

1 **Linearity of Ca^{2+} -Doped CeBr_3 Scintillating Materials**

2

3 Paul Guss ^{*a}, Michael E. Foster, ^b Bryan M. Wong, ^b F. Patrick Doty, ^b Kanai Shah, ^c Michael Squillante, ^c
4 Urmila Shirwadkar, ^c Rastgo Hawrami, ^c Josh Tower, ^c Thomas Stampahar, ^a and Ding Yuan^d5 ^a*National Security Technologies, LLC, Remote Sensing Laboratory–Nellis, P.O. Box 98521, M/S RSL-09,
6 Las Vegas, NV 89193-8521, USA, gusspp@nv.doe.gov*7 ^b*Sandia National Laboratories, California, Materials Chemistry Department, P.O. Box 969,
8 Livermore, CA 94551-0969, USA,*9 ^c*Radiation Monitoring Devices, Inc., 44 Hunt Street, Watertown, MA 02472, USA;*10 ^d*National Security Technologies, LLC, P.O. Box 98521, Las Vegas, NV 89193-8521, USA*

11

12

ABSTRACT

13 The National Security Technologies, LLC, Remote Sensing Laboratory (RSL) developed an aliovalently
 14 calcium-doped cerium tribromide ($\text{CeBr}_3:\text{Ca}^{2+}$) crystal with a FWHM resolution of 3.2% at the ^{137}Cs
 15 662 keV gamma energy. RSL completed a crystal assessment and Sandia National Laboratories
 16 calculated the predictive performance and physical characteristics using proven density functional theory
 17 (DFT) formalism. Results are reported for the work done to map the detector performance, characteristics,
 18 calcium doping concentration, and crystal strength. Preliminary scintillation measurements for this
 19 aliovalently calcium-doped CeBr_3 scintillator exhibit a slight blue shift in fluorescence emission at
 20 371 nm excitation for CeBr_3 . The structural, electronic, and optical properties of CeBr_3 crystals were
 21 investigated using the DFT within generalized gradient approximation. The calculated lattice parameters
 22 are in good agreement with the experimental data. The energy band structures and density of states were
 23 obtained. The optical properties of CeBr_3 , including the dielectric function of photons per unit energy,
 24 were calculated. Specifically, we report excellent linearity with the aliovalent $\text{CeBr}_3:\text{Ca}^{2+}$ crystal.
 25 Proportionality of light yield is one area of performance in which Ce-doped and Ce-based lanthanide

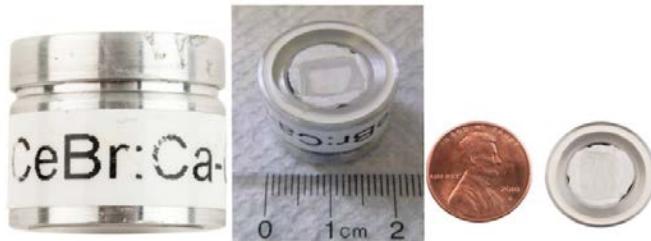
* phone 1 702 295-8095; fax 1 702 295-8648; nstec.com

26 halides excel. Maintaining proportionality is the key to producing a strong, high-performance scintillator.
27 Relative light yield proportionality was measured for both doped and undoped samples of CeBr_3 to ensure
28 no loss in performance was incurred by doping. The light output and proportionality, however, appear to
29 be similar to CeBr_3 . There was a reduced yield at low energy. Relative light yield proportionality
30 measurements suggest that dopants do not significantly affect proportionality at higher energies. RSL
31 completed additional testing and evaluation of the new crystal as well as the assessment of benchmarking
32 spectroscopy. Results, which present energy resolution as a function of energy, are summarized. Typical
33 spectroscopy results using a ^{137}Cs radiation source are shown for our crystallites with diameters < 1 cm.
34 We obtain 3.2% before packing the crystallite in a sealed detector container and 4.5% for the packaged
35 crystallite. More spectra were obtained for ^{241}Am , ^{60}Co , ^{228}Th , and background to exemplify $\text{CeBr}_3:\text{Ca}^{2+}$
36 over a broader energy range.

