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Introduction

 Aim: Develop a principled way of enriching a turbulence 
model to reduce model-form error
 Needed for a predictive RANS simulator for transonic jet-in-crossflow 

 Drawback: RANS simulations are simply not predictive
 They have “model-form” error i.e., missing physics 

 They use parameters derived from canonical flows quite unlike jet-in-
crossflow interactions. 

 Hypothesis
 Once a RANS model has been calibrated to a jet-in-crossflow 

experiment, any lack of predictive skill is due to model-form 
uncertainty i.e., shortcomings of the linear eddy viscosity model 
(LEVM)

 If the LEVM can be enriched with higher-order terms and re-
calibrated, we could reduce the error further
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Target problem - jet-in-crossflow

 A canonical problem for spin-
rocket maneuvering, fuel-air 
mixing etc.

 We have experimental data (PIV 
measurements) and 
corresponding RANS simulations

 The RANS simulations have 
stability problems
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RANS (k-) simulations - crossplane results

 Crossplane results for stream

 Computational results (SST) are too round; Kw98 doesn’t have 
the mushroom shape; non-symmetric!

 Less intense regions; boundary layer too weak
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Sources of error in the RANS model

 There are multiple sources of error
 Bad parameters: the k- model has parameters, specifically, {C, C2, 

C1}, whose values are obtained from canonical flow

 Can be fixed by calibration to jet-in-crossflow data

 Shortcomings of the LEVM in the RANS model

 Can be fixed by using a quadratic or cubic EVM 

 Shortcomings of the k- model itself

 Use explicit algebraic stress model or LES

 We addressed the problem of bad parameters by calibrating 
the RANS model to jet-in-crossflow (JinC) data
 Performed using Bayesian inference and surrogate models of the 

RANS simulator

 Resulted in a PDF for the parameters in question
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 We have velocity measurements on 
the crossplane

 We computed a vorticity field

 And used that (in a window) as the 
calibration variable

 We create a training set of 2744 3D 
RANS simulations by sampling in the 
(C, C2, C1) space

 We create statistical models for i = 
i(C, C2, C1) using polynomials

 i is the streamwise vorticity in grid-
cell I

 The statistical models were used in 
Bayesian inversion, in lieu of the RANS 
simulator
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Bayesian calibration
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PDF of (C, C2, C1) 

 Marginalized versions of the 
3D PDF shown here

 Vertical lines are the 
“nominal” values of the 
parameters

 We sampled 100 (C, C2, 

C1) realizations from the 
PDF 
 Generated 100 realizations 

of the crossplane vorticity 
field using the RANS 
simulator

 Also found the best (C, C2, 
C1) combination my 
matching the experimental 
vorticity field
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Crossplane predictions

 Experimental vorticity in contours

 Stunning improvement in vorticity predictions
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Mid-plane predictions

 Stunning improvement in vertical velocity predictions
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Prediction of turbulent stresses

 M=0.8, J=10.2

 Not very good agreement; 
LEVM is deficient

 Improve it
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High-order eddy-viscosity model

 Craft 95 [3] describes a cubic eddy viscosity (CEVM) model
 ij = -2/3k ij + CF(Sij, ) + c1f1(Sij, ij, ) + c2f2(Sij, ij,) ….. c7f7(Sij, ij, )

 F(Sij) is linear in Sij, f1(:, :, :) - f3(:, :, :) are quadratic in Sij & ij

 f4(:, :, :) – f7(:, :, :) are cubic in Sij & ij

 Our experimental data, on the midplane, consists of:
 Sij & ij obtained from the measured velocity field

 ij and k, also measured

  (dissipation rate of turbulent KE, k) cannot be measured

 It is approximated by assuming equilibrium of production and 
dissipation of turbulent KE.

