
Re-evaluating Network Onload vs. Offload for the
Many-Core Era

Matthew G. F. Dosanjh∗, Ryan E. Grant†, Patrick G. Bridges∗ and Ron Brightwell†
∗Scalable Systems Laboratory

Department of Computer Science
University of New Mexico
Albuquerque, NM 87131

Email: {mdosanjh,bridges}@cs.unm.edu
†Scalable System Software Department

Sandia National Laboratories*
P.O. Box 5800, MS-1110

Albuquerque, NM 87185-1110
Email: {regrant,rbbrigh}@sandia.gov

Abstract—This paper explores the trade-offs between on-
loaded versus offloaded network stack processing for systems
with varying CPU frequencies. This study explores the differences
of onload and offload using experiments run at different DVFS
settings to change the frequency, while measuring performance
and power. This allows for a quantitative comparison of the
the performance and power and trade-offs between onload and
offload cards, with a wide range of CPU performances. The
results show that there is often a significant performance increase
in using offloaded cards especially at lower CPU frequencies, with
only a small increase in power usage. This study also uses MPI
profiling to analyze why some applications see a larger benefit
than others.

This paper’s contributions are an analytical, quantitative
analysis of the trade-offs between onload and offload. While
there has been debate to this question, this is the first, to the
authors’ knowledge, analytical evaluation of the performance
difference. The range of frequencies analyzed give insight on how
this MPI might perform on different archtictures, such as the low
frequency, many-core CPUs. Finally, the power measurements
allow for the study to provide further depth in the analysis.

I. INTRODUCTION

Processor core frequency gains have declined significantly
since the beginning of the multi-core era. With the transition
to many-core architecture, frequencies are expected to remain
essentially constant and may even decline. This trend has sig-
nificant implications for network subsystem design, for exam-
ple onloading versus offloading network protocol processing.
Onload systems seek to leverage excess on-chip processors for
protocol processing, while offload systems seek to leverage
specialized NIC processing. As a result, the performance and
power costs of host network protocol processing significantly
impact this tradeoff. This trend can be seen in HPC in current
systems like TACC’s Stampede [2], which use Xeon Phis as
an accelerator, the future systems such NERSC’s Cori [1] and

*Sandia is a multiprogram laboratory operated by Sandia Corporation, a
Lockheed Martin Company, for the United States Department of Energy’s Na-
tional Nuclear Security Administration under contract DE-AC04-94AL85000.

LANL’s Trinity [3] which use Xeon Phi’s as a main socket
CPU.

The onloaded approach assumes that the performance
gap between the available CPU cores and dedicated ASIC
offloading hardware is minimal, and where it is not, it can
be overcome by allocating more CPU cores. This assumes
that the performance of the networking stack can be greatly
improved through parallelization. While many networking
stack functions can be done in parallel, the semantics of MPI
enforce ordering that makes full parallelization difficult. Some
approaches have been proposed [17] for methods of improving
the parallel performance of MPI, but the current state of mutli-
threaded MPI implementations illustrates the difficulties of
such approaches. Other work has declared that multi-threaded
MPI may not be a viable approach for future HPC [20].

The emerging trend of many-core architectures does not
help address the networking issues arising from reduced core
frequencies. Using these cores for network stack processing
has further implications beyond lower core frequencies. Many-
core compute units are, by design, more simplistic than modern
x86 cores, with current generation many-core architectures like
the Intel Xeon Phi lacking support for out-of-order processing.
While future generations may include expanded core features,
such as support for out-of-order execution, it is unlikely
that the feature set supported by such cores will approach
that of the full-featured state-of-the-art server class CPUs.
Dedicating large power-hungry cores, such as a Xeon x86 or
AMD equivalent core, to network processing has thus far been
an acceptable compromise. However, this approach doesn’t
address the increasing concerns about power consumption.

In this paper, we present an initial evaluation of the impli-
cations of host processing speed changes on onload vs. offload
network protocol processing. We do so by examining the
network performance and power consumption when running
both onloaded and offloaded networking hardware alongside a
consumer-class AMD CPU operating at different frequencies.
By using identical systems where the only changes are in the
high performance networking cards used, we isolate the dif-

SAND2015-2221C



	
  

Network	
  Card	
  CPU	
  

Onload	
  Network	
  Request	
  Processing	
  

Message	
  Request	
  

Data	
  Transfer	
  

Message	
  Processing	
  

	
  

Network	
  Card	
  CPU	
  

Offload	
  Network	
  Request	
  Processing	
  

Message	
  Request	
  

Data	
  Transfer	
  

Message	
  Processing	
  

Fig. 1: A high-level depiction of the differences between
onload and offload

ferences between the two networking approaches and quantify
the impact of processor frequency on networking performance.

The remainder of this paper is organized as follows. In
Section II, we discuss the background of onload and offload
protocol processing and architectural changes that motivate this
study. We then discuss our experimental setup and methodol-
ogy in Section III and present and analyze the results of these
experiments in Section IV. We then discuss the implications
of these results in Section V. Following this, we discuss other
related work in Section VI. Finally, we present our conclusions
and describe directions for future work in Section VII.

II. BACKGROUND

Two competing models of high-performance networking,
onloaded and offloaded networking, have been adopted by
various vendors in systems over the years. InfiniBand, one
of the primary HPC networking architectures, has both of-
fload and onload network adapter (HCA) implementations.
For example, Mellanox InfiniBand HCAs provide full featured
offload engines, while vendors such as QLogic sell onload-
based HCAs with simplified NIC hardware and a full-featured
software stack providing the remainder of the functionality
through the host CPU.

