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Redox on clay mineral surfaces h) S

Fe?" bound to

« Redox on clay mineral surfaces: catalysis e LT
. YATOXy.
and direct e fransfer.!4 groups

« Ironin clay minerals: traces to up to 30 ey, — ‘)(- ')ﬁ
wt.%.° .00

« Structural iron is redox-active. ¢/

« Experiments: e transfer at edge sites and Feiposies i g
through basal surface.’
. L . TQ | ziv. |FMN]] RSR | NQ |/|ocPIP]| FeCN | ] ABTS
« Computation: e transfer at edge sites only, ™ o
no evidence for e fransfer through basal L TR | . st
surface.® E R \
. Unique Fe?*/Fe,;, — Eh relationships. 2
Structural parameters (Fe,y. layer charge, £
and quadrupole splitting values) control &
the reactivity of clay structural Fe.?
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Objective ) i,

* Mechanistic model of the clay structural iron (Fe) reactivity

Our previous findings

* Non-reactive Fe(lll)-nontronite is activated (becomes an oxidant) when <20% of structural Fe(lll)
is reduced to Fe(ll). Surface is passivated after reacting.

As(lil) As(V)
Reactive surface Passivated surface

45(‘/) As ; V)aq
v (
Fe(”)aq

Fe(ll)-Fe(lll) moieties Fe(lll)-Fe(lll) moieties

Remaining unknowns

« Does this “activated” nontronite react with other redox-active elements?e
« Reactivity as a function of Fe(ll)/Fe(lll) ratio in the octahedral clay sheet.
« Do impurities in the natural nontronite affect the reactivity?

What is the surface passivation mechanism®@

Experimental approach

« Synthesis and characterization of pure Fe-phyllosilicate

« Compare the reactivity of synthetic Fe-phyllosilicate to the natural and “activated”
nontronites, using As, Cr, and Se species as “probes” 5




Synthesis of Fe-phyllosilicate (SIP) h) S

Sodium Hydroxide, Silicic acid, Ferrous
Sulfate, and Sodium Dithionite
=
c
Aged in Parr vessels, 150°C 9
for 50 hours £
Q
2
©
Washed, centrifuged, aged E
for 24 hours in 1 M NaCl
4 1I4 24 ?;4 4l4 5|4 64 74
Dialyzed for 96 hours in 2 theta
: deionized water « NAu-1 and SIP show similar
— E crystalline structure;
Oxalate treatment to remove F}
iron oxides f .
> * SIP has more fri-octahedral

Composition of NAu-1 domains compared to NAu-1

sio, TiO, ALO, Fe0, Mg0 Ca0 Na,0 K,  Total,
WL % WL % we. % We. % Wt. % Wt. % W, % Wt % %

51.36 0.02 8.15 35.94 0.19 3.57 0.03 0.01 99.5
6

From Keeling et al., 2000


http://auctions.biosurplus.com/view-auctions/catalog/id/111/lot/13169/

XRD

SAXS

FTIR

SEM

BET

Characterization of SIP

SIP crystalline structure matching
nontronite NAu-1

SIP has lower degree of crystallinity
and more fri-octahedral domains
compared to NAuU-1

Similar geometry (platelets) for the
NAu-1and SIP, and liquid crystalline
ordering

Matching Si-O bands at 1100 cm™':
similar silicate framework

Typical platelet geometry, smaller
size in SIP

SIP - 136.6 m?/g, and
NAuU-1 - 46.5 m?/g.
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SAXS

Slope indicative of
m=-27 structure dimensionality

/(m = -2 for ideal 2D material)

Liquid crystalline ordering
of platelets at ca. 5.2 nm

NAu-1
Synthetic

1

FTIR

0O-Si-O

NAu-1
Synthetic

SiO-H

500 1000 1500 2000 2500 3000 3500 4000 4500

cm’

7




o Sandia
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940000 - Oxlate treated (optimum fit) « Fe(ll) content in the SIP

is on the order of 1-3%

920000 f“"""‘" b of total Fe;
900000 -

<  Free of Fe-oxide
o
2 860000 - « Fe(lll)in the
< _ ‘ phyllosilicate
840000 | =~ Experimental n is predominantly (or
—Fe(ll1)-Oct ! completely)
820000 N octahedral.
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X-ray Photoeleciron Spectroscopy i) S

Laboratories

High resolution Fe 3p spectra

Fe(lll)
Ferroceladonite

N

]l NAu-1

Fe (||il
e (1)

b O o o0 o =N

cPs x 107!