37

38 **Index Terms:** detector, resolution, scintillator materials, gamma-ray detector, cerium tribromide; CeBr_3 ;
39 high-resolution detector; halides; rare-earth compounds; scintillator; gamma spectral comparison;
40 resolution; aliovalent substitution

41


42 1. Background

43 The scintillation properties of CeBr_3 crystals grown with the divalent dopant Ca^{2+} are presented.
44 Small diameter (up to ~ 1 cm) single crystals of CeBr_3 doped with Ca^{2+} have been grown at Dynasil
45 Radiation Monitoring Devices, Inc. (RMD). The aliovalently calcium-doped cerium tribromide
46 ($\text{CeBr}_3:\text{Ca}^{2+}$) crystals were prepared according to careful theoretical modeling and delivered to the
47 Remote Sensing Laboratory (RSL) for assessment and evaluation (Fig. 1). $\text{CeBr}_3:\text{Ca}^{2+}$ has a hexagonal
48 crystal structure identical to uranium trichloride (UCl_3). Hexagonal crystals may fracture easily; therefore,
49 their manufacturing yield is expected to be low, making the reliability of large crystals questionable [1,2].
50 Significant gains in the practical scale for CeBr_3 scintillators may be realized by increasing fracture
51 toughness of the crystals [3]. Aliovalent substitution, in which a host ion is replaced with an ion of

52 different valence (e.g., Ca^{2+} for Ce^{3+} in CeBr_3) is a more potent method of strengthening than isovalent
53 substitution (i.e., replacing a fraction of ions with like-valence ions). In this approach, the formation of
54 intrinsic defects necessary to maintain charge neutrality results in complexes with long-range interactions
55 in the crystal. The resulting increase in hardening rate can be explained in terms of elastic interaction with
56 dislocations [4].

57

58

59 **Fig. 1.** Packaged scintillator of 0.2 atomic% Ca^{2+} -doped CeBr_3 .

60

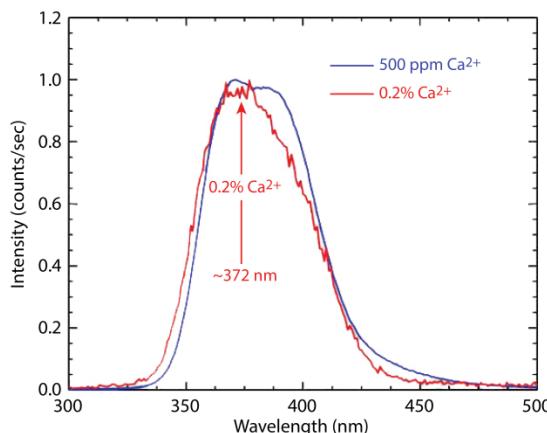
61 Because CeBr_3 already exhibits superior scintillation characteristics [5,6], the alloying element(s)
62 used to strengthen the crystal must not degrade the scintillation properties. Aliovalent alloying provides
63 more strengthening than isovalent alloying. The solid solution strengthening τ based on lattice distortions
64 due to some small concentration of dopant can be approximated as

65

$$66 \quad \tau = \gamma \cdot Gc^{1/2}, \quad (1)$$

67

68 where G is the shear modulus, c is the concentration of solute in atomic fraction, and γ is a proportionality
69 constant [7,8]. For spherically symmetric distortions, such as those found in isovalent alloying, γ typically
70 takes on values that are significantly smaller than unity, on the order of 10^{-4} to 10^{-6} . For tetragonal lattice
71 distortions, such as those created from solute atoms of a different valence, γ can be nearly unity.
72 Therefore, aliovalent alloying is more effective for a given concentration of solute [8].

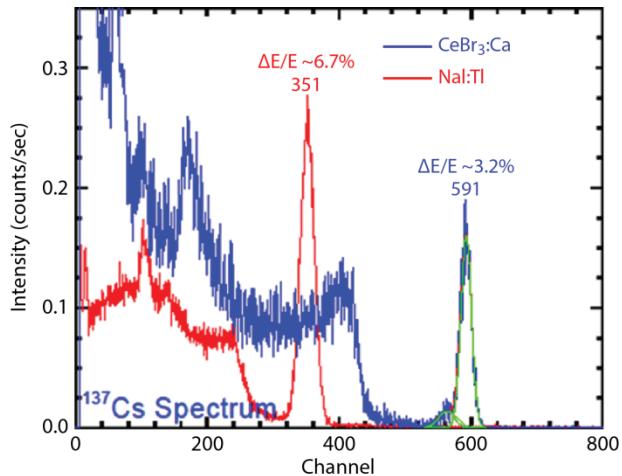

73

74 **2. Experiment**

75 A calcium-doped $\text{CeBr}_3:\text{Ca}^{2+}$ crystallite was grown and packaged by RMD. Sandia National
76 Laboratories (SNL) performed density functional theory (DFT) model calculations for a nominal doping
77 (i.e., 2%) of calcium in CeBr_3 . This helped assess what doping concentration would lead to changes in
78 optical and mechanical properties. RMD assessed crystal growth strategies for performing growth with
79 lower concentrations of calcium. SNL measured the calcium concentration by the inductively coupled
80 plasma mass spectrometry.

