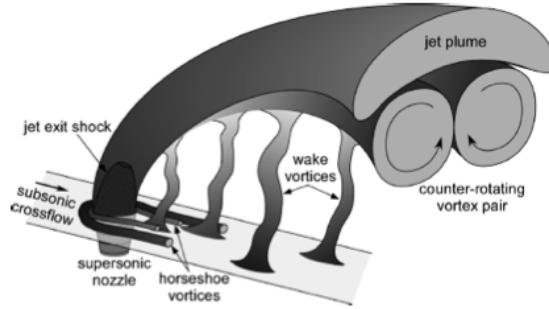
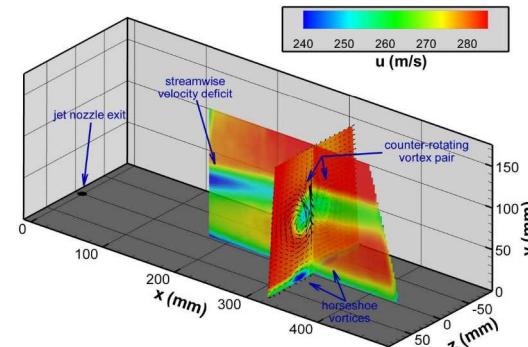


*Exceptional service in the national interest*



# Eddy viscosity model selection for transonic turbulent flows using shrinkage regression

**S. Lefantzi, J. Ray, S. Arunajatesan and L. Dechant**

Contact: [slefant@sandia.gov](mailto:slefant@sandia.gov)



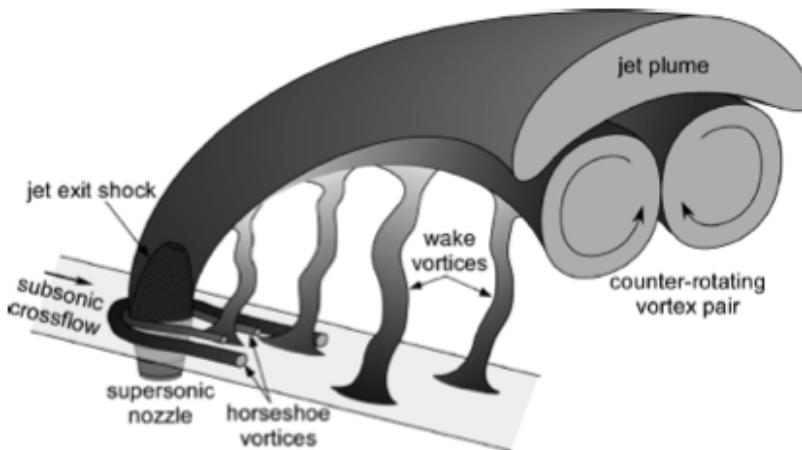
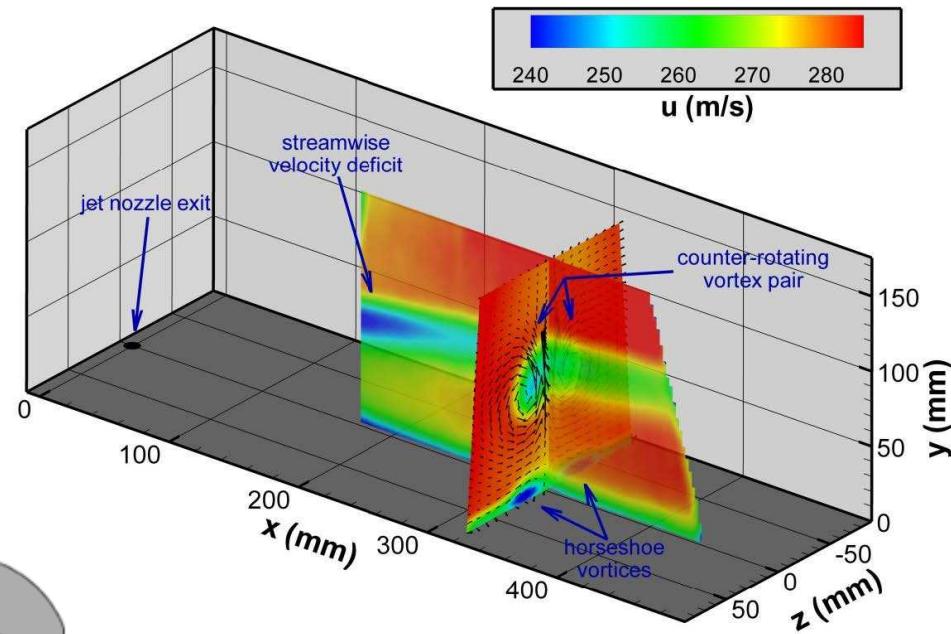
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-2429C

# Introduction

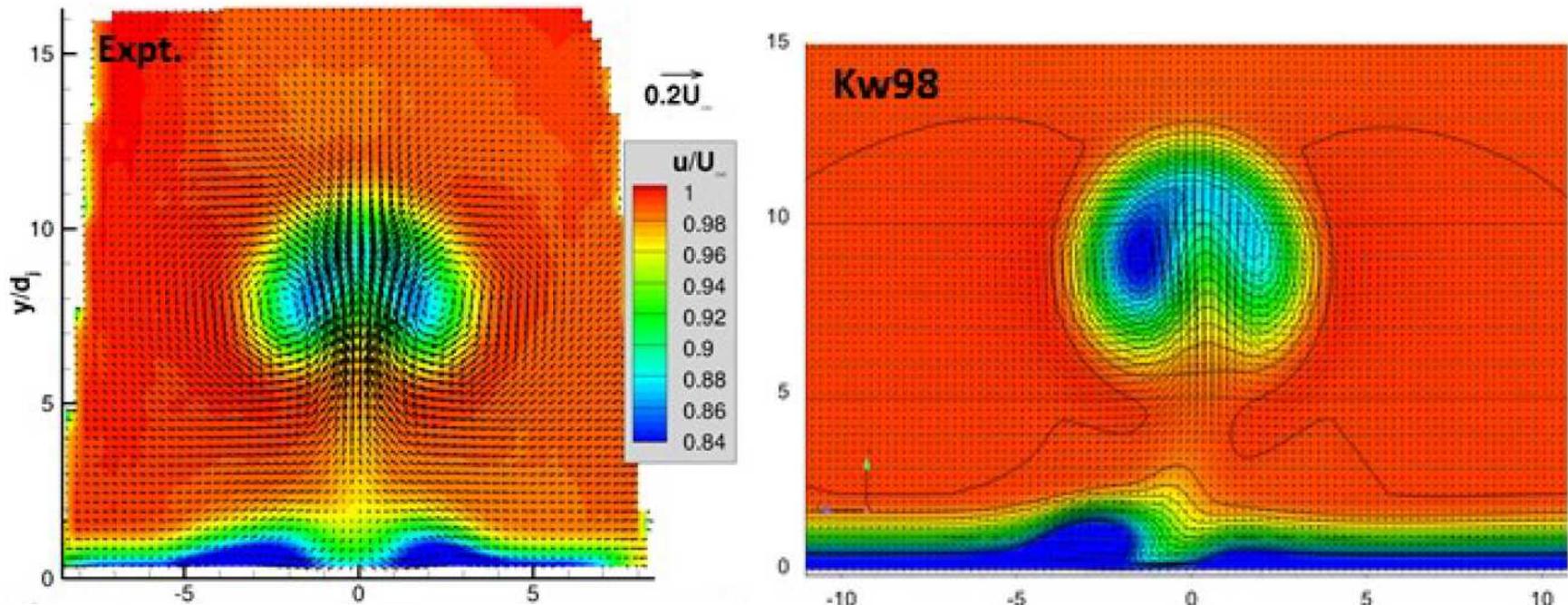
- **Aim:** Develop a principled way of enriching a turbulence model to reduce model-form error
  - Needed for a predictive RANS simulator for transonic jet-in-crossflow
- **Drawback:** RANS simulations are simply not predictive
  - They have “model-form” error i.e., missing physics
  - They use parameters derived from canonical flows quite unlike jet-in-crossflow interactions.
- **Hypothesis**
  - Once a RANS model has been calibrated to a jet-in-crossflow experiment, any lack of predictive skill is due to model-form uncertainty i.e., shortcomings of the linear eddy viscosity model (LEVM)
  - If the LEVM can be enriched with higher-order terms and re-calibrated, we could reduce the error further

