
Par$$on	
  the	
  computa$on	
  domain	
  into	
  a	
  finite	
  set	
  of	
  elements.	
  
	
  
	
  
	
  
	
  
Define	
  a	
  discon$nuous	
  finite	
  element	
  space:	
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Mo#va#on	
  

Model	
  Problem	
  and	
  Discre#za#on	
  

Adjoint	
  Based	
  Error	
  Es#mates	
  

Adjoint	
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  UQ	
  

Flow	
  in	
  Nuclear	
  Reactor	
  	
  
(Turbulent	
  CFD)	
  

Tokamak	
  Equilibrium	
  (MHD)	
   Geodynamo	
  (MHD)	
  

Excellent	
  adjoint-­‐based	
  results	
  for	
  fully-­‐implicit	
  CFD	
  and	
  MHD:	
  

Trilinos	
  Based,	
  Adjoint	
  Enabled,	
  Mul#-­‐physics	
  	
  Simulator:	
  Drekar	
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Convergence	
  of	
  error	
  es$mate	
   Adjoint-­‐enhanced	
  UQ	
  

Star#ng	
  to	
  inves#gate	
  conserva#on	
  laws	
  with	
  shocks	
  
	
  
Can	
  we	
  compute	
  adjoint-­‐based	
  error	
  es#mates?	
  
	
  
Can	
  we	
  use	
  adjoint	
  informa#on	
  to	
  enhance	
  UQ?	
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In the WENO (weighted essentially non-oscillating) scheme 
we use all the points but weigh the contribution of each 
according to a smoothness criteria. High-order WENO 
represents the current state-of-the-art in computing of flows 
with sharp interfaces!

For a recent reference on WENO see, for example:!
C-W Shu. High Order Weighted Essential Nonoscillatory 
Schemes for Convection Dominated Problems. SIAM 
Review, Vol. 51 (2009), 82-126.!

ENO/WENO!
Computational Fluid Dynamics!38!

Increasingly we see methods developed for the 
inviscid Euler equation with shocks being used for the 
advection part of the Navier-Stokes solvers. !

Computational Fluid Dynamics!

Other 
Approaches!
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The CIP (Constrained Interpolation Polynomial) !
Method  (Yabe)!
In addition to advecting the marker function f, its derivative is 
advected by fitting a third order polynomial through the 
function and its derivatives.!
Start with!

Introduce!
In 1D, the advection of 
the derivative is given by!

Therefore, the derivative is translated with velocity u, 
just as the function. In 2D splitting is used to separate 
translation and deformation!

f and g given!

New f and g!

40!

CIP-gradient augmentation!

Computational Fluid Dynamics!

The CIP method results 
in very accurate 
advection and for a 
sharp interface it greatly 
reduces overshoots, but 
does not eliminate them 
completely!

41!

CIP-gradient augmentation!
Computational Fluid Dynamics!

Enormous progress has been made in solution 
techniques for hyperbolic systems with shocks in the last 
twenty years. Advanced methods are now able to 
resolve complex shocks within a grid space or two, even 
in multidimensional situations for a large range of 
governing parameters and physical complexity.!
Here, we have only examined relatively elementary 
aspects of methods for hyperbolic systems, but this short 
introduction should have taught you methods to solve 
such systems and introduced you to literature.!
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5th	
  order	
  WENO	
  approxima$ons	
  using	
  100	
  cells.	
  	
  	
  
Density	
  (le\),	
  velocity	
  (middle),	
  energy	
  (right).	
  

•  Adjoints	
  provide	
  addi$onal	
  informa$on	
  that	
  may	
  be	
  used	
  in	
  
op$miza$on,	
  error	
  es$ma$on,	
  and/or	
  uncertainty	
  
quan$fica$on.	
  

•  Defining	
  an	
  adjoint	
  for	
  problems	
  for	
  discon$nuous	
  solu$ons	
  
can	
  be	
  challenging.	
  

•  High-­‐order	
  numerical	
  approxima$ons	
  can	
  be	
  used	
  to	
  
approximate	
  the	
  con$nuous	
  adjoint.	
  