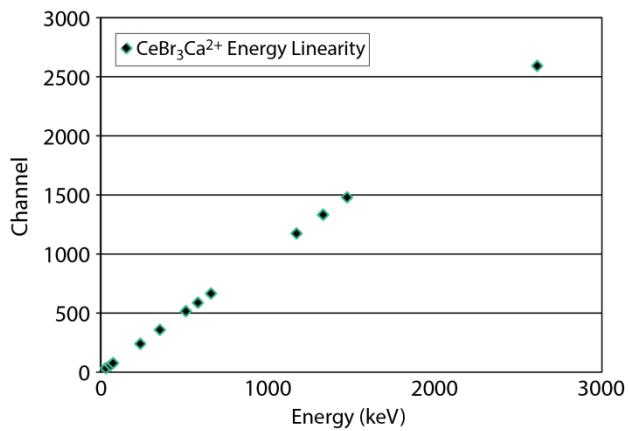
81 RSL assessed the RMD crystal. RSL acquired spectra with different isotopes using the RMD crystal
82 using the techniques described by Guss [3,9]. The emission spectrum for this crystallite is shown in **Fig.**
83 **2**. These results are consistent with recent findings [10]. The increase in doping level led to a slight blue
84 shift in the emission spectrum. **Fig. 3** shows a light output measurement for the crystallite estimated at
85 62,000 photons per MeV based on comparison to the thallium-doped sodium iodide ($\text{NaI}:\text{Tl}$) light yield.

86


87

88 **Fig. 2.** Emission spectrum measured with 6 × 2 mm 0.2 atomic% Ca^{2+} -doped CeBr_3 crystal in the
89 permanent canister compared to a similar measurement for a 500 ppm Ca^{2+} -doped CeBr_3 crystal.

90


91

92

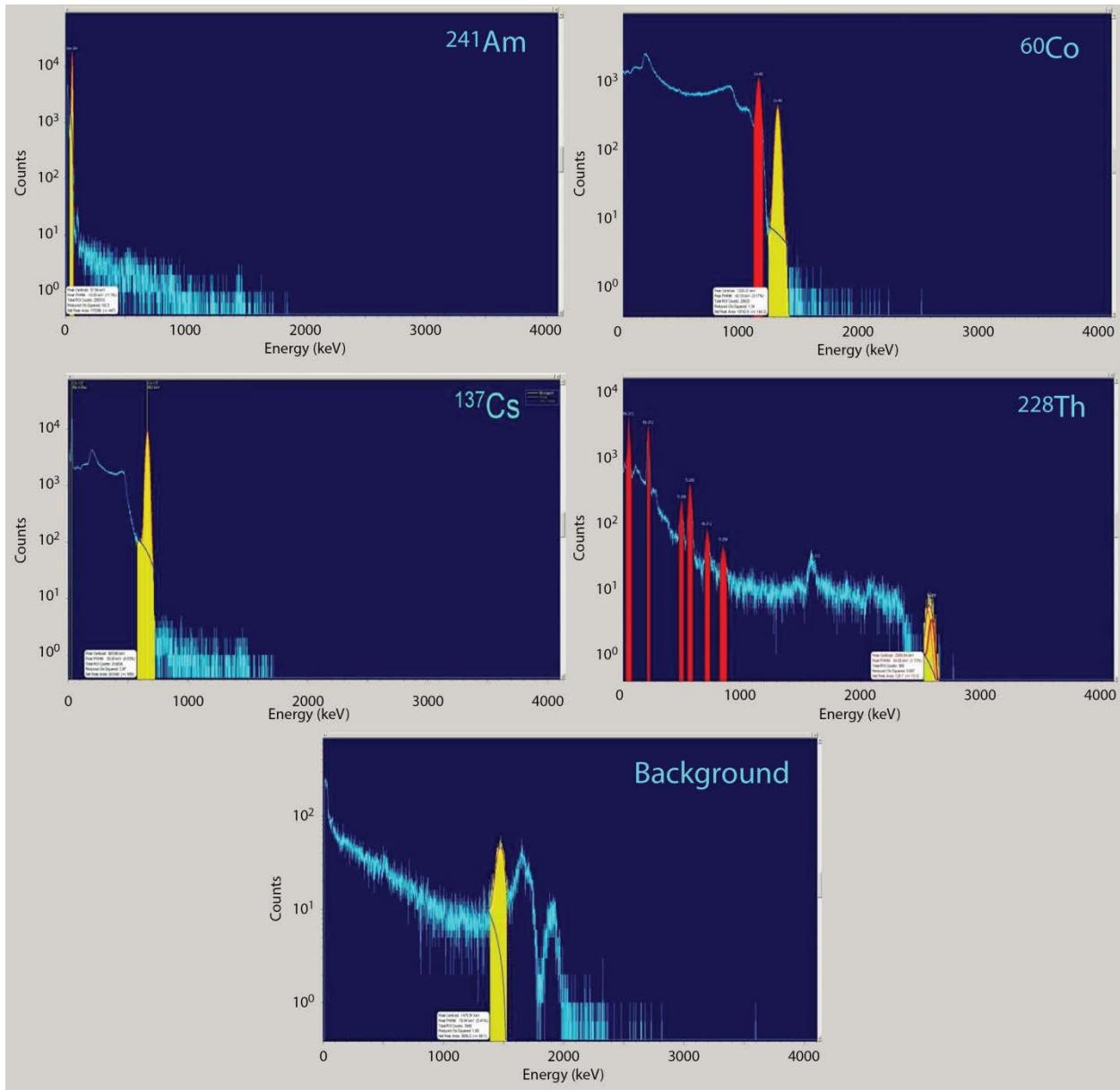
93
94 **Fig. 3.** Light output measurement relative to NaI:Tl indicates 62,000 photons per MeV for Ca^{2+} -doped
95 CeBr₃ crystal.