# Target problem - jet-in-crossflow

- A canonical problem for spin-rocket maneuvering, fuel-air mixing etc.
- We have experimental data (PIV measurements) and corresponding RANS simulations
- The RANS simulations have stability problems



# RANS ( $k-\omega$ ) simulations - crossplane results



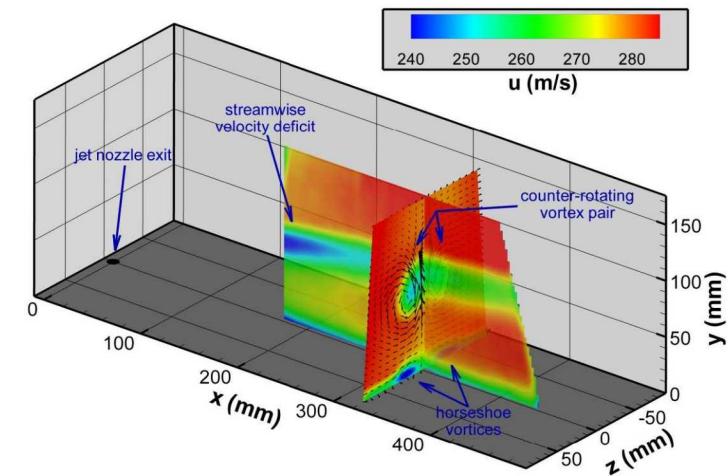
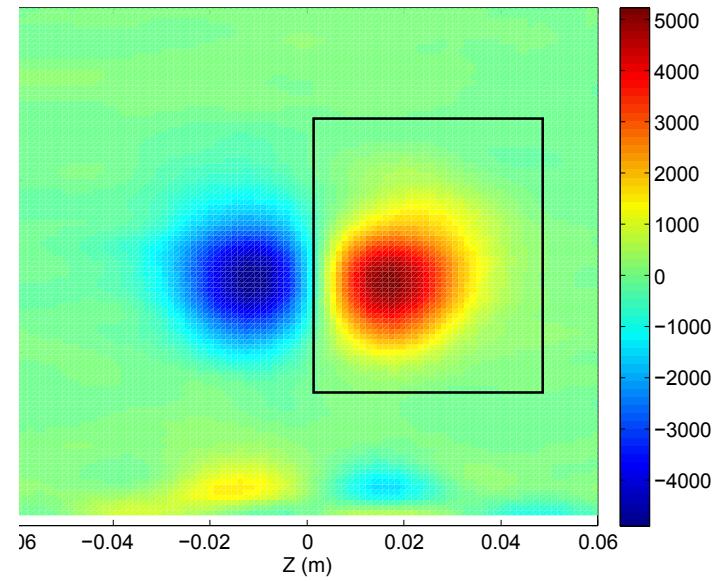
- Crossplane results for stream
- Computational results (SST) are too round; Kw98 doesn't have the mushroom shape; non-symmetric!
- Less intense regions; boundary layer too weak

# Sources of error in the RANS model

- There are multiple sources of error
  - Bad parameters: the  $k-\varepsilon$  model has parameters, specifically,  $\{C_\mu, C_{\varepsilon 2}, C_{\varepsilon 1}\}$ , whose values are obtained from canonical flow
    - Can be fixed by calibration to jet-in-crossflow data
  - Shortcomings of the LEVM in the RANS model
    - Can be fixed by using a quadratic or cubic EVM
  - Shortcomings of the  $k-\varepsilon$  model itself
    - Use explicit algebraic stress model or LES
- We addressed the problem of bad parameters by calibrating the RANS model to jet-in-crossflow (JinC) data
  - Performed using Bayesian inference and surrogate models of the RANS simulator
  - Resulted in a PDF for the parameters in question

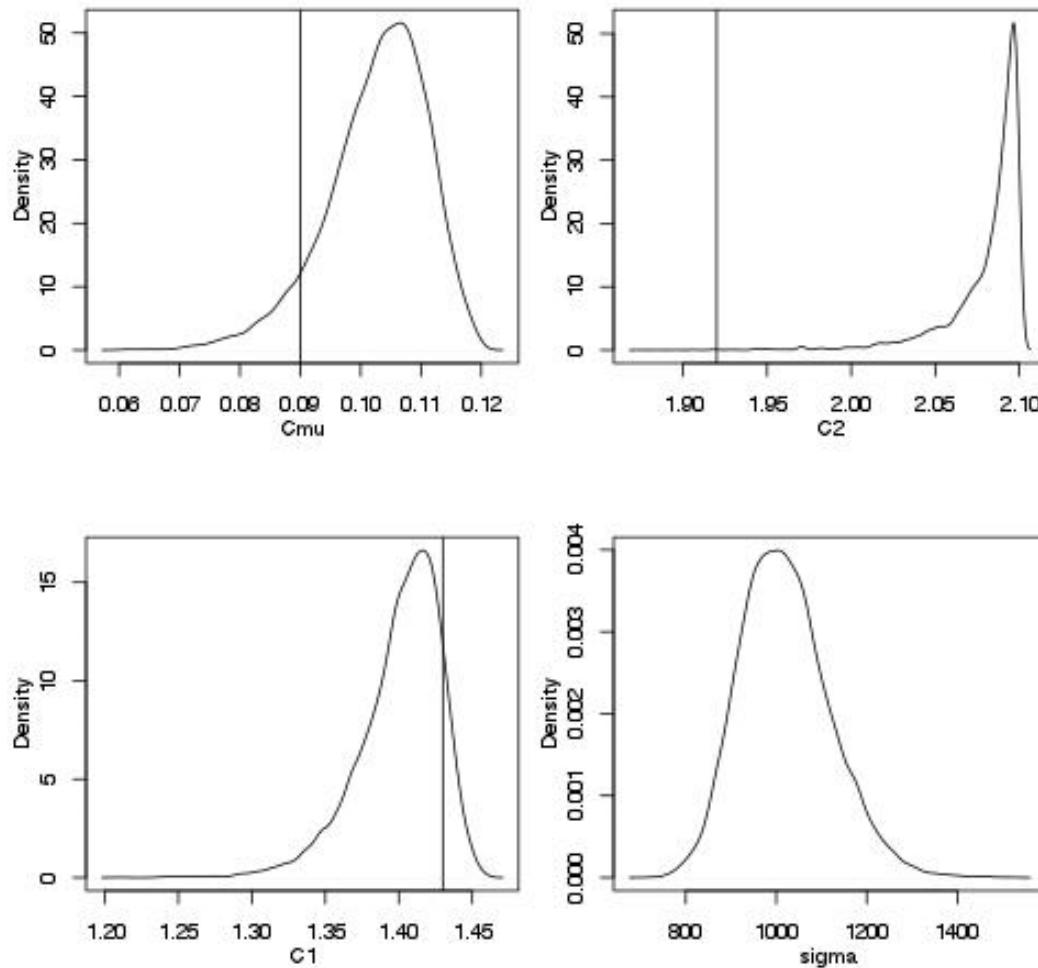
# Bayesian calibration

- We have velocity measurements on the crossplane
  - We computed a vorticity field
  - And used that (in a window) as the calibration variable
- We create a training set of 2744 3D RANS simulations by sampling in the  $(C_\mu, C_{\varepsilon 2}, C_{\varepsilon 1})$  space
- We create statistical models for  $\omega_i = \omega_i(C_\mu, C_{\varepsilon 2}, C_{\varepsilon 1})$  using polynomials
  - $\omega_i$  is the streamwise vorticity in grid-cell  $i$
- The statistical models were used in Bayesian inversion, in lieu of the RANS simulator