The high level differences between onload and offload are
depicted in Figure 1. The major difference is that offloaded
message processing is done by a dedicated chip on the NIC
while onloaded is done on the system’s CPU. The message
processing can include all levels of message processing, from
MPI to low level protocol processing. Offloading allows the
manufactures to make hardware optimizations to the dedicated
chip, to boost performance over onloaded NIC. It is possible
to hybrid these two approaches; for instance, some offload
infiniband cards do message matching onloaded on the CPU.

During the time the onload model was developed, CPU
capabilities and speeds were increasing with each successive
generation. The end of Dennard scaling and the introduction
of multi-core CPUs lead to further arguments in favor of the
onload model. In particular, onload proponents have argued
that such a model allows the use of other cores on a system
that might not be able to be fully taken advantage of by an
application, particularly during communication periods.

However, two recent trends are also potentially working
counter to this approach:

• The gradual flattening and even regression in core

speeds in traditional processors due to power and
cooling issues

• The emergence of many-core architectures such as the
Intel Xeon Phi with dramatically reduced single-core
performance

These two trends potentially limit the ability of these host
processors to keep up with the performance demands of
onload HPC networking systems. For example, recent work has
shown that many-core Xeon Phi processors limit MPI message
processing rates in HPC systems [8].

Along with the Xeon Phi, researchers have also proposed
cluster architectures using low speed ARM cores, such as
FAWN [35]. This architecture focuses on creating power
efficient nodes, sacrificing node throughput to support a higher
node count. These systems are also subject to the trends listed
above and may suffer in terms of message rate.

In addition, large scale systems will be placed under
power and energy constraints in the future [34]. This further
complicates the offload/onload tradeoff space—general pur-
pose processors potentially draw more power than specialized
network oriented offload processors, but may also be able
to dynamically change power draw in response to changing
system power caps. However, such changes could also cause
significant fluctuations in networking performance, to the
detriment of application performance.

As a result, it is important to understand the ramifications
that power changes will have on network performance and ex-
plore the tradeoffs between onloaded and offloaded networks.
It is similarly important to understand the potential for power
and energy savings during communication phases. If such sav-
ings can be obtained without significant performance impact,
or if the performance impact is tolerable, then leveraging the
available savings will be important to future supercomputer
efficiency.

III. EXPERIMENTAL METHODOLOGY AND SETUP

To evaluate the performance and power trade-offs between
onload and offload networking approaches, we conducted
experiments with both offload and onload InfiniBand cards.
These cards were placed in systems instrumented for power
collection, and host CPU power consumption was controlled
to understand the impact of CPU speed on network perfor-
mance and power consumption in different applications. In the
remainder of this section, we provide additional details on our
experimental setup; the hardware system on which these results
were gathered and the microbenchmarks and applications used.

A. Hardware and Data Collection Setup

The evaluation of the onloaded vs. offloaded networking
approaches was performed on 4 nodes of the Teller cluster at
Sandia National Laboratories. Each node has a 3.8 GHz AMD
Fusion APU, 16 GB of memory, and Linux kernel version
2.6.32 (RHEL 6). For onload experiments, we installed a
QLogic 4X QDR InfiniBand HCA in each node, while we used
a Mellanox ConnectX-3 4X QDR InfiniBand HCA for offload
experiments. In both onload and offload cases, a Qlogic 12200
36-port InfiniBand switch connected the InfiniBand HCAs. The
APU has CPU and GPU components; we used only the CPU.



Power measurements for the experiments were collected
using the PowerInsight measurement system installed in the
cluster. PowerInsight is an out-of-band measurement device
that collects fine grained samples for multiple system com-
ponents through the use of a mother measurement board and
risers on system components. They enable the inline reading
of system power on a per component basis without impacting
the performance or power consumption of the node. The
components PowerInsight measures include CPU, memory,
motherboard, network cards, and fans. All power information
output by PowerInsight uses a separate out-of-band network
to deliver the information to a central collection node that was
not participating in the testing. Further detailed information on
the PowerInsight devices can be found in [26] .

For the purposes of the this study, we collected power
data at 10 Hz for NETPIPE microbenchmarks and 1 Hz
for the application benchmarks. To accurately represent their
power usage, the microbenchmarks required a higher resolu-
tion. However, as the application benchmarks had runtimes
that were all greater than 5 minutes, a lower resolution was
sufficient for the comparison.

B. Benchmarks and Applications

To further compare the onloaded vs. offloaded networking
approaches, we analyzed the performance and power com-
parisons on benchmarks and applications. In particular, we
compared onloaded and offloaded runs in the MILC applica-
tion [7] and the LULESH [25] and netepipe [31] benchmarks.
Furthermore, we ran profiling runs, using MPIP, to determine
why these applications react to the network cards differently.

