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Project goal: To make remote sensing data searchable, emphasizing facility and proliferation examples.

Background Advances

Computation Flow Evaluation/Publication
Graph representation:

 Measurement of False Negatives by expert image analyst using government databases.

el

* Analysis of objects and relationships.

»

* Brost, et al, “A computational framework for ontologically storing and analyzing very large

* Is sensor agnostic. overhead image sets,” 3rd ACM SIGSPATIAL International Workshop on Analytics for Big

* Allows multi-modality data. Geospatial Data (BigSpatial-2014), November 2014 (Best Paper Award at workshop).
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' Advantages:
"« Smaller, modular queries.
* Search re-use.
* Hierarchical semantics.
* Faster.
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[O’Neil-Dunne 2012] O’Neil-Dunne, et al,, Geocarto (28), 2012.
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* The theoretical foundations of this work, calculation of the plot, and submitted paper were supported by a related
project supported with Sandia internal funding. NA-22 funding supports implementation of this method in the
automatic search code, shown in the images and still in progress.

| Raw data points/pixels 101,495,378,523 |mage Pre-Processing
Anne Arundel County, MD Philadelphia, PA Washington, DC Il;aer;jocr:]clver pixels 8,98?2;;24;21 . UVM eCognition Workshop SNL, o T @. TN e,
Output: Graph nodes 1,133,822 including LLNL, LANL. < 1 e 2 O
6 True positives Buildings 154,062 » eCognition, QT Modeler, Global Mapper. B gres=es gl e eem e o -
9 False positives Medium s.ize buildings 87,170 e Obtained land cover data and rule sets ; | | .
2 False negatives fank candidates 371 from UVM, reproduced results. N N T ey A
o Tank complexes 28 : G RN ST AL R A - N e Y
(2 Invisible) Large refineries , * Pursuing general-purpose land cover

rule sets through UVM analysis of

QueStiOnS Benchmark Imagery, internal efforts.

. T e Seeinitial LLNL land cover results
* Robustness and scope of image pre-processing: oresented in Randy Roberts’ talk.
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ebbie Dennison, LLNL.

eConition procssig b '
* Can we make it easier to construct queries? o . _
Application to Proliferation Examples

* Search accuracy, in terms of both false positives and false negatives? « Survey of prior proliferation sites (LANL).
* Generation of ontology and GeoQuestion search template based on ontology (LANL).

. - ing?
Match quality score, ranking: + Collection of site imagery (LLNL).

e Uncertainty characterization? * Generate graph based on processing site imagery (SNL).
* Execute search based on ontology (SNL).
* Specific proliferation examples? * Thorough multi-site search, refinement, and evaluation planned (All).
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