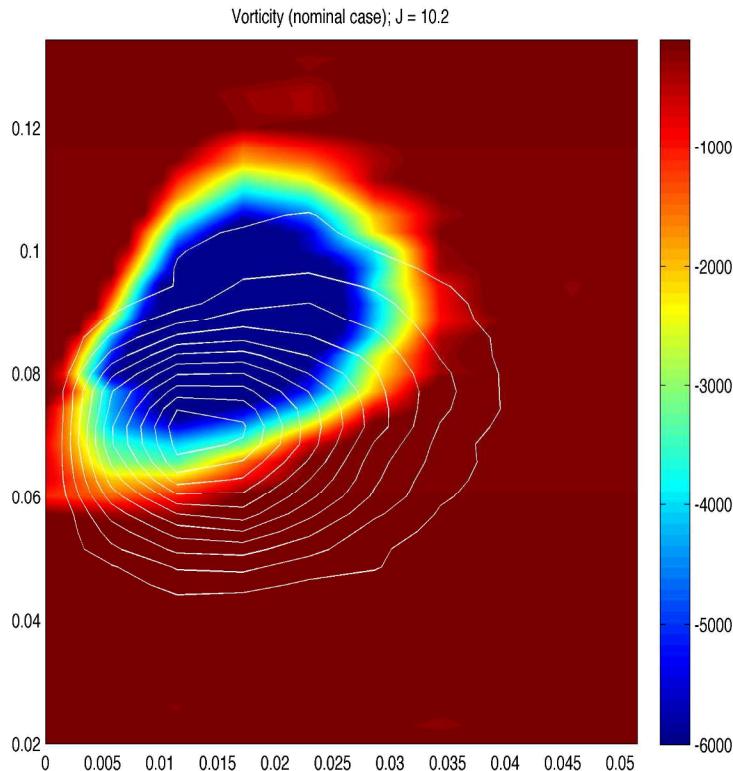
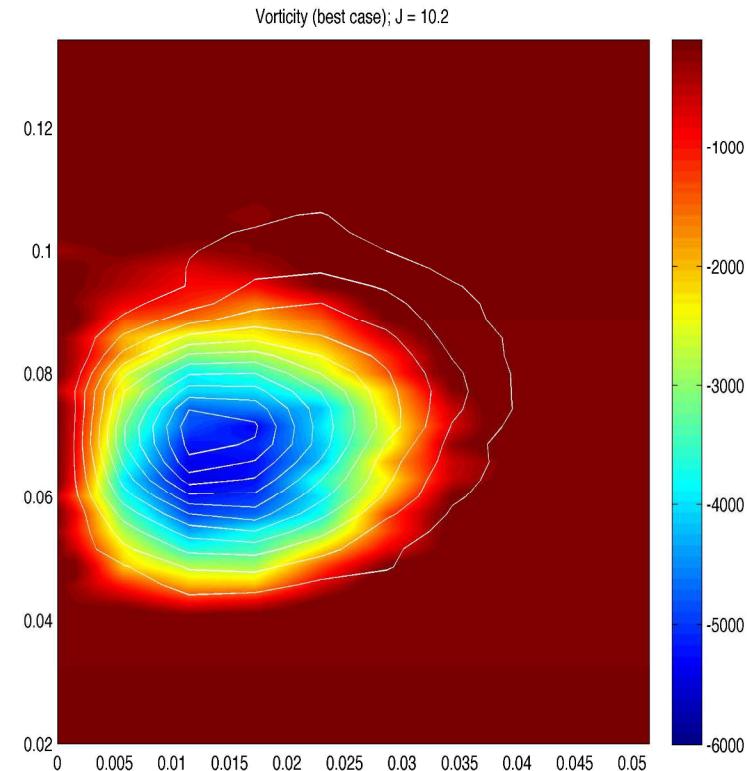


# PDF of $(C_\mu, C_{\varepsilon 2}, C_{\varepsilon 1})$

- Marginalized versions of the 3D PDF shown here
  - Vertical lines are the “nominal” values of the parameters
- We sampled 100  $(C_\mu, C_{\varepsilon 2}, C_{\varepsilon 1})$  realizations from the PDF
  - Generated 100 realizations of the crossplane vorticity field using the RANS simulator
  - Also found the best  $(C_\mu, C_{\varepsilon 2}, C_{\varepsilon 1})$  combination by matching the experimental vorticity field



# Crossplane predictions

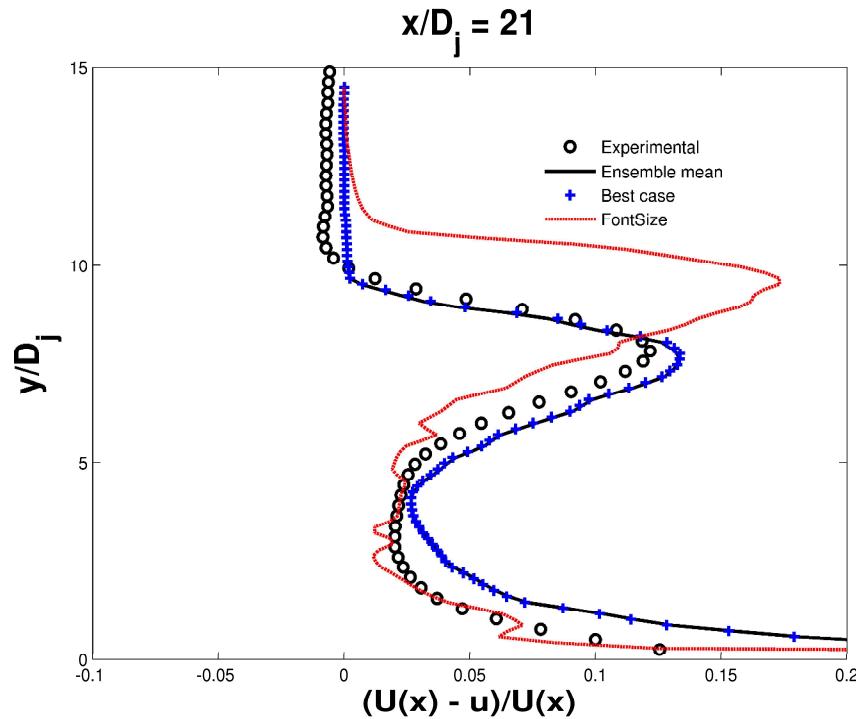


With nominal parameter values

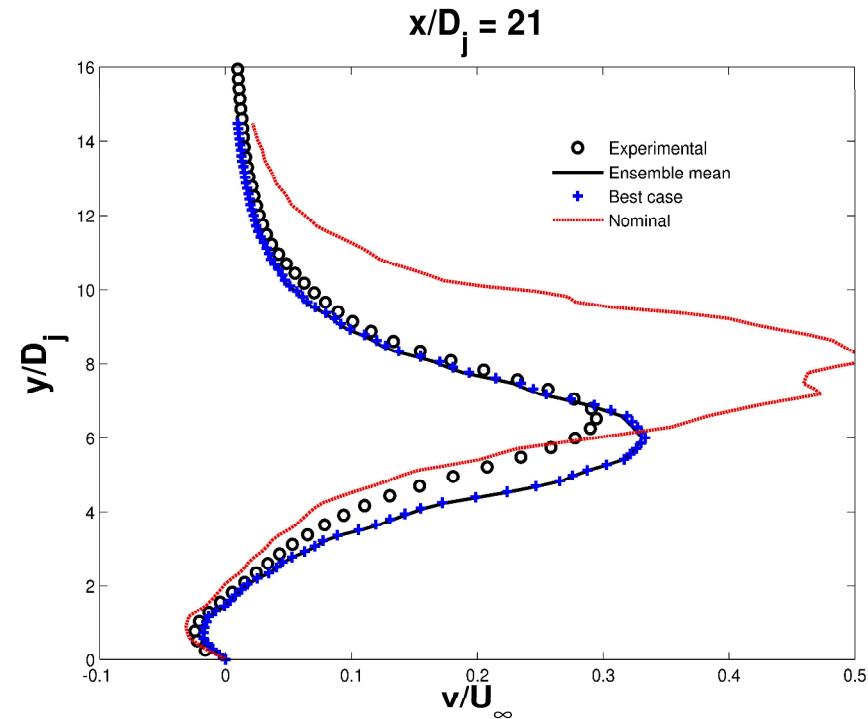
With calibrated parameter values

- Experimental vorticity in contours
- Stunning improvement in vorticity predictions