Fe (lI) shoulder

N N W W

8 i Binding Es:ergy (eV) % %2 o Binding Es:ergy (eV) 5 %2

* NAuU-1 - exclusively Fe(lll);

« Ferroceladonite — Fe(ll) — preliminary (not accounting for the
shoulder on the left) — 37% in Black shoulder — another Fe(lll)
in a different structural position;

« SIP —minor Fe(ll). 9
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Reactivity experiments )

Hypothesis:

Partial reduction of synthetic Fe-phyllosilicate will activate the surface
and promote oxidation of As(lll) to As(V)

Methods: 1 N-Nont NAU-1
« Batch reactors to track the oxidation of 2 N-Nont-Red NAu-1, activated
As(II); 3 N-SIP SIP
« Prepare passive and activated natural L SIF, activated
nontronite (NAu-1) and synthetic Fe- 5  O-Nont NAu-1
phyllosilicate (SIP); 6 O-Nont-Red  NAu-1, activated
« XRD for phase ID; 7 O-SP SIP
. Liquid Chromatography coupled to the ~ 8 O-SIP-Red SIP activated
ICP-MS for arsenic speciation. 9 O-SIP-Red SIP activated, duplicate
10 O-control No solids
Anoxic (glove box) Oxic (bench top)
I OO e B
1 2 3 4 5 6 7 8 9 10




Structural Fe(lll) reduction As Speciation Analysis () o

Laboratories
< 2 um size fraction LC-ICP-MS
CH,COONH,/CH,COOH buffer * ( m "
to remove carbonates | iy
Citrate-Bicarbonate-
Dithionite treatment [1]
Saturate with Na*
NAu-1 reduced/re-oxidized
35000_ crl” ‘ l T MDdE ” ’ 'Fiev'er'serl;'r‘la'sello'n I"airi;lg' ”
i ) Column: C8 reduced activity; 3 pm x 3 em
30000 c Mobile Phase: 1 mM TBAOH + 0.5 mM"EDTA'l- 5% MeOH
rvi pH=7.0
25000 - : =
b 1 ug/LAs(ln, As(V), Cr(ll,
20 T and Cr(VI) solution
15000 - Example chromatogram
from PerkinElmer
10000+ supporting documentation
5000+ e e
0- :
* Natural clay from Clay Mineral Society Repository 0 2 4
[1] Stucki, J. et al. (1984) Clays and Clay Minerals 32, 191 Time (min) 11



Reactivity of SIP and NAu-1
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« Surfaces are inactive if no Fe(ll) in the octahedral sheet;

« Surfaces are activated by partial reduction:
« Catalyze oxidation of As(lll) by dissolved O,;

« Surfaces passivate with reaction progress.

12




Reactivity of SIP and NAu-1 ) i,
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« Surfaces are activated by partial reduction:
« Direct oxidation of As(lll) by octahedral Fe(lll);
« Higher degree of oxidation for SIP vs NAu-1;

« Surfaces passivate with reaction progress. 13




Summary rh

« SIP and NAu-1 have similar structure;
« Surfaces are inactive if no Fe(ll) in the octahedral sheet;
« Surfaces are activated by partial reduction:
« Catalyze oxidation of As(lll) by dissolved O,;
« Direct oxidation of As(lll) by octahedral Fe(lll);
« Surfaces passivate with reaction progress.

(1) HASO,+1,0,(aq) —> H,ASO, + H*

e H;AsO; + [Fe,O0;] —> H,AsO, + H* + 2[Fe(]

(3) [FeOl+H,0 —> Fe?+20H

(1)
As(lll) As(V)

Reactive surface é’é Fast SIOW@ Passivated surface

As(Ill) ~4\5( V) As‘}v)aq As(11])aq |00
N N Tt Q T :
2e
Fe(ll)ag > Fe(lll) PRXEE

VRN
Fe(lll)-Fe(lll) moieties

Fe(ll)-Fe(lll) moieties @
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Planned Work ) e,
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- Determine whether Cr(lll) is oxidized < Probe the reactivity while varying
directly by the structural Fe(lll) initial Fe(ll)/Fe(lll) ratio

High resolution Cr 2p spectra

Percentage of As(lll)

] anoxic reactors
720] Cr ("l) N-SIP
] 100% O O ®
710]
) N-R
2 700] 96%
so0] 3z N-VR
92% -
680_]
11 0.3-0.5 at % detected \ 88% S
870, 0 24 48 72 96 120 144 168
‘592 588 584 80 16 572 Time (hours)
Binding Energy (eV)

Kinetics of e fransfer using time-resolved diffuse reflectance of the UV-vis absorption
band at 730 nm - the Fe(ll)-O-Fe(lll) intervalence transfer band.

Determine how nontronite surface is passivated: does structural Fe dissolve and re-
precipitate as Fe-oxide?¢
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