96

97
98 **Fig. 4.** Relative light yield proportionality of 0.2 atomic% Ca^{2+} -doped CeBr₃.

99

100 Proportionality of light yield is one area of performance where Ce-doped and Ce-based lanthanide
101 halides excel. Maintaining proportionality is key to producing a strong, high-performance scintillator.
102 Relative light yield proportionality was measured for both doped and undoped samples of CeBr₃ to ensure
103 no loss in performance was incurred by aliovalently doping the crystal. The light output and
104 proportionality, however, appear to be similar to CeBr₃. There was a reduced yield at low energy.
105 Relative light yield proportionality measurements suggest that dopants do not significantly affect


106 proportionality at higher energies. A plot of light yield proportionality for a doped sample is shown in
107 **Fig. 4.**

108 RSL completed additional testing and evaluation of the new crystal as well as the assessment of
109 benchmarking spectroscopy data. Results are well summarized in **Fig. 4**, which present energy resolution
110 as a function of energy. Typical spectroscopy results using a ^{137}Cs radiation source are shown in **Fig. 5** for
111 our crystallites. We obtain 4.5% for the packaged crystallite. More spectra were obtained for ^{241}Am , ^{60}Co ,
112 ^{228}Th , and background to exemplify $\text{CeBr}_3:\text{Ca}^{2+}$ over a broader energy range. The radiation source spectra
113 were acquired for 3600 seconds with the radiation source in contact with the crystal face using typical
114 source strengths of several μCi . The laboratory background acquisition time was 3×10^5 sec. Obviously,
115 the packaging of the crystallite impacted the performance of $\text{CeBr}_3:\text{Ca}^{2+}$.

116 We have observed Ca^{2+} to be a most promising dopant, since it significantly reduces the
117 nonproportionality and improves the energy resolution of pure CeBr_3 . The nonproportionality was
118 measured in the energy range from 32 keV up to 1274 keV. It has been observed that at 32 keV
119 $\text{CeBr}_3:\text{Ca}^{2+}$ deviates about 4% from the ideal case (10% for pure CeBr_3). We achieved an excellent energy
120 resolution of 3.2% at 662 keV and light output of $\sim 62,000$ photons/MeV [11,12].

121 We sought to achieve ultralow activity and high strength cerium bromide scintillators through a
122 program of refining and alloying with aliovalent strengthening agents (substituents with a different
123 valence than the host lattice). CeBr_3 is a self-activated lanthanide scintillator, which has received
124 considerable recent attention [13] due to proportionality and energy resolution for gamma spectroscopy
125 far superior to NaI:Tl . Because the material possesses no intrinsic radioactivity, CeBr_3 has a high
126 potential to outperform scintillators such as cerium-activated lanthanum tribromide or lanthanum-based
127 elpasolites [14], making it an excellent candidate for gamma spectrometers for passive detection and
128 identification of special nuclear material [15,16]. However, due to its hexagonal crystal structure (UCl_3),
129 pure CeBr_3 can fracture during crystal growth, detector fabrication, and subsequent use under field
130 conditions, thus impacting manufacturing yield and reliability for large crystals [2].

131

132

133 **Fig. 5.** ^{241}Am , ^{60}Co , ^{137}Cs , ^{228}Th , and background spectra with 1.9% Ca^{2+} -doped CeBr_3 in the permanent
134 canister.

135

136 Aliovalent substitution, in which a host ion is replaced with an ion of different valence (e.g., Cd^{2+} for
137 Ce^{3+} in CeBr_3) is a more potent method of strengthening than isovalent substitution (i.e., replacing a
138 fraction of ions with like-valence ions). The formation of intrinsic defects necessary to maintain charge
139 neutrality results in complexes with long-range interactions in the crystal. The resulting increase in

140 hardening rate can be explained in terms of elastic interaction (tetragonal distortion) with dislocations [4].
141 Concentration levels necessary to increase the yield strength by an order of magnitude may be in the
142 100–500 ppm range (0.01%–0.05%) for aliovalent substitution, whereas isovalent substitution may
143 require 10%–50% to achieve the same effect.