 Craft’s model prescribes {c1 … c7}
 Parameter value obtained from a simple, incompressible turning flow

 May not be valid for transonic JinC interaction
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Reasons for hope

 The default CEVM reproduces 
11 and 12 OK, but not 22

 We could estimate better {c1 … c7}

 We have about 60 useable probe 
locations with 11, 12 & 22 

measurements

 Estimation can be reduced to a 
Y = Ax problem
 Y contains the measured ij

 x contains {c1, …, c7}

 A contains CF(Sij, ) (the LEVM) 
and fl(Sij, ij, ), l = 1…7

12

Experimental data & Craft model 
predictions



Estimation of CEVM parameters

 It may not be possible to estimate c1, .. c7 from the 180 data 
points
 We’ll estimate it using LASSO

 The first half estimates x = {ci} that provide CEVM predictions near Y

 The second half – the  penalty – tries to set as many ci to zero

 Estimating a good x means estimating a good 
 If penalty too small wrt information content of Y, x estimated from 

subsets of Y (cross-validation) will vary wildly (overfitting)

 As will the the deviance  = || Y – Ax||2

 So choose , perform cross-validation, compute mean & variance of 

 Do this for a range of  and pick min

 Also compare with the case of  = 0 (risk overfitting; call it ‘LM’)
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LASSO results

 Craft explains around 28% of deviance
 As log() increases and # of terms retained decreases, CEVM worsens
 One gets min and 1se

Looking for a good 
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Calibrate all h.o. terms. LEVM v/s LM

 22 improved. No overfitting?

LEVM Craft’s CEVM, post calibration



Start penalizing. LM v/s LASSO-ed CEVM, min

 Change? Not to the naked eye. 

Craft’s CEVM, post calibration Lasso-ed CEVM, min, 7 terms



Penalize more. LM v/s LASSO-ed CEVM, 1se

 Change? Worsens 22 a bit

Craft’s CEVM, post calibration Lasso-ed CEVM, 1se, 1 term



Tabulate coefficients and MSE

Method c1 c2 c3 c4 c5 c6 c7 MSE

Craft -0.1 0.1 0.26 -10 0 -5 5 0.662

LM -0.0789 -0.149 2.02 -5.88 0 6.68 -11.87 0.382

min -0.065 -0.103 1.68 -4.02 5.7 5.4 -3.64 0.386

1se 0.0 0.0 0.455 0.0 0 0 0 0.483

 ln(min)   = -5.11, ln(1se) = -1.75

 Craft’s default parameters are changed when we regress it to data

 Results called ‘LM’

 When we LASSO the model using 1se, we’re left with just 1 quadratic 
term

 But the model loses much accuracy

 Bottomline: Can’t simplify Craft’s model (remove terms), but have to live 
with uncertain values of {c1, .. c7} due to shortcomings of our dataset



Conclusions

 We have performed a full calibration of a RANS model for 
transonic jet-in-crossflow simulator
 First, we calibrated the parameters, when using a linear eddy viscosity 

model, and isolated the model-form error (due to LEVM)

 Then we explored enriched versions of LEVM i.e. Craft’s cubic eddy 
viscosity model, and calibrated them to data

 We found, using LASSO, that our dataset could only support 
enrichment by 1 term (for sure)
 But that does not prevent us from estimating all 7 terms in the Craft 

cubic eddy viscosity model using Bayesian inversion

 Since the estimation problem is linear, this admits a simple analytical 
solution

 See backup slides if interested
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BACKUP SLIDES
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RANS (k-) simulations – midplane
results

 Experimental results in black

 All models are pretty inaccurate (blue and red lines are the non-
symmetric results)

U-defect V - velocity



Do high-order terms help? LEVM v/s CEVM

 LEVM seems to be the same as Craft. So calibrate Craft.

LEVM Craft’s CEVM



Estimate of CEVM parameters
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c1 c2 c3 c4 c5 c6 c7

Posterior Mean

-7.89e-2 -1.49e-1 2.02e+0 -5.88e+0 0 6.68e+0 -1.19e+1

Posterior Covariance

c1
2.125e-03 -7.036e-04 -4.551e-03 -5.893e-02 -1.873e-02 5.265e-02

c2
-7.036e-04 5.477e-03 1.037e-04 2.153e-01 -4.765e-03 -1.948e-02

c3
-4.551e-03 1.037e-04 2.682e-01 4.167e-01 7.767e-02 -3.821e-02

c4
-5.893e-02 2.153e-01 4.167e-01 1.359e+01 7.544e-01 -6.672e-01

c5

c6
-1.873e-02 -4.765e-03 7.767e-02 7.544e-01 1.891e+00 -3.360e+0

c7
5.265e-02 -1.948e-02 -3.821e-02 -6.672e-01 -3.360e+00 7.643e+0