•  Quan$$es	
  of	
  interest	
  may	
  be	
  discon$nuous	
  	
  
•  We	
  can	
  account	
  for	
  the	
  epistemic	
  uncertainty	
  regarding	
  the	
  
loca$on	
  of	
  the	
  discon$nuity.	
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Quan$ty	
  of	
  interest	
  is	
  the	
  average	
  density	
  over	
  [0.85,	
  1]	
  at	
  t	
  =	
  0.2	
  

•  Quan$$es	
  of	
  interest	
  may	
  have	
  
discon$nui$es	
  	
  

•  Developed	
  adjoint-­‐enhanced	
  
discon$nuity	
  detec$on	
  
•  Uses	
  both	
  point	
  values	
  and	
  
gradients	
  	
  

•  Leverages	
  ENO/WENO	
  
smoothness	
  indicators	
  

•  Enables	
  clustering	
  of	
  samples	
  
•  Gradient-­‐enhanced	
  surrogates	
  on	
  
each	
  cluster	
  

	
  
•  Adap$ve	
  resolu$on	
  of	
  
discon$nuity	
  is	
  straighcorward	
  
•  Standard	
  approach	
  in	
  literature	
  
•  Typically	
  very	
  expensive	
  
•  May	
  not	
  even	
  be	
  necessary	
  
depending	
  on	
  the	
  QoI.	
  

	
  
•  We	
  view	
  the	
  loca$on	
  of	
  the	
  
discon$nuity	
  as	
  an	
  epistemic	
  
uncertainty	
  

•  We	
  solve	
  a	
  discrete	
  op$miza$on	
  
problem	
  to	
  provide	
  robust	
  bounds	
  
on	
  probabilis#c	
  quan##es	
  given	
  
our	
  lack	
  of	
  knowledge	
  regarding	
  
the	
  precise	
  loca#on	
  of	
  the	
  
discon#nuity.	
  

Sod	
  shock	
  tube:	
  

Euler	
  equa$ons:	
  

Adjoint	
  problem	
  assuming	
  con$nuous	
  solu$ons:	
  

For	
  discon$nuous	
  solu$ons,	
  the	
  adjoint	
  has	
  an	
  internal	
  boundary	
  	
  
condi$on	
  at	
  the	
  shock:	
  

Requires	
  precise	
  knowledge	
  of	
  the	
  loca$on	
  of	
  the	
  shock.	
  

Recent	
  work	
  has	
  shown	
  that	
  the	
  discrete	
  adjoint,	
  which	
  does	
  not	
  
have	
  an	
  interval	
  BC,	
  converges	
  to	
  the	
  con$nuous	
  adjoint.	
  	
  

Can	
  we	
  discre$ze	
  the	
  con$nuous	
  adjoint,	
  without	
  the	
  internal	
  BC,	
  
and	
  obtain	
  accurate	
  error	
  es$mates	
  and	
  sensi$vi$es?	
  

Error	
  representa$on:	
  

Consider	
  the	
  following	
  system	
  of	
  conserva$on	
  laws:	
  

Subject	
  to	
  appropriate	
  boundary	
  condi$ons	
  

We	
  focus	
  on	
  1D	
  for	
  ease	
  of	
  nota$on,	
  but	
  everything	
  carries	
  over	
  to	
  	
  
2D	
  and	
  3D	
  unless	
  otherwise	
  noted.	
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Weak	
  formula$on:	
  

Compute	
  finite	
  volume	
  (k=0)	
  or	
  discon$nuous	
  Galerkin	
  approxima$on	
  

All	
  examples	
  use	
  Roe	
  Riemann	
  solver	
  (HLLC	
  gave	
  similar	
  results)	
  

Higher-­‐order	
  DG	
  requires	
  slope	
  limi$ng	
  or	
  ar$ficial	
  viscosity	
  

Finite	
  volume	
  cases	
  uses	
  5th	
  order	
  WENO	
  to	
  achieve	
  high-­‐order	
  

All	
  examples	
  use	
  explicit	
  2nd	
  or	
  4th	
  order	
  Runga	
  Kuha	
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5th	
  order	
  WENO	
  at	
  T	
  =	
  0.2	
  
with	
  100	
  cells	
  

2nd	
  order	
  DG	
  at	
  T	
  =	
  0.2	
  	
  
with	
  100	
  cells	
  

Our	
  quan$ty	
  of	
  interest	
  is	
  the	
  average	
  value	
  of	
  the	
  solu$on	
  over	
  
[0.5	
  0.65]	
  at	
  t	
  =	
  0.3.	
  

Burgers	
  equa$ons	
  with	
  no	
  viscosity:	
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