach

Gain medium engineering

Chow, Lorke & Jahnke, ‘Will Quantum Dots Replace Quantum Wells As the Active

Medium of Choice in Future Semiconductor Lasers?’ IEEE J. Selected Topics in
Quantum Electron. 17, 1349 (2011).

BEC and Atomtronics

Chow, Straatsma & Anderson, ‘An engineering design tool for atomtronic circuits’
(in preparation).

Quantum optomechanics

Carmele, Kabuss & Chow, ‘Highly detuned Rabi oscillations for a quantum dot in a
microcavity,” Physical Review B 87, Rapid Communication, 041305 (2013).

Solid state lighting

Chow, Novel LED Model Offers New Insights, Compound Semiconductor Magazine, July, 2014.



Other applications of modeling approach

Gain medium engineering
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Solid state lighting
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Hamiltonian for semiconductor quantum dots in nanocavity

Nanocavity
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Experimental setup

Optical cavity Active region
Micro- or nano-cavity Shallow quantum dot -
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(Adapted from a figure by Lu et al., UIUC)
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Nano-emitter model — setup: time-independent part

Nanocavity
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