# Mid-plane predictions



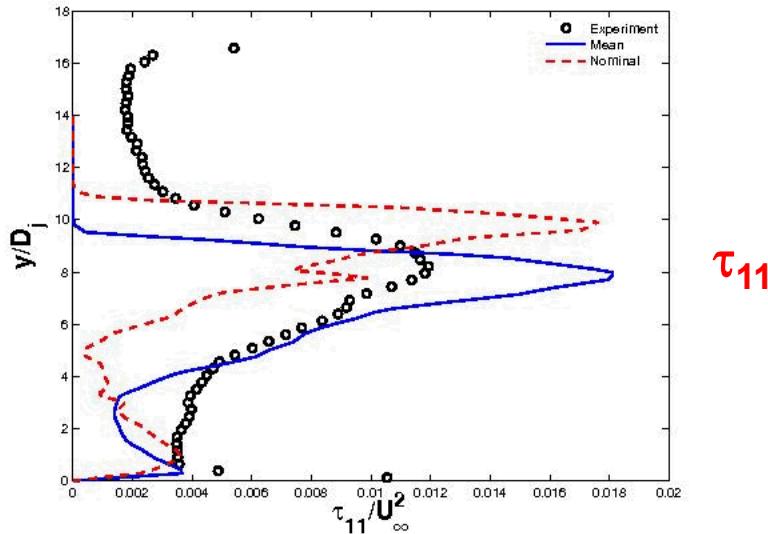
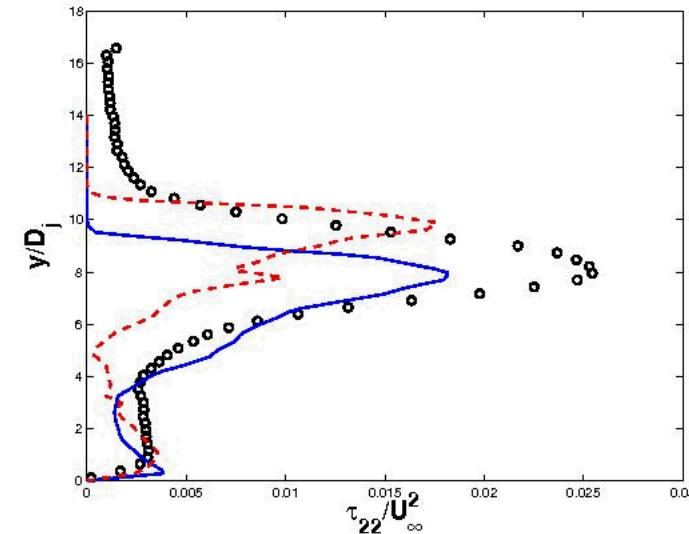
Velocity deficit