144 For these reasons, aliovalent substitution was chosen to improve the strength of CeBr_3 . SNL
145 demonstrated success with this approach, achieving a dramatic reduction of fracture in aliovalent alloys
146 compared with pure CeBr_3 crystals [8]. Prototype ingots were compounded with the addition of 2% of
147 CaBr_2 added to a high-purity CeBr_3 charge in a closed ampoule before melting and solidification in a
148 gradient-freeze process. Pure CeBr_3 ingots solidified under these conditions were severely fractured,
149 yielding only centimeter-sized shards. The lesson learned was that 2% was too high of a charge for the
150 calcium. Therefore, we needed to perform mass analysis of the material and recalculate the DFT with a
151 lower charge of calcium. We also performed an assessment of the spectroscopic performance of the
152 $\text{CeBr}_3:\text{Ca}$ shards delivered by RMD to RSL.

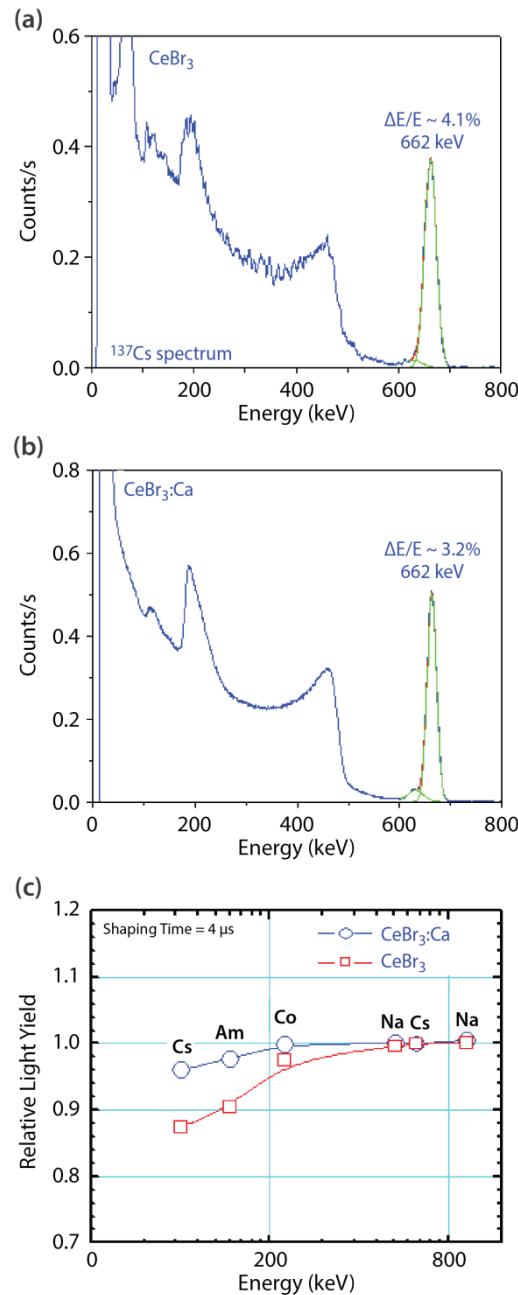
153 The 2% calcium-doped $\text{CeBr}_3:\text{Ca}$ crystallite was grown and packaged by RMD and delivered to RSL
154 in late September 2012. Several minor tasks remained to complete characterization of the calcium-doped
155 crystal. SNL performed DFT model calculations with less dilute doping (i.e., something less than 2%) of
156 calcium in CeBr_3 . This helped assess what doping concentration would lead to changes in optical and
157 mechanical properties. RMD assessed crystal growth strategies for performing growth with lower
158 concentrations of calcium. RSL assessed the spectroscopic performance of the crystal. RSL acquired spectra
159 with different isotopes using the RMD crystal using the techniques described by Guss [3,17,18]. The
160 emission spectrum for this crystallite is shown in **Fig. 2**. **Fig. 3** shows a light output measurement for the
161 crystallite estimated at 62,000 photons per MeV based on comparison to the $\text{NaI}:\text{Tl}$ light yield.

162 **Figs. 3 and 6** present a comparison of the ^{137}Cs radiation source spectra and proportionality before
163 and after packaging and sealing into the hermetically sealed canister sent to RSL. A slight degradation in
164 performance is associated with the permanent package of the crystal. **Fig. 6** also illustrates the
165 improvement in linearity achieved by doping the CeBr_3 with Ca^{2+} .