The netpipe microbenchmark suite is a tool designed to
test the bandwidth and latency of a network. We ran the
streaming, streaming without cache effects, and send-recv
ping-pong tests over different message sizes ranging from
two bytes to one megabyte. The MIMD Lattice Computation
(MILC) application was the first application benchmark we
used [16]. It was developed to study quantum chromodynamics
and uses four dimensional lattice computation using a halo
exchange communication pattern. We used an input deck based
on the weak scaling NERSC 6 acceptance benchmarks [5]. In
particular, each node has lattice of size 8x8x8x9. The Liver-
more Unstructured Lagrangian Explicit Shock Hydrodynamics
(LULESH) application is the second large benchmark we used
[24]. LULESH is designed to be a representative application
for larger hydrodynamics codes. For all of our tests, we ran a
1203 problem for 130 iterations. There is a constraint on the
number of MPI ranks used for this code; it has to equal a cube
of an integer. Because of this, we fixed the number of MPI
ranks at 8, adding an extra OMP thread to each rank in the
four node case.

MPIP is a lightweight profiling layer for MPI. When
running, MPIP collects statistics including number of calls,
type of calls, and time spent in function calls. This information
is separated by each call written in the source code. We used
this information to analyze communication patterns.

All three benchmarks were run three times for combi-
nations of the following variables: InfiniBand card, number
of nodes, and CPU frequency. We used the InfiniBand cards
mentioned in section III-A to test both onload and offload.

The number of nodes varied between 1, 2, and 4 for MILC,
2 and 4 for LULESH, and was not a variable for netpipe.
The CPU frequency was modified using DVFS to 1.4GHz,
1.9GHz, 2.4GHz, 2.9GHz, 3.4GHz, and 3.8GHz. We collected
the overall runtime and power statistics of these applications
as well as MPI profiling information on a couple of separate
runs.

IV. EXPERIMENTAL RESULTS

A. Microbenchmark Evaluation

The netpipe microbenchmarks [31] were used to examine
the impact CPU frequency has on both the power draw and
performance of the different networking approaches. Figure 2
shows the stream bandwidths along with the power consump-
tion of both onloaded and offloaded networks. Aside from the
obvious protocol switching points (MPI eager to rendezvous)
causing plateaus and in some cases dips in performance
between messages sizes, the important observation to make
from these figures is the spread in performance between the
highest CPU frequencies and the lowest. The onloaded method
expectantly loses some performance when CPU frequency is
lowered, resulting in an near halving of bandwidth between the
3.8GHz and 1.4 GHz frequencies. For the offloaded network,
the reduction in CPU frequency impacts network performance
by a much smaller degree. The only noticeable difference in
behavior occurs when the lowest CPU frequency is used. There
is more variance in the bandwidth curve than the other scaling
points, suggesting the microbenchmark may not be able to
keep up with the network events at this speed. The performance
gaps between the CPU frequencies remains relatively similar
in terms of percentage of performance loss for all message
sizes, including the smaller message size results.

Removing caching effects from the results as shown in
Figure 3 has little impact on the offloaded case, except for a
slightly reduced throughput. This results in less of a gap be-
tween the slowest speed (1.4GHz) and the other clock speeds.
The impact on the onloaded case is similar for large messages.
However, there are differences for small and medium sized
messages. The drop occurring after 8KiB message sizes is
caused by the eager-rendezvous protocol switch-over in MPI.
The drop occurring at 64KiB message sizes is caused by
the virtual maximum transmission unit (VMTU) maximum of
64KiB, necessitating multiple calls to the onloaded networking
stack.

Examining send-recv performance with bi-directional ping
pong (as opposed to the previous unidirectional streams),
Figure 4, shows that the results are similar to the stream results
with cache effects. The increase in throughput is due to the
bi-directional nature of the test, but generally aligns with the
unidirectional results, in that they are reasonably within twice
of the unidirectional throughput.

A key observation from these results is the relatively
small trade-off in throughput performance from transitioning
between CPU frequencies for both onload and offload at
2.9GHz and higher. This observation indicates that, at this
speed and above, the network bottleneck is no longer protocol
processing. At this point, the bandwidth and latency is more
impacted by the limits of the hardware. We concentrate on
the results including cache effects for the purpose of this



B
a
n
d
w

id
th

 (
M

b
p
s
)

P
o
w

e
r 

(W
)

Message Size (bytes)

Onload Stream Bandwidth (Put) With Power

1.4GHz
1.9GHz
2.4GHz

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power
1.9 GHz power
2.4 GHz power

2.9 GHz power
3.4 GHz power
3.8 GHz power

 0

 5000

 10000

 15000

 20000

 25000

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

50

60

70

80

90

100

110

120

130

140

(a) Onload

B
a
n
d
w

id
th

 (
M

b
p
s
)

P
o
w

e
r 

(W
)

Message Size (bytes)

Offload Stream Bandwidth (Put) With Power

1.4GHz
1.9GHz
2.4GHz

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power
1.9 GHz power
2.4 GHz power

2.9 GHz power
3.4 GHz power
3.8 GHz power

 0

 5000

 10000

 15000

 20000

 25000

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

50

60

70

80

90

100

110

120

130

140

(b) Offload

Fig. 2: Onload stream vs. offloaded stream with varying CPU frequencies

B
a
n
d
w

id
th

 (
M

b
p
s
)

P
o
w

e
r 

(W
)

Message Size (bytes)

Onload Stream Bandwidth (Put) With Power - No Cache Effect

1.4GHz
1.9GHz
2.4GHz

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power
1.9 GHz power
2.4 GHz power

2.9 GHz power
3.4 GHz power
3.8 GHz power

 0

 5000

 10000

 15000

 20000

 25000

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

50

60

70

80

90

100

110

120

130

140

(a) Onload

B
a
n
d
w

id
th

 (
M

b
p
s
)

P
o
w

e
r 

(W
)