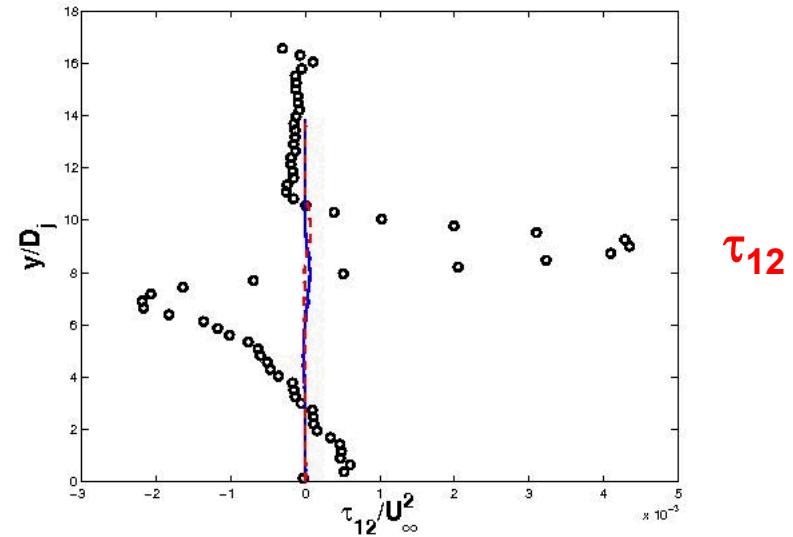
V-velocity

- Stunning improvement in vertical velocity predictions

# Prediction of turbulent stresses


 $\tau_{11}$ 

 $\tau_{22}$ 

- $M=0.8, J=10.2$
- Not very good agreement;  
LEVM is deficient
- Improve it

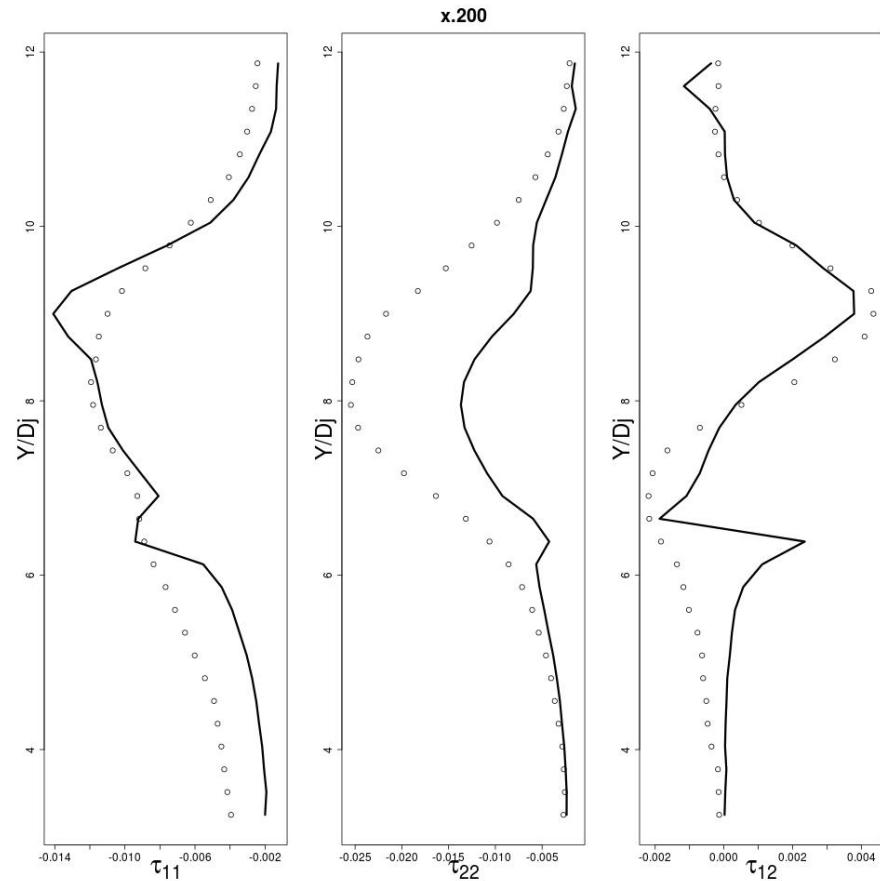

 $\tau_{12}$

# High-order eddy-viscosity model

- Craft 95 [3] describes a cubic eddy viscosity (CEVM) model
  - $\tau_{ij} = -2/3k \delta_{ij} + C_\mu F(S_{ij}, \varepsilon) + c_1 f_1(S_{ij}, \Omega_{ij}, \varepsilon) + c_2 f_2(S_{ij}, \Omega_{ij}, \varepsilon) \dots c_7 f_7(S_{ij}, \Omega_{ij}, \varepsilon)$
  - $F(S_{ij})$  is linear in  $S_{ij}$ ,  $f_1(\cdot, \cdot, \cdot) - f_3(\cdot, \cdot, \cdot)$  are quadratic in  $S_{ij}$  &  $\Omega_{ij}$
  - $f_4(\cdot, \cdot, \cdot) - f_7(\cdot, \cdot, \cdot)$  are cubic in  $S_{ij}$  &  $\Omega_{ij}$
- Our experimental data, on the midplane, consists of:
  - $S_{ij}$  &  $\Omega_{ij}$  obtained from the measured velocity field
  - $\tau_{ij}$  and  $k$ , also measured
  - $\varepsilon$  (dissipation rate of turbulent KE,  $k$ ) cannot be measured
    - It is approximated by assuming equilibrium of production and dissipation of turbulent KE.
- Craft's model prescribes  $\{c_1 \dots c_7\}$ 
  - Parameter value obtained from a simple, incompressible turning flow
  - May not be valid for transonic JinC interaction

# Reasons for hope

- The default CEVM reproduces  $\tau_{11}$  and  $\tau_{12}$  OK, but not  $\tau_{22}$ 
  - We could estimate better  $\{c_1 \dots c_7\}$
  - We have about 60 useable probe locations with  $\tau_{11}$ ,  $\tau_{12}$  &  $\tau_{22}$  measurements
- Estimation can be reduced to a  $Y = Ax$  problem
  - $Y$  contains the measured  $\tau_{ij}$
  - $x$  contains  $\{c_1, \dots, c_7\}$
  - $A$  contains  $C_\mu F(S_{ij}, \varepsilon)$  (the LEVM) and  $f_l(S_{ij}, \Omega_{ij}, \varepsilon)$ ,  $l = 1 \dots 7$



Experimental data & Craft model predictions

# Estimation of CEVM parameters

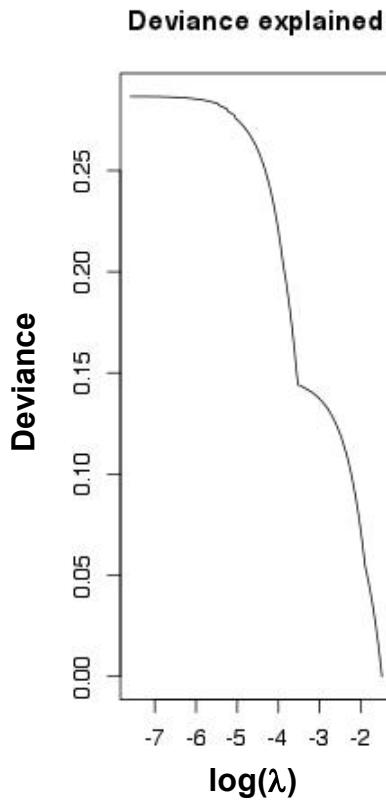
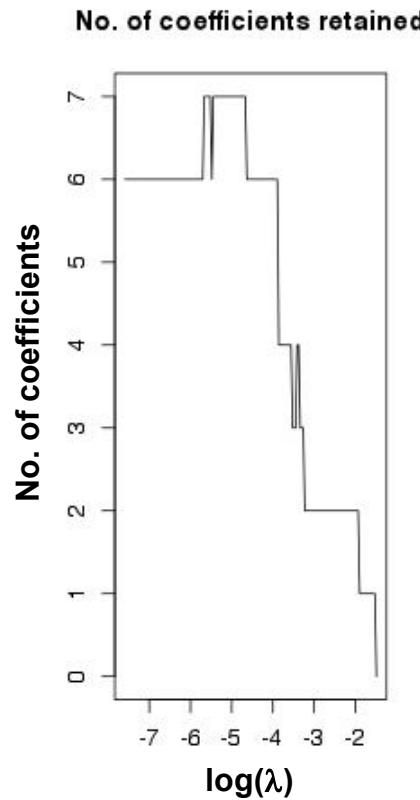
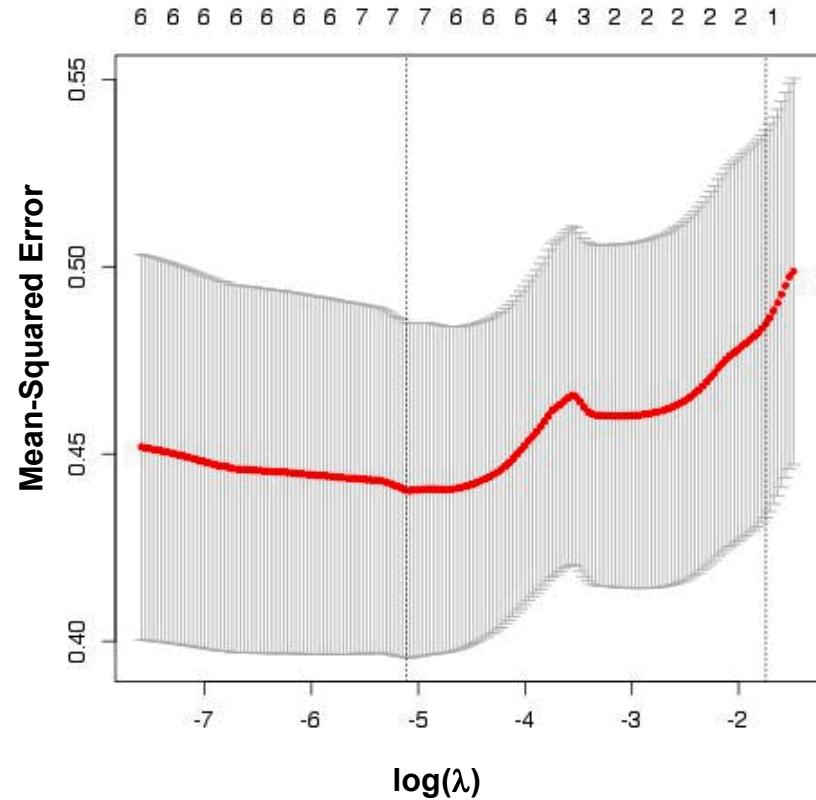
- It may not be possible to estimate  $c_1, \dots, c_7$  from the 180 data points
  - We'll estimate it using LASSO

$$\min_x \quad \|Y - Ax\|_2^2 + \lambda \|x\|_1$$

- The first half estimates  $x = \{c_i\}$  that provide CEVM predictions near  $Y$
- The second half – the  $\lambda$  penalty – tries to set as many  $c_i$  to zero

- Estimating a good  $x$  means estimating a good  $\lambda$ 
  - If penalty too small wrt information content of  $Y$ ,  $x$  estimated from subsets of  $Y$  (cross-validation) will vary wildly (overfitting)
    - As will the the deviance  $\eta = \|Y - Ax\|_2$
  - So choose  $\lambda$ , perform cross-validation, compute mean & variance of  $\eta$
  - Do this for a range of  $\lambda$  and pick  $\lambda_{\min}$
  - Also compare with the case of  $\lambda = 0$  (risk overfitting; call it 'LM')

