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LED efficiency droop
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Laser
Carrier density rate equation

Stimulated emission
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Model setup: Hamiltonian
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Model setup: Hamiltonian
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Model: population dynamics and correlations
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Overview: Chow & Jahnke, Progress in Quantum Electronics 37, 109 (2013)
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Auger mitigation with lasers
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Towards smaller and smaller lasers
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(Courtesy of Willie Luk, Sandia National Labs)
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Nanocavities and unity spontaneous emission factor

Most lasers P <<1
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Nanocavities and unity spontaneous emission factor
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Auger mitigation with lasers

Conventional laser
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Efficient, high power SSL via Auger mitigation with quantum nanophotonics
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Nanolasers as solution to efficiency droop in solid-state lighting
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ABC model for LED efficiency

Carrier density rate equation
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Efficient, high power SSL via Auger mitigation with quantum nanophotonics
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Nano-emitter model: population dynamics and correlations
Correlations
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Emphasis now is on correlations involving light-matter
interaction instead of Coulomb interaction