Message Size (bytes)

Offload Stream Bandwidth (Put) With Power - No Cache Effect

1.4GHz
1.9GHz
2.4GHz

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power
1.9 GHz power
2.4 GHz power

2.9 GHz power
3.4 GHz power
3.8 GHz power

 0

 5000

 10000

 15000

 20000

 25000

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

50

60

70

80

90

100

110

120

130

140

(b) Offload

Fig. 3: Onload stream vs. offloaded stream with varying CPU frequencies without cache effects

B
a
n
d
w

id
th

 (
M

b
p
s
)

P
o
w

e
r 

(W
)

Message Size (bytes)

Onload Bi-directional Ping-Pong Bandwidth with Preposted Recvs

1.4GHz
1.9GHz
2.4GHz

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power
1.9 GHz power
2.4 GHz power

2.9 GHz power
3.4 GHz power
3.8 GHz power

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

50

60

70

80

90

100

110

120

130

140

(a) Onload

B
a
n
d
w

id
th

 (
M

b
p
s
)

P
o
w

e
r 

(W
)

Message Size (bytes)

Offload Bi-directional Ping-Pong Bandwidth With Preposted Recvs

1.4GHz
1.9GHz
2.4GHz

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power
1.9 GHz power
2.4 GHz power

2.9 GHz power
3.4 GHz power
3.8 GHz power

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

50

60

70

80

90

100

110

120

130

140

(b) Offload

Fig. 4: Onloaded vs. offloaded bi-directional ping-pong with send-recv and preposted recvs

analysis, but the percentages are similar for the case in which
cache effects have been removed. For the onload case 36.4%
of the power consumption can be saved while only losing
2.5% of throughput, while for the offloaded case 22.5% of
power can be saved while only impacting performance by
0.5%. The offloaded network provides better results in scaling

frequency back below the 2.9GHz level, providing power
consumption savings of approximately 30.5% while impacting
performance by only 1.5% when switching from a 3.8GHz
clock rate to 1.9GHz. For the onloaded case, this is impractical,
as using a lower frequency such at 1.9GHz would result in
a performance loss of 35.1%. This emphasizes the potential



issues that may arise when using many-core systems with
slower and less powerful compute cores. It also highlights that
if such network onload approaches are to be practical on future
many-core systems, parallelism for communication will be a
key component in achieving performant network throughput.

Finally, Figure 5 shows the latency impacts from slower
CPU frequencies on the onloading and offloading approaches.
The latency penalties associated with lower CPU frequencies
occur for both onloaded and offloaded networking. However,
the offloaded networking approach leads to convergence of
latencies for successively lowering CPU frequencies at smaller
message sizes, and all CPU frequencies eventually converge at
1MiB message sizes. For small messages under 512 Bytes, the
offloaded networking approach has a flat latency curve, while
the onloaded case has a upward slope at smaller message sizes.

B. Application Benchmark Evaluation

We used application benchmarks to examine the perfor-
mance and power tradeoffs in realistic workloads. Using MILC
and LULESH, we measured the runtime and power usage
at different node counts and CPU speeds to compare onload
and offload. Then we ran MPI profiling tests to compare the
results of the two applications. It should be noted that there
was not much variance in either the runtime or power of the
application benchmarks; The standard deviations of 80% of
the runs were below 1% of the mean, only 2.5% of the runs
had a standard deviation greater than 2%, and the maximum
standard deviation. was 2.81%.

1) Runtimes and Power: Figures 6a and 6b show the power
and performance results of MILC. The tests show the runtime
change over the CPU frequency for each of the different node
counts. Because the problem size is scaled to the number of
nodes, the runtime increases when adding nodes, for instance
the four node, onloaded case at 1.4GHz takes over 17 minutes
more than the one node, onloaded case. This can be attributed
to a combination of the extra computation at the boundary and
the communication time between the four nodes.

In all of the cases we measured, the offload version takes
less time than its onload counterpart. For four nodes, it ranges
from a 7.7% to a 10.6% difference between the two, for two
nodes, the range is from 5.3% and 7.8%, and even the single
node case had a small but consistent performance benefit,
ranging from 0.9% to 3.1%. These differences all steadily
decline when we increase the clock speed. This shows that
while the offload cards have a significant effect on most of the
test cases, they have a more significant performance impact
on low frequency cores. The power usage of MILC has less
significant differences. The offload HCAs used between 1.1%
and 3.2% more power than their onload counterpart.

Figures 7a and 7b show the power and performance results
of LULESH. The tradeoffs are less distinctive here. The
difference between runtime and power usage fluctuate around
0%. The change in performance ranges from 0.6% in favor of
offload and 0.6% in favor of onload. The power differences are
similarly low. Since LULESH is not significantly affected by
the InfiniBand card used, it interestingly contrasts with MILC.

It is important to note that the impact of decreasing CPU
frequency is significant to the performance of the compute

portion of the proxy-applications under study. The goal of
these experiments is to examine systems known to have little
process variation induced performance impact while limiting
the differences between the systems to soley the networking
hardware. By using the same switch for both onload and
offload approaches, we have isolated other potential perfor-
mance and power related impacts due to factors not of interest
to this study. In order to confirm the results, we conducted
some MILC experiments on the exact same hardware with the
network hardware swapped. These experiments confirmed that
process variation between the servers used for the experiments
was negligible.