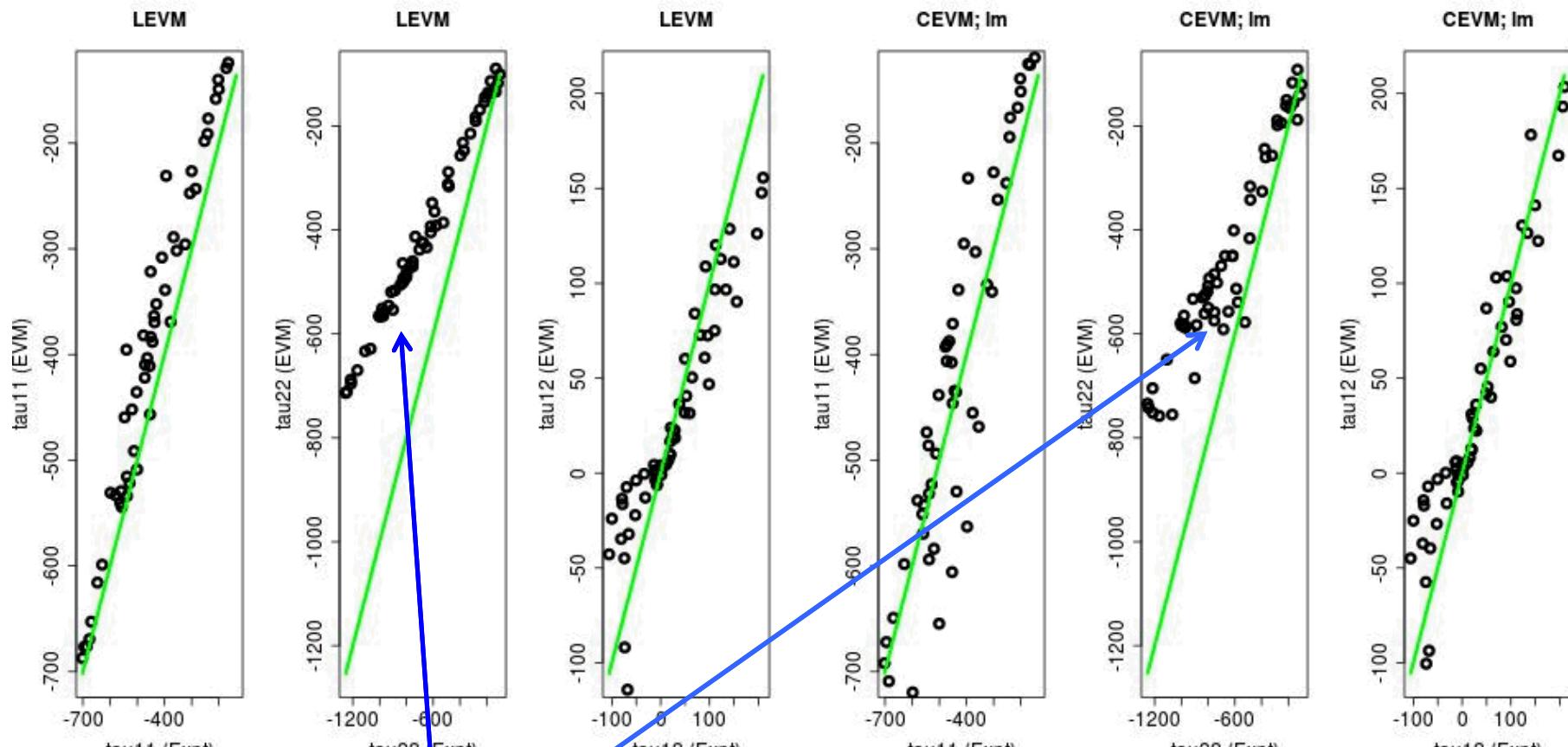
# LASSO results



Looking for a good  $\lambda$

- Craft explains around 28% of deviance
- As  $\log(\lambda)$  increases and # of terms retained decreases, CEVM worsens
- One gets  $\lambda_{\min}$  and  $\lambda_{1\text{se}}$

# Calibrate all h.o. terms. LEVM v/s LM

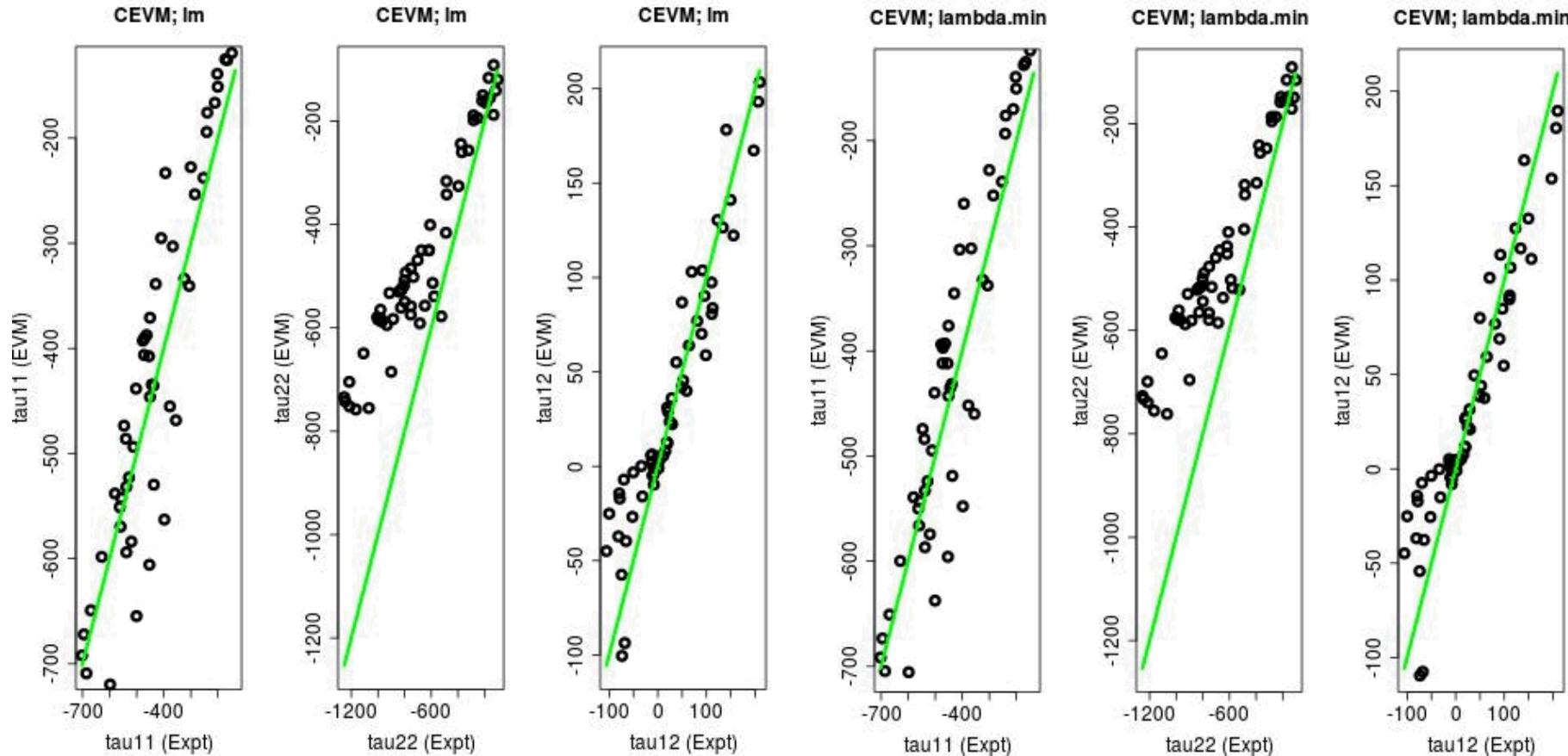


LEVM

Craft's CEVM, post calibration

- $\tau_{22}$  improved. No overfitting?