166

167 **3. Calcium Concentration**

168 We have measured the calcium concentration in the CeBr_3 by the inductively coupled plasma mass
169 spectrometry (ICP-MS) technique from the crystals prepared by RMD. ICP-MS is a type of mass
170 spectrometry capable of detecting metals and several non-metals at concentrations as low as one part in
171 10^{12} (part per trillion). SNL performed the ICP-MS. SNL also calculated a DFT model with less dilute
172 doping (i.e., something less than 2%) of calcium in CeBr_3 . SNL analyzed the concentration of calcium in
173 the crystals. Referring to Table 1, we used the average calcium weight % concentration, $x = 0.000214$, in
174 our complex of $\text{Ce}_{(1-x)}\text{Ca}_x\text{Br}_{(3-x)}$, to evaluate the formula for atomic percentage:


175

176
$$\text{Atomic \%} = 40.078x/[140.116(1-x) + 40.078x + 79.904(3-x)] = 0.00228 = 0.228\% \quad (2)$$

177

178 Based on our measurements, using three different samples (~0.2 grams), we have three consistent
179 data sets indicating that the calcium concentration in these crystals is 0.0214 ± 0.0102 wt.% (one σ) by
180 weight, which corresponds to an atom percentage of 0.228 at.%. This value seems to be much less than
181 the batch formulation. We do not know for certain if there is a solubility limit or a composition gradient in
182 the ingot (sampling). Our data will be used to extract the solubility limit.

183 The objective of this portion of the task was to experimentally determine the solubility of CaBr_2 in the
184 intrinsic scintillator CeBr_3 . Our initial approach attempted equilibrium solid-state diffusion at several
185 elevated temperatures for various amounts of time to allow Ca^{2+} to diffuse into the cerium bromide lattice,
186 followed by chemical analysis to determine solubility limit and the activation energy for diffusion.
187 However, this approach resulted in partial melting/fusion of the samples; therefore, a set of differential
188 scanning calorimetric (DSC) measurements were performed and combined with our existing segregation
189 data from crystal growth to build a working phase diagram in the CeBr_3 -rich region.

190

191 **Fig. 6.** (a) 662 keV spectrum with standard CeBr_3 with $\sim 4\%$ FWHM,
192 (b) 662 keV spectrum with $\text{CeBr}_3:\text{Ca}^{2+}$ with $\sim 3.2\%$ FWHM,
193 (c) plots showing improved proportionality for $\text{CeBr}_3:\text{Ca}^{2+}$ over standard
194 CeBr_3 .

195

196 The chemical analysis of three CeBr_3 samples from a nominal 2% ingot grown by RMD is
summarized in **Table 1**. The ICP-MS was used to determine as-grown concentrations of calcium with

197 approximately 5% precision. Assuming the growth conditions were near equilibrium, an estimate for the
198 segregation coefficient K_{eff} is $C_s/C_L = 0.11$. Therefore, the slope of the solidus line near 2% CaBr_2 in the
199 liquid can be estimated by establishing a liquidus line from melting point data.

200

201 **Table 1.** ICP-MS assays for Ca(II)-doped CeBr_3 ; nominal composition 2 wt% CaBr_2 in CeBr_3

Sample	Calcium Concentration	95% Confidence Limit
#1	0.0238 wt%	0.0014 wt%
#2	0.0212 wt%	0.0015 wt%
#3	0.0192 wt%	0.0015 wt%

202

203

204

205

206

207 **Table 2** is a tabulation of DSC data taken on samples in the composition range of 0%–10% CaBr_2 by
208 mole. While the measured melting temperature T_m for the pure CeBr_3 sample appears anomalous and is in
209 poor agreement with the literature, the mixtures show linear trends, including an apparent eutectic
210 temperature T_e near 597°C for calcium concentrations $\geq 2.35\%$.

211

212 **Table 2.** DSC results for CeBr_3 - CaBr_2 mixtures in the range 0–10 mole %

Mole % CaBr_2	T_m	T_e
0	715.3°C	–
0.2	732.1°C	–
2.35	721.8°C	598.3°C
4.65	715.2°C	595.4°C
7.63	706.8°C	596.2°C
9.85	697.3°C	597.0°C

213

214

215

216

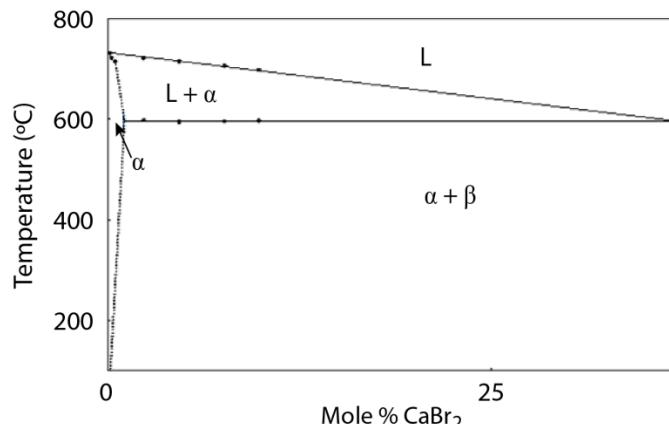
217

218

219

220

221


222

All results are plotted in **Fig. 7**, on which approximate solidus, liquidus, and eutectic lines have been
constructed. Not plotted are some additional data taken at 20% and 30%, which indicate the liquidus