2) Profiling The Applications: An interesting trend emerges
when comparing these results. Offloading has a measurable
performance benefit on MILC but LULESH is nearly indistin-
guishable from the onloaded environment. To understand the
difference between these two applications, we profiled the two
applications using MPIP [36]. These tests were run at 3.8GHz
on four nodes with the QLogic onloaded InfiniBand cards. The
pieces of information we gathered are percentage of time the
application spent in MPI, the distribution of time within MPI,
and the number and distribution of function calls.

Both applications spent a fair amount of time in MPI;
MILC spent 15% of it’s runtime in MPI, while LULESH spent
12%. However, the number of MPI calls was significantly
different. MILC called MPI 4,011,216 times over its runtime,
which ran for 1382.45 seconds on average. Comparatively,
LULESH made substantially fewer calls, with 42,904 MPI
calls over it’s runtime, which ran for an average of 81.64
seconds. This equates out to 2901.5 MPI calls per second for
MILC and 525.5 MPI calls per second for LULESH. Table I
shows the distribution of MPI calls to specific functions. The
notable differences are MILC has larger percentage of wait
calls and the lower percentage of Allreduce calls, compared to
LULESH.

Table II shows the distribution of time within MPI calls.
The differences here are stark; MILC spends a reasonable
amount of time in Allreduce, Isend, and Wait however,
LULESH spends almost no time in Isend, mainly spending
time in Allreduce and Wait. The time spent in Irecv and Isend
in MILC illustrates that it is performing more significant point-
to-point communication than LULESH. MILC is a memory
bound code that can be sensitive to network performance, as
such it is not surprising that the performance of MILC is im-
pacted by lowering CPU frequency in an onloaded networking
situation. LULESH is primarily dependent on the performance
of Allreduce for good networking performance. These results
show that Allreduce performance doesn’t change significantly
between the onloaded and offloaded networking approaches.

These results indicate that the performance benefit of
Offloading is seen primarily in codes that have a large number
of small communication calls, rather than a few larger calls.
This indicates that the network protocol processing overhead
is more a function of the number of messages, rather than the
amount of data being sent. MILC and LULESH spent similar
percentages of their runtimes in MPI, but MILC relies on a
large number of small point to point and collective operations
and LULESH focuses on small number of large collectives
that make up most of its time in MPI.



L
a
te

n
c
y
 (

µ
s
)

P
o
w

e
r 

(W
)

Message Size (bytes)

Onload Bi-directional Ping-Pong Latency With Power

1.4GHz
1.9GHz
2.4GHz

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power
1.9 GHz power
2.4 GHz power

2.9 GHz power
3.4 GHz power
3.8 GHz power

 8

 16

 32

 64

 128

 256

 512

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

50

60

70

80

90

100

110

120

130

140

(a) Onload

L
a
te

n
c
y
 (

µ
s
)

P
o
w

e
r 

(W
)

Message Size (bytes)

Offload Bi-directional Ping-Pong Latency With Power

1.4GHz
1.9GHz
2.4GHz

2.9GHz
3.4GHz
3.8GHz

1.4 GHz power
1.9 GHz power
2.4 GHz power

2.9 GHz power
3.4 GHz power
3.8 GHz power

 8

 16

 32

 64

 128

 256

 512

2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

512K
1M

B

50

60

70

80

90

100

110

120

130

140

(b) Offload

Fig. 5: Onloaded vs. offloaded bi-directional ping-pong latency

R
u
n
ti
m

e
 (

S
)

P
o
w

e
r 

(W
)

CPU Speed (GHz)

MILC Onload Runtime with Power

1 Node
1 Nodes Power

2 Nodes
2 Nodes Power

4 Nodes
4 Nodes Power

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

1.4
1.8

2.2
2.6

3.0
3.4

3.8
90

170

250

330

410

490

570

650

(a) Onload

R
u
n
ti
m

e
 (

S
)

P
o
w

e
r 

(W
)

CPU Speed (GHz)

MILC Offload Runtime with Power

1 Node
1 Nodes Power

2 Nodes
2 Nodes Power

4 Nodes
4 Nodes Power

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

1.4
1.8

2.2
2.6

3.0
3.4

3.8
90

170

250

330

410

490

570

650

(b) Offload

Fig. 6: Onload vs. offloaded runs of the MILC application

R
u
n
ti
m

e
 (

S
)

P
o
w

e
r 

(W
)

CPU Speed (GHz)

LULESH Onload Runtime with Power

2 Node 2 Nodes Power 4 Nodes 4 Nodes Power

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

1.4
1.8

2.2
2.6

3.0
3.4

3.8
90

170

250

330

410

490

570

650

(a) Onload

R
u
n
ti
m

e
 (

S
)

P
o
w

e
r 

(W
)

CPU Speed (GHz)

LULESH Offload Runtime with Power

2 Node 2 Nodes Power 4 Nodes 4 Nodes Power

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

1.4
1.8

2.2
2.6

3.0
3.4

3.8
90

170

250

330

410

490

570

650

(b) Offload

Fig. 7: Onload vs. offloaded runs of the LULESH application

V. DISCUSSION

This paper has shown that by using host CPUs to perform
network stack processing, networks incur CPU frequency
sensitivity. A logical conclusion from this is that changes in
CPU design, either through frequency reduction or through

migration to many-core architectures, which result in a de-
crease in core sophistication as well as frequency may lead to
network performance degradation over previous generations.
While it is expected that future multi-core server class CPUs
will continue to improve their aggregate performance, single-
thread performance is not expected to continue to improve