# Start penalizing. LM v/s LASSO-ed CEVM, $\lambda_{\min}$

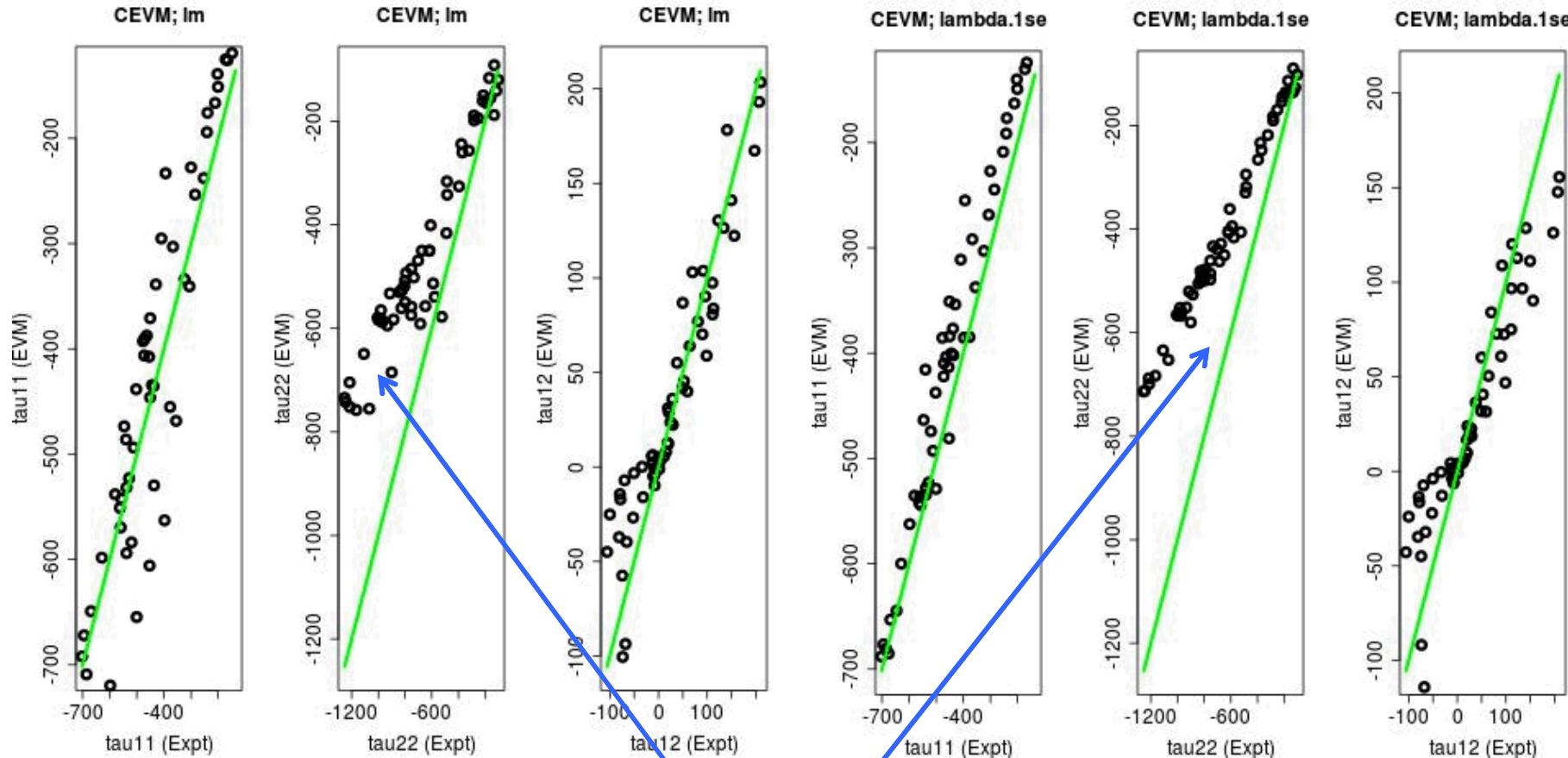


Craft's CEVM, post calibration

Lasso-ed CEVM,  $\lambda_{\min}$ , 7 terms

- Change? Not to the naked eye.

# Penalize more. LM v/s LASSO-ed CEVM, $\lambda_{1se}$



Craft's CEVM, post calibration

Lasso-ed CEVM,  $\lambda_{1se}$ , 1 term

- Change? Worsens  $\tau_{22}$  a bit

# Tabulate coefficients and MSE

| Method           | $c_1$   | $c_2$  | $c_3$ | $c_4$ | $c_5$ | $c_6$ | $c_7$  | MSE   |
|------------------|---------|--------|-------|-------|-------|-------|--------|-------|
| Craft            | -0.1    | 0.1    | 0.26  | -10   | 0     | -5    | 5      | 0.662 |
| LM               | -0.0789 | -0.149 | 2.02  | -5.88 | 0     | 6.68  | -11.87 | 0.382 |
| $\lambda_{\min}$ | -0.065  | -0.103 | 1.68  | -4.02 | 5.7   | 5.4   | -3.64  | 0.386 |
| $\lambda_{1se}$  | 0.0     | 0.0    | 0.455 | 0.0   | 0     | 0     | 0      | 0.483 |

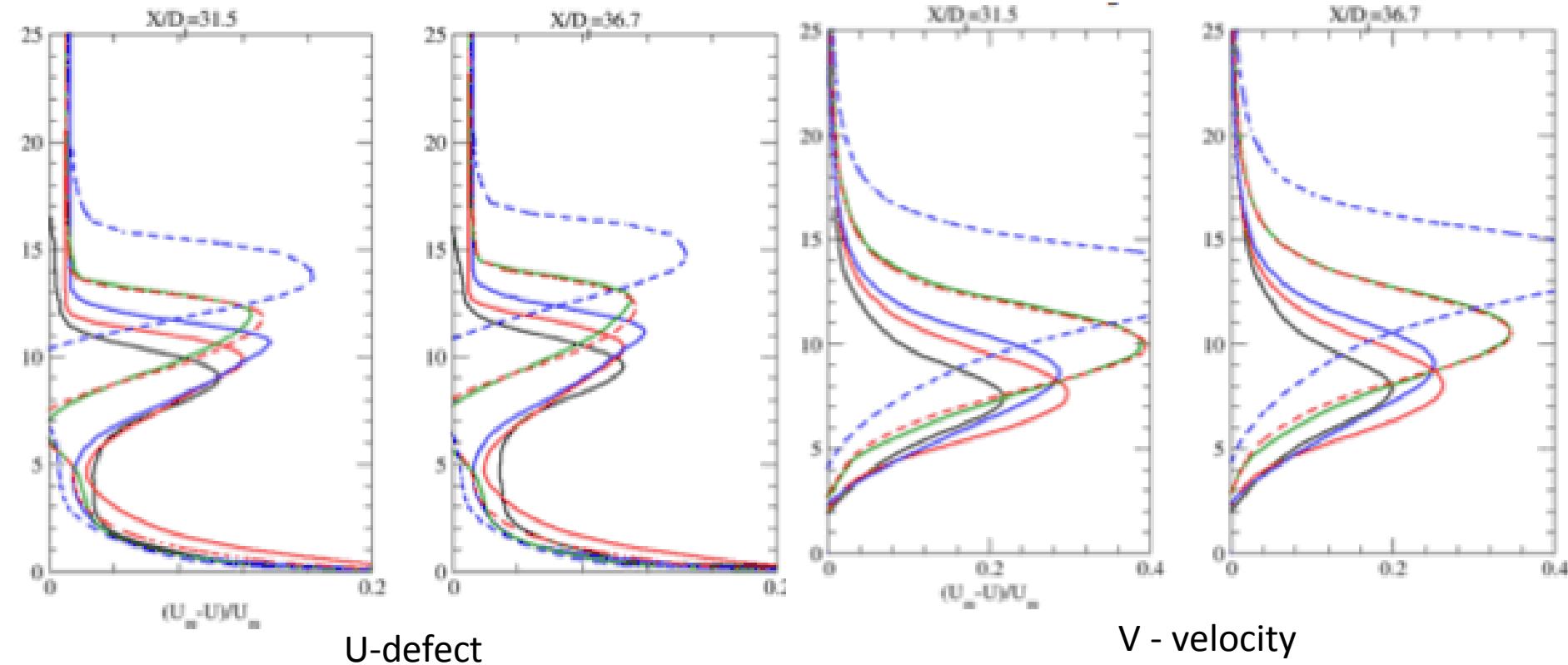
- $\ln(\lambda_{\min}) = -5.11$ ,  $\ln(\lambda_{1se}) = -1.75$
- Craft's default parameters are changed when we regress it to data
  - Results called 'LM'
- When we LASSO the model using  $\lambda_{1se}$ , we're left with just 1 quadratic term
  - But the model loses much accuracy
- Bottomline: Can't simplify Craft's model (remove terms), but have to live with uncertain values of  $\{c_1, \dots, c_7\}$  due to shortcomings of our dataset