223 continues the near-linear trend. Note that our current experimental upper bound for the solid solubility is
224 the data point at 2.35%, which must lie well within the $\alpha + \beta$ field, since the eutectic temperature T_e was
225 detected. This concentration is considerably less than the intersection of the extrapolated solidus and the
226 eutectic temperature; therefore, the solidus line is clearly nonlinear and probably exhibits retrograde
227 solubility well below the melting point of pure CeBr_3 , as is commonly observed for sparingly soluble
228 impurities in other systems. This behavior can be characterized as a variation of the segregation
229 coefficient with temperature, as analyzed by Hall [19]. For example, the maximum solid solubility for
230 sparingly soluble impurities in silicon and germanium follow a simple empirical correlation with k_0 , the
231 limiting equilibrium segregation coefficient, as C_L approaches 0: $C_{S,\max} = k_0/10$ [20]. Based on this
232 relation, the solidus was arbitrarily extrapolated to $k_{\text{eff}}/10 = 1.1\%$ at the eutectic temperature to estimate
233 the minimum extent of the eutectic line towards the CeBr_3 side of the phase diagram (**Fig. 7**).

234 It should be noted that the eutectic composition extrapolated from the points plotted is near 37%
235 calcium; however, the nominal 20% and 30% data indicate it could be near 50%. More experiments are
236 needed to accurately determine both the eutectic composition and the β phase, which could reasonably be
237 expected to be a ternary such as CaCeBr_5 or Ca_2CeBr_7 .

238

239
240 **Fig. 7.** Phase diagram for $\text{CeBr}_3\text{-CaBr}_2$

241

242

243 **4. Discussion**

244 SNL performed microhardness measurements to see if the aliovalent approach hardened the crystal as
245 expected. Microhardness (Vickers hardness [21]) and indentation toughness of these samples were
246 measured. Due to the size limitation, we could not obtain sufficient statistics and confidence on these
247 measured values. Therefore, we do not report the results here. Future work should include studies in
248 correlation between sheer strength and Ca^{2+} concentration.

249 Based on the recent literature on strengthening mechanisms [22], there are compelling requirements
250 to research and several ideas, questions, and answers to share. Sinha's paper on aliovalent strengthening
251 of CaF_2 attempts to determine mechanisms for low and high temperatures. Sinha and Nicholson [22]
252 found that Y(III) gave an order of magnitude greater increase in critical resolve shear stress than Na(I).
253 They conclude the long-range retarding force on dislocations at high temperature is likely due to the
254 induced reorientation of Na(I)/F-vacancy or Y(III)/F-interstitial dipoles in the stress fields of moving
255 dislocations (Snoek effect). This suggested role of the Snoek effect [22] is in accord with analysis of the
256 athermal regime in recent papers on Y stabilized zirconia and other materials [5,13,24–30]. If the authors
257 are correct that anion interstitials balance the charge for the higher valence cation, then the difference in
258 strength may be related to the higher mobility of interstitials. The interstitial fluoride ion in CaF_2 may be
259 more plausible than interstitial bromide; however, the CeBr_3 crystal structure does have large open
260 channels. We examined whether the M(IV)/Br-interstitial seems like a feasible complex in CeBr_3 .
261 Because the athermal (high-temperature) regime is probably more important during crystal growth, future
262 work should explore if it makes sense to place more emphasis on M(IV) cations silicon, tin, lead,
263 titanium, zirconium, hafnium, rhenium, molybdenum, cerium, thorium, protactinium, uranium,
264 neptunium, and plutonium.

265

266 **5. Summary**

267 To summarize, new DFT simulations demonstrate a capability for predicting properties of doped
268 CeBr_3 materials that is unavailable elsewhere but is critically needed to study the property-limiting

269 valence phenomena in ionic compounds. During this project, we assessed concentrations and the
270 solubility limit. RSL benchmarked the Ca^{2+} -doped CeBr_3 crystal. The Ca^{2+} -doped CeBr_3 crystal has
271 improved energy resolution (i.e., 3.2%) and linearity over the pure CeBr_3 crystal.

272

273 **Acknowledgment**

274 Marlene Bencomo (University of New Mexico, Albuquerque) assisted with IC-PMS analysis. This
275 manuscript has been authored by National Security Technologies, LLC, under Contract No. DE-AC52-
276 06NA25946 with the U.S. Department of Energy and supported by the Site-Directed Research and
277 Development Program. The United States Government retains and the publisher, by accepting the article
278 for publication, acknowledges that the United States Government retains a non-exclusive, paid-up,
279 irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow
280 others to do so, for United States Government purposes.