Call MILC LULESH
Allreduce 1.15% 2.22%
Irecv 24.71% 30.34%
Isend 24.71% 30.34%
Wait 49.42% 30.34%
Waitall 0.00% 6.73%
Other 0.00% 0.04%

TABLE I: Distribution of MPI Calls

Call MILC LULESH
Allreduce 29.86% 42.68%
Irecv 1.71% 0 %
Isend 13.99% 0.2%
Wait 54.43% 54.02%
Other 0.01% 0.4%

TABLE II: Distribution of Time Within MPI on a Standard
Run

in proportion to aggregate performance increases. As such,
offloaded networking provides a viable alternative for future
generation systems as the networking ASIC approach can
continue to provide good networking performance regardless
of CPU changes as long as future CPUs can continue to
provide low-latency networking requests.

While future systems will provide many compute cores
and rapid intra-node communication methods, the question of
how inter-node communications will be implemented remains
an open question. The results presented in this paper demon-
strate that the offloaded networking model will continue to
provide excellent performance independent of the number and
capabilities of compute cores available on future platforms.
These results still rely on compute cores to perform MPI-level
message matching, which is possible to offload to specialized
hardware [9], [13]. When offloading such tasks to network
hardware, network CPU frequency sensitivity will be further
reduced.

The onloaded networking approach has demonstrated that
it is more frequency sensitive than offloaded networking.
Utilizing multiple cores dedicated to networking processing
may provide better aggregate bandwidth than using a single
core, mitigating this sensitivity for bandwidth limited com-
munications. However, the latencies associated with slower
core frequencies and message processing will not be alleviated
through the use of multiple dedicated communication cores.
This lends further argument towards the use of dedicated
offloaded networking hardware, which can provide both good
bandwidth and latency.

Power consumption is also a concern for future capability-
class systems. The experiments performed in this paper have
demonstrated that networking performance for offloaded ap-
proaches can provide good network performance with major
reductions in the range of 30% with less than 2% or networking
performance loss. This reduction in power is significant when
operating power capped large-scale systems. For over provi-
sioned power-capped systems, the reduction in power can be
used to operate additional computational resources, reducing

application wall clock time. However, such savings can only
be realized during communication periods, which for some
applications may not be a large proportion of execution time.
Therefore, power savings may be limited by application behav-
ior and for applications capable of overlapping communication
and computation, such savings may not be desirable. It is
important to note that the power results have demonstrated
that offloaded vs. onloaded networks are similar in their power
consumption, thereby offering neither approach an advantage
in terms of raw power consumption.

Further application studies showed that onload and offload
networking approaches can diverge in performance at lowered
CPU frequencies for some applications while others are less
impacted by CPU frequency changes. This illustrates that
some applications are less frequency sensitive with respect to
network performance, and therefore a subset of applications
may be able to operate well with a future onloaded network
approach. However, the offloaded networking approach per-
forms well with both of the applications studied leading to the
conclusion that offloaded networking provides several benefits
over onloaded networking while incurring very few negatives,
aside from a slightly increased latency for small messages
when operating at full CPU speeds.

VI. RELATED WORK

The offload-versus-onload debate for high-performance in-
terconnects has been ongoing since network interfaces moved
from the memory bus to the I/O bus in early 1990’s [33].
Early distributed memory on massively parallel processing
machines where the network interface was on the memory
bus, such as the Intel Paragon, had multiple processors per
node and allowed one of these processors to be dedicated to
network protocol processing. With the advent programmable
network interface controllers (NICs), such as Myrinet [12]
and Quadrics [28], offloading a significant portion of network
protocol processing to a dedicated NIC processor became
possible. For MPI-based HPC applications, these networks
allowed offloading of latency-sensitive operations, such as
collective communication operations. However, the benefit of
offloading complex operations, such as tag matching and queue
traversals required for MPI point-to-point communication op-
erations, has continued to be debated. Proponents of onload
have argued that the low performance of embedded processors
in the NIC is prohibitive and that dedicating host processor
cores is not only more efficient, but is also more cost effective,
especially as the number of cores per node continues to grow.

Most interconnects used in large-scale HPC systems today
incorporate some offload capability. IBM’s Blue Gene/Q [15]
and PERCS [6] networks both support offloading of MPI col-
lective operations. Likewise, Cray’s Gemini [4] and Aries [18]
networks support MPI collective communication offload. With
the ConnectX-2 [21] product, InfiniBand network adapters
from Mellanox also began supporting MPI collective com-
munication offload. However, these networks do not offload
the more complex tag matching and queue traversal mech-
anisms needed to handle MPI point-to-point communication
operations. These networks rely on the MPI process running
on host processors for this capability. Techniques like Cray’s
Core Specialization [29] provide a mechanism for dedicating
host processor cores to running an MPI progress thread. This



technique has also been used to improve the performance of
TCP/IP protocol stack processing [30].

There have been a number of offloading attempts for
commodity networks such as ethernet. TCP Offload Engines
(TOEs) are an offload scheme that processes the the majority
of TCP processing. Feng et al, did an in-depth study of TOEs
[19]. Large Receive Offload [22] is a receiver-side offload
scheme that aggregates messages on the NIC to provide data
in fewer large chunks. Large Segment Offload [11] is a sender
side offload scheme that separates a large request into a number
of smaller chunks to send across the network.

