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Overview: Chow & Jahnke, Progress in Quantum Electronics 37, 109 (2013) 

Model: population dynamics and correlations 
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Nanolasers 
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Photonic crystal 

(Courtesy of Willie Luk, Sandia National Labs) 

Micro- or nano-cavity 

(Adapted from a figure by Lu et al., UIUC) 
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Efficient, high power SSL via Auger mitigation with quantum nanophotonics 
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Nanolasers as solution to efficiency droop in solid-state lighting 

Idea:  losses   𝑪𝑵𝟑    𝑪𝑵𝒕𝒉
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Efficient, high power SSL via Auger mitigation with quantum nanophotonics 

Milestone for Fellow LDRD Milestone for EFRC2?  
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