281

282 **References**

283 [1] F. P. Doty, et al., *Proc. SPIE* **6707** (2007) 670705:1–11.

284 [2] F. P. Doty, et al., *Proc. Mat. Res. Soc.* **1038** (2008) 1–8.

285 [3] P. Guss, et al., *Site-Directed Research and Development*, FY 2012, National Security Technologies,
286 LLC, Las Vegas, Nevada, 2013, 11–19.

287 [4] B. J. Pletka, et al., *Physica Status Solidi* **39**, 1 (1977) 301–311.

288 [5] K. S. Shah, et al., *IEEE Trans. Nucl. Sci.* **52**, 6 (2005) 3157–3159.

289 [6] S. Ra, et al., *IEEE Trans. Nucl. Sci.* **55**, 3 (June 2008) 1221–1224.

290 [7] T. H. Courtney, *Mechanical Behavior of Materials*, 2nd edition, Waveland, Long Grove, Illinois,
291 2000, 232.

292 [8] M. J. Harrison, et al., *Proc. SPIE* **7806** (2010) 78060M–78060M-14.

293 [9] P. P. Guss, et al., *Nevada National Security Site–Directed Research and Development*, FY 2010,
294 National Security Technologies, LLC, Las Vegas, Nevada, 2011, 55–64.

295 [10] F. G. A. Quarati, et al., *Nucl. Instrum. Methods Phys. Res. A* (2013) <http://dx.doi.org/10.1016/j.nima.2013.08.005>.

296

297 [11] P. Guss, et al., *Site-Directed Research and Development*, FY 2013, National Security Technologies,

298 LLC, Las Vegas, Nevada (2014) 221–234.

299 [12] U. Shirwadkar, et al., *Proceedings of the 20th Conference on Room-Temperature Semiconductor X-*

300 *and Gamma-Ray Detectors*, IEEE, Seoul, South Korea (2013) N-4.

301 [13] K. S. Shah, et al., *IEEE Trans. Nucl. Sci.* **52**, 6 (2005) 3157–3159.

302 [14] P. P. Guss, et al., *Nucl. Instrum. Methods Phys. Res. A* **608**, 2 (2009) 297–304.[15] K. S. Shah, et al.,

303 *IEEE Trans. Nucl. Sci.* **51**, 5 (2004) 2395–2399.

304 [16] P. P. Guss, et al., *Proc. SPIE* **7805** (2010) L-1.

305 [17] P. P. Guss, et al., *Nevada National Security Site–Directed Research and Development*, FY 2010,

306 National Security Technologies, LLC, Las Vegas, Nevada (2011) 55–64.

307 [18] P. P. Guss, et al., *J. Appl. Phys.* **115**, 3 (2014) 034908-1.

308 [19] R. N. Hall, *J. Phys. Chem. Solids* **3**, 1–2 (1957) 63–73.

309 [20] S. Fischler, *J. Appl. Phys.* **33**, 4 (1962) 1615.

310 [21] R. L. Smith and G. E. Sandland, *Proceedings of the Institution of Mechanical Engineers*, **I** (1922)

311 623–641.

312 [22] M. N. Sinha and P. S. Nicholson, *J. Mat. Sci.* **12**, 7 (1977) 1451–1462.

313 [23] J. Snoek, *Physica* **8**, 7 (1941) 711–733.

314 [24] D. Baither, et al., *Mat. Sci. Eng.* **A233** (1997) 75–87.

315 [25] D. H. Lassila, et al., *Metallurgical and Materials Transactions* **33A** 11 (November 2002) 3457–

316 3464.

317 [26] C. Mercer, et al., *Proc. R. Soc. A* **463** (8 May 2007) 1393–1408,

318 http://www.materials.ucsbd.edu/MURI/papers/Merceretal_PRS07.pdf, accessed December 12, 2013.

319 [27] S. Armengol, Latin American Congress on Biomedical Engineering 2007, Bioengineering Solutions

320 for Latin America Health, *IFMBE Proceedings* **18** (2008) 671–675.

321 [28] H. Martin and R. Pippan, *Materials Science Forum*, Trans Tech Publications, Switzerland **584-586**
322 (2008) 938–943.

323 [29] L. Taherabadi, et al., *J. European Ceramic Soc.* **28** (2008) 271–376.

324 [30] Y. Gan, et al., *ASME 2010 8th International Conference on Fuel Cell Science, Engineering and*
325 *Technology*, Brooklyn, New York, USA, June 14–16, 2010, doi: 10.1115/FuelCell2010-33194, Paper No.

326 FuelCell2010-33194 **2** (2010) 153–158.