More recently, power and energy efficiency of the inter-
connect has become an important consideration for large-scale
data centers [14], [27] and HPC systems [23], [32], providing
a new perspective on the offload-versus-onload debate. Other
works have previously studied the impact that power-efficient
cores have on MPI message rate [10].

VII. CONCLUSIONS AND FUTURE WORK

The key contribution of this study is an analytic, quantita-
tive study of the tradeoffs of network onload and offload. Using
PowerInsight and DVFS, we examined network processing
performance in detail under a number of different conditions.
In examining the differences between onloaded and offloaded
networks for varying host CPU frequencies, an offloaded
networking approach provides approximately equivalent or
superior performance at lower frequencies.

The microbenchmark results clearly illustrate the potential
benefits of network offloading, with power savings in the
20.5% range with only 0.5% performance loss and good
performance down to 1.5% performance loss and power re-
ductions of 30.5%. While onloading can reap greater power
consumption drops, performance at the 1.4GHz level shows
that onloading results in a loss of over half of the available
throughput at higher CPU frequencies. This demonstrates the
tradeoffs in single thread communications performance that
would occur on systems with lowered CPU frequencies, and
can reasonably be expected to be even lower if more simplified
little-cores are used.

While the high-performance computing networking com-
munity has pre-supposed that such outcomes were likely,
this is the first, to the authors’ knowledge, analytical eval-
uation of the performance difference. As such, these results
provide the foundation for further evaluations of the merits
of onload versus offload for next generation systems. For
example, these results clearly demonstrate that single-thread
performance of onloaded networking solutions are restrictive
in emerging many-core architectures. While multi-threaded
approaches could alleviate some of the negative performance
implications that this study exposes, current multi-threaded
MPI implementations perform worse than their single-threaded
counter parts and often involve course-grained, high-contention
locks.

In the future, we plan to expand this study by examining
methods of improving multi-threading in MPI to explore if
onloaded networking can provide similar performance to of-
floaded networks in many-core architectures. If it is possible to
provide similar performance, we will investigate the number of

resources that need to be invested to provide offload equivalent
network performance.

REFERENCES

[1] NERSC-8 System: Cori. https://www.nersc.gov/users/
computational-systems/cori/. Accessed: 2015-03-19.

[2] TACC Stampede user guide. https://portal.tacc.utexas.edu/user-guides/
stampede. Accessed: 2015-03-19.

[3] The Trinity Advanced Technology System. http://www.lanl.gov/
projects/trinity/. Accessed: 2015-03-19.

[4] R. Alverson, D. Roweth, and L. Kaplan. The Gemini system inter-
connect. In High Performance Interconnects (HOTI), 2010 IEEE 18th
Annual Symposium on, pages 83–87, Aug 2010.

[5] K. Antypas. Nersc-6 workload analysis and benchmark selection
process. Lawrence Berkeley National Laboratory, 2008.

[6] B. Arimilli, R. Arimilli, V. Chung, S. Clark, W. Denzel, B. Drerup,
T. Hoefler, J. Joyner, J. Lewis, J. Li, N. Ni, and R. Rajamony. The
PERCS high-performance interconnect. In IEEE Symposium on High-
Performance Interconnects, August 2010.

[7] C. Aubin et al. Fermilab lattice, milc, and hpqcd collaborations. Phys.
Rev. Lett, 94:011601, 2005.

[8] B. W. Barrett, R. Brightwell, R. E. Grant, S. D. Hammond, and
K. S. Hemmert. An evaluation of MPI message rate on hybrid-core
processors. International Journal of High Performance Computing
Applications, 28(4):415–424, 2014.

[9] B. W. Barrett, R. Brightwell, R. E. Grant, S. Hemmert, K. T. Pedretti,
K. Wheeler, K. D. Underwood, R. Reisen, A. B. Maccabe, and T. Hud-
son. The Portals 4.0.2 network programming interface. Sandia National
Laboratories, October 2014. Technical Report SAND2014-19568.

[10] B. W. Barrett, S. D. Hammond, R. Brightwell, and K. S. Hemmert. The
impact of hybrid-core processors on MPI message rate. In Proceedings
of the 20th European MPI Users’ Group Meeting, EuroMPI ’13, pages
67–71, New York, NY, USA, 2013. ACM.

[11] J. S. Binder, G. W. Connery, G. Jaszewski, and W. P. Sherer. Offload of
tcp segmentation to a smart adapter, Aug. 10 1999. US Patent 5,937,169.

[12] N. J. Boden, D. Cohen, R. E. F. A. E. Kulawik, C. L. Seitz, J. N.
Seizovic, and W.-K. Su. Myrinet: A gigabit-per-second local area
network. IEEE Micro, 15(1):29–36, Feb. 1995.

[13] R. Brightwell, K. T. Pedretti, K. D. Underwood, and T. Hudson. Seastar
interconnect: Balanced bandwidth for scalable performance. Micro,
IEEE, 26(3):41–57, 2006.

[14] J. Byrne, J. Chang, K. T. Lim, L. Ramirez, and P. Ranganathan. Power-
efficient networking for balanced system designs: Early experiences
with PCIe. In Proceedings of the 4th Workshop on Power-Aware
Computing and Systems, HotPower ’11, pages 3:1–3:5, New York, NY,
USA, 2011. ACM.