# Conclusions

- We have performed a full calibration of a RANS model for transonic jet-in-crossflow simulator
  - First, we calibrated the parameters, when using a linear eddy viscosity model, and isolated the model-form error (due to LEVM)
  - Then we explored enriched versions of LEVM i.e. Craft's cubic eddy viscosity model, and calibrated them to data
- We found, using LASSO, that our dataset could only support enrichment by 1 term (for sure)
  - But that does not prevent us from estimating all 7 terms in the Craft cubic eddy viscosity model using Bayesian inversion
  - Since the estimation problem is linear, this admits a simple analytical solution
    - See backup slides if interested

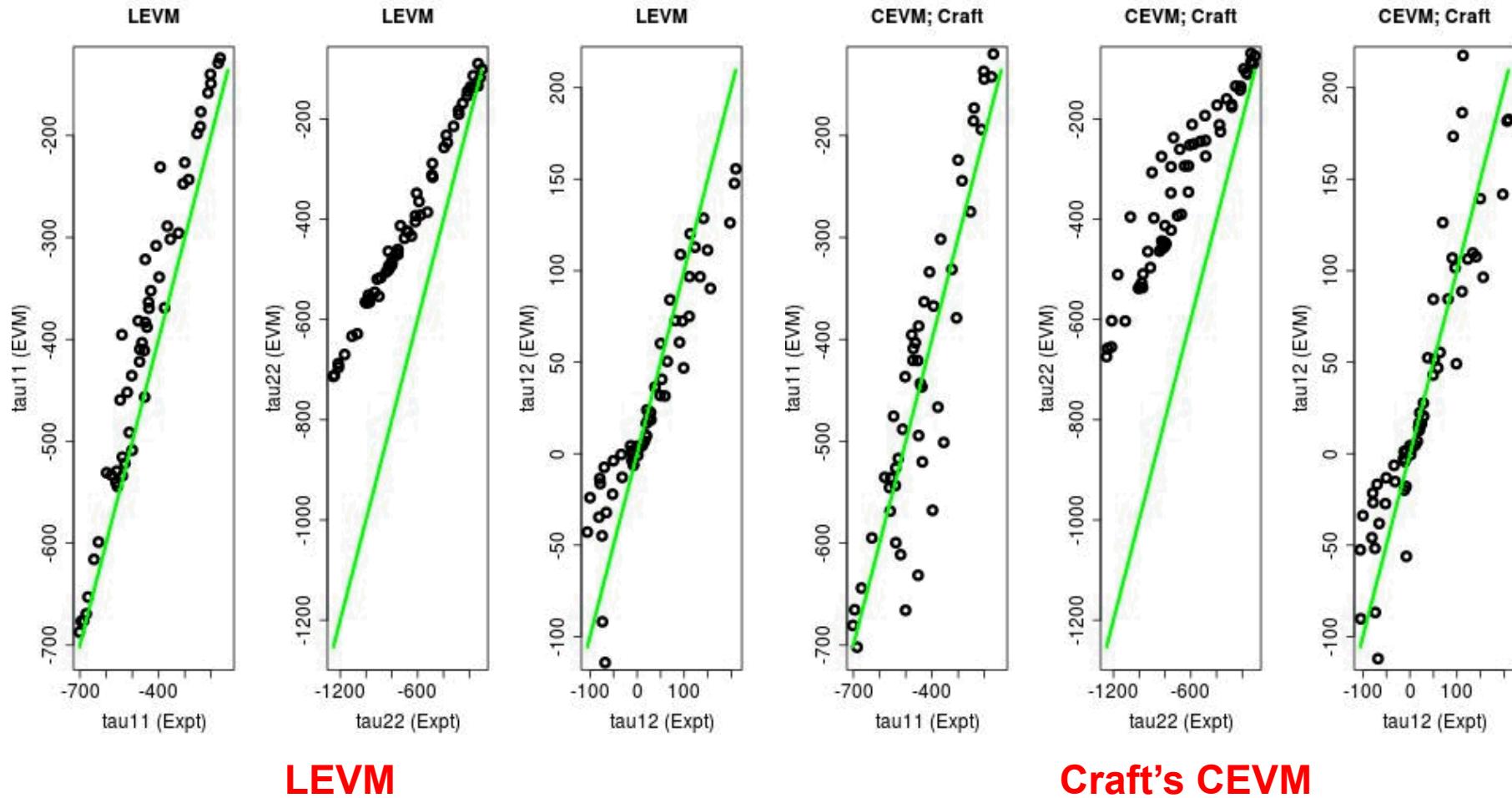
# BACKUP SLIDES

# RANS (k- $\omega$ ) simulations – midplane results



- Experimental results in black
- All models are pretty inaccurate (blue and red lines are the non-symmetric results)

# Do high-order terms help? LEVM v/s CEVM



- LEVM seems to be the same as Craft. So calibrate Craft.

# Estimate of CEVM parameters

|                             | $c_1$      | $c_2$      | $c_3$      | $c_4$      | $c_5$ | $c_6$      | $c_7$      |
|-----------------------------|------------|------------|------------|------------|-------|------------|------------|
| <b>Posterior Mean</b>       |            |            |            |            |       |            |            |
|                             | -7.89e-2   | -1.49e-1   | 2.02e+0    | -5.88e+0   | 0     | 6.68e+0    | -1.19e+1   |
| <b>Posterior Covariance</b> |            |            |            |            |       |            |            |
| $c_1$                       | 2.125e-03  | -7.036e-04 | -4.551e-03 | -5.893e-02 |       | -1.873e-02 | 5.265e-02  |
| $c_2$                       | -7.036e-04 | 5.477e-03  | 1.037e-04  | 2.153e-01  |       | -4.765e-03 | -1.948e-02 |
| $c_3$                       | -4.551e-03 | 1.037e-04  | 2.682e-01  | 4.167e-01  |       | 7.767e-02  | -3.821e-02 |
| $c_4$                       | -5.893e-02 | 2.153e-01  | 4.167e-01  | 1.359e+01  |       | 7.544e-01  | -6.672e-01 |
| $c_5$                       |            |            |            |            |       |            |            |
| $c_6$                       | -1.873e-02 | -4.765e-03 | 7.767e-02  | 7.544e-01  |       | 1.891e+00  | -3.360e+0  |
| $c_7$                       | 5.265e-02  | -1.948e-02 | -3.821e-02 | -6.672e-01 |       | -3.360e+00 | 7.643e+0   |