[15] D. Chen, N. A. Eisley, P. Heidelberger, R. M. Senger, Y. Sugawara,
S. Kumar, V. Salapura, D. L. Satterfield, B. Steinmacher-Burow, and
J. J. Parker. The IBM Blue Gene/Q interconnection network and
message unit. In Proceedings of 2011 International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
’11, pages 26:1–26:10, New York, NY, USA, 2011. ACM.

[16] M. Collaboration et al. Mimd lattice computation (milc)
collaboration home page. Information available at
http://physics.indiana.edu/sg/milc.html.

[17] J. Dinan, R. E. Grant, P. Balaji, D. Goodell, D. Miller, M. Snir,
and R. Thakur. Enabling communication concurrency through flexible
message passing interface endpoints. volume 28, pages 390–405. Sage
Publishing, 2014.

[18] G. Faanes, A. Bataineh, D. Roweth, T. Court, E. Froese, B. Alverson,
T. Johnson, J. Kopnick, M. Higgins, and J. Reinhard. Cray Cascade: A
scalable HPC system based on a Dragonfly network. In Proceedings of
the ACM/IEEE International Conference on High-Performance Com-
puting, Networking, Storage, and Analysis (SC’12), November 2012.

[19] W.-c. Feng, P. Balaji, C. Baron, L. N. Bhuyan, and D. K. Panda.
Performance characterization of a 10-gigabit ethernet toe. In High
Performance Interconnects, 2005. Proceedings. 13th Symposium on,
pages 58–63. IEEE, 2005.



[20] A. Friedley, G. Bronevetsky, T. Hoefler, and A. Lumsdaine. Hybrid
mpi: efficient message passing for multi-core systems. In Proceedings
of SC13: International Conference for High Performance Computing,
Networking, Storage and Analysis, page 18. ACM, 2013.

[21] R. Graham, S. Poole, P. Shamis, G. Bloch, G. Bloch, H. Chapman,
M. Kagan, A. Shahar, I. Rabinovitz, and G. Shainer. ConnectX-2
InfiniBand management queues: First investigation of the new support
for network offloaded collective operations. In Cluster, Cloud and Grid
Computing (CCGrid), 2010 10th IEEE/ACM International Conference
on, pages 53–62, May 2010.

[22] L. Grossman. Large receive offload implementation in neterion 10gbe
ethernet driver. In Linux Symposium, page 195, 2005.

[23] T. Hoefler. Software and hardware techniques for power-efficient HPC
networking. Computing in Science Engineering, 12(6):30–37, Nov
2010.

[24] I. Karlin, A. Bhatele, B. L. Chamberlain, J. Cohen, Z. Devito,
M. Gokhale, R. Haque, R. Hornung, J. Keasler, D. Laney, et al.
Lulesh programming model and performance ports overview. Lawrence
Livermore National Laboratory, Tech. Rep. LLNL-TR-608824, 2012.

[25] I. Karlin, J. Keasler, and R. Neely. Lulesh 2.0 updates and changes.
Technical Report LLNL-TR-641973, August 2013.

[26] J. H. Laros III, P. Pokorny, and D. DeBonis. Powerinsight - A
commodity power measurement capability. In The Third International
Workshop on Power Measurement and Profiling in conjunction with
IEEE IGCC 2013, Arlington Va, 2013.

[27] G. Liao, X. Zhu, S. Larsen, L. Bhuyan, and R. Huggahalli. Under-
standing power efficiency of TCP/IP packet processing over 10GbE.
In High Performance Interconnects (HOTI), 2010 IEEE 18th Annual
Symposium on, pages 32–39, Aug 2010.

[28] F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Frachtenberg.
The Quadrics network: High-performance clustering technology. IEEE
Micro, 22(1):46–57, January/February 2002.

[29] H. Pritchard, D. Roweth, D. Henseler, and P. Cassella. Leveraging the
Cray Linux Environment Core Specialization feature to realize MPI
asynchronous progress on Cray XE systems. In Proceedings of the
Cray User Group Conference, May 2012.

[30] L. Shalev, J. Satran, E. Borovik, and M. Ben-Yehuda. Isostack: Highly
efficient network processing on dedicated cores. In Proceedings of
the 2010 USENIX conference on USENIX annual technical conference,
USENIXATC’10, pages 5–5, Berkeley, CA, USA, 2010. USENIX
Association.

[31] Q. O. Snell, A. Mikler, and J. L. Gustafson. Netpipe: A network
protocol independent performance evaluator. 6, 1996.

[32] E. Totoni, N. Jain, and L. Kale. Toward runtime power management of
exascale networks by on/off control of links. In Parallel and Distributed
Processing Symposium Workshops PhD Forum (IPDPSW), 2013 IEEE
27th International, pages 915–922, May 2013.

[33] K. Underwood, R. Brightwell, and S. Hemmert. Network interfaces
for high-performance computing. In A. Gavrilovska, editor, Attaining
High-Performance Communication: A Vertical Approach, pages 149–
168. CRC Press, 2009.

[34] U.S. Department of Energy’s Office of Science. The opportunities and
challenges of exascale computing, 2010.

[35] V. Vasudevan, D. Andersen, M. Kaminsky, L. Tan, J. Franklin, and
I. Moraru. Energy-efficient cluster computing with fawn: Workloads
and implications. In Proceedings of the 1st International Conference
on Energy-Efficient Computing and Networking, pages 195–204. ACM,
2010.

[36] J. Vetter and C. Chambreau. MPIp: Lightweight, scalable MPI profiling.
URL: http://www. llnl. gov/CASC/mpiP, 2005.


