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Motivation

All models are wrong in principle
Models of physical systems rely on

Presumed theoretical framework
Mathematical formulation

Practical models of complex physical systems rely on
Simplifying assumptions
Numerical discretization of governing equations
Computational software & hardware

model error is frequently non-negligible
Estimating model error is useful for

model comparison & validation
model improvement & scientific discovery
reliable computational predictions
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Statistical modeling of model error

Error framework:

Measurements: ydata = ytruth + εd

Model predictions: ytruth = ymodel + εm

Thus: ydata = ymodel + εm + εd

Error modeling – example

Model: ymodel = f (x, λ)

Data Error: εd ∼ N(0, σ2)

Model Error: εm ∼ GP(µ(x),C(x, x′))

Model calibration:
Estimate model parameters λ along with those of εm, εd
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Challenges – Physical Models

arbitrary choice of statistical model (e.g. GP) spatial
structure does not take the physical model into acct

potential violation of implicit constraints in physical models
e.g. incompressible flow: ∇ · v = 0

difficulty in disambiguation of model & data error

calibration of model error on measured observable does
not impact quality of other model predictions

Physical scientists are unlikely to augment their model with
a statistical model error term on select outputs
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Key idea - Targeted model error embedding

Embed model error in specific submodel phenomenology
(Berliner)

a modified transport or constitutive law
a modified formulation for a material property

Pros:
Allows placement of model error term in locations where
key modeling assumptions and approximations are made

as a correction or high-order term
as a possible alternate phenomenology

explore if it can explain discrepancy on observable
naturally preserves model structure and associated
constraints

Cons:
complex likelihood p(y|λ) for general nonlinear f (x, λ, εm)
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Consider a simple no-data-noise setting

Calibration of a (simple) model against a complex model
Let the complex model be presumed to represent the truth
In this context, the data has no noise
Discrepancy between model and data is all due to model
error

ydata = ytruth = ycomplex_model = ymodel + εm

εm = ydata − ymodel is a deterministic quantity
The only information as to the quality of the calibrated
uncertain model, e.g. via a posterior predictive check, is in
a unique εm for any x
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model-to-model calibration

Model: y = f (x, λ, φ(εm))

– Random variable φ in augmented model components
carries model error

Data: D = {(xi, ydata,i), i = 1, . . . ,N}

Goal:
Establish λ, p(φ) such that the likelihood of the data is high,
based on the posterior predictive p(y|D)

This puts us in a density estimation framework for φ:
The utility of additional data is to improve the specification
of λ, and p(φ)
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Present Context

Embed εm in λ
Model: y = f (x, λ) with λ : Ω→ RM

Density estimation problem for p(λ)

Let the random variable λ be parameterized by α
For example, define λ as a polynomial chaos expansion

λ =

P∑
k=0

αkΨk(ξ)

Parameter estimation problem for α = (α0, · · · , αP)

Bayesian setting
Prior π(α)
Likelihood L(α) = p(D|α)
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Likelihood construction – variants

Full Likelihood
L(α) = p(D|α) = p(ydata,1, . . . , ydata,N |α)

Marginalized Likelihood

L(α) = p(D|α) =

N∏
i=1

p(ydata,i|α)

Approximate Bayesian Computation (ABC):
Seek to satisfy the constraints:

p(y|D) is “centered" on the data

The width of the distribution p(y|D) is “consistent" with the
spread of the data around the nominal model prediction
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Approximate Bayesian Computation (ABC)

Employ a kernel density as a pseudo-likelihood to enforce
select constraints:

Uncertain prediction p(y|D) is centered on the data

With µi(α) = Eξ[f (xi, λ(ξ;α))]:

minimize ‖ µi(α)− ydata,i ‖2
2

The width of the distribution p(y|D) is consistent with the
spread of the data around the nominal model prediction

With σ2
i (α) = Vξ[f (xi, λ(ξ, α))]:

minimize ‖ σi(α)− γ|µi(α)− ydata,i| ‖2
2

γ is a factor that specifies the desired match between σi

and the discrepancy |µi(α)− ydata,i|, on average
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ABC Likelihood

With ρ(S) being a metric of the statistic S, use the kernel
function as an ABC likelihood:

LABC(α) =
1
ε

K
(
ρ(S)

ε

)
where ε controls the severity of the consistency control

Propose the Gaussian kernel density:

Lε(α) =
1

ε
√

2π

N∏
i=1

exp
(
−(µi(α)− yd,i)

2 + (σi(α)− γ|µi(α)− yd,i|)2

2ε2

)
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Test problem – Cubic data fit by a line

N = 11
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MAP predictive (MP) mean centered on data
MP standard deviation captures range of discrepancy
Increasing number of data points has a small effect on
both MP mean and stdev
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Test problem – Cubic data fit by a quadratic

N = 11
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Quadratic has better fit to the data
Smaller MP stdev consistent with smaller discrepancy
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Test problem – Cubic data fit by a cubic

N = 11
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Cubic has perfect fit to the data
Negligible MP stdev consistent with negligible discrepancy
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Consider a noisy-data setting

Calibration of a model ym = f (x, λ) against noisy data
Synthetic noisy data is generated from a “truth" model +
Gaussian noise
Discrepancy between fit model prediction and data is due
to both model error & data noise

y = ydata = ytruth + ε = f (x, λ) + ε

Modeling strategy:
Model λ as a random vector, represented with PC
Represent the noise similarly using PC
Estimate all PC coefficients using ABC
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Model Error formulation – noisy data

y = f (x, λ) + ε

Let ε ∼ N(0, σ2). With N i.i.d. data points we have

yi = f (xi, λ) + εi, i = 1, . . . ,N

For Hermite-Gaussian PC:

λ =

P∑
k=0

αkΨk(ξ1, · · · , ξd), α ≡ (α0, · · · , αP)

f (x, λ) =
P∑

k=0

fk(x, α)Ψk(ξ1, · · · , ξd)

yi = h(xi, α, σ, ξ) =

P∑
k=0

fk(xi, α)Ψk(ξ1, · · · , ξd) + σξd+i

Augmented PC germ ξ = (ξ1, · · · , ξd, ξd+1, · · · , ξd+N)
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Model Error Estimation – noisy data

Inverse problem:
Given:

data:
D = {(xi, yi)}N

i=1

data model:
for i = 1, . . . ,N :

yi = h(xi, α, σ, ξ) =
∑

k fk(xi, α)Ψk(ξ1, · · · , ξd)+σξd+i

estimate (α, σ).
Bayesian context:

posterior: p(α, σ|D)

options: Full Bayesian likelihood; Marginalized; ABC
ABC : Estimate (α, σ) s.t. mean and stdv of h(x, α, σ, ξ)

are consistent with D in an `2-sense
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Calibrated Uncertain Model Predictions

Calibrated model : y = f (x;λ(ξ;α))

Pushed forward posterior : p(f (x;λ(ξ;α))|D)

PFP Mean :

EPFP[f (x;λ(ξ;α))] = Eα[Eξ[f ]]

PFP Variance:

VPFP[f (x;λ(ξ;α))] = Eα[Vξ[f ]]︸ ︷︷ ︸
∼model error

+ Vα[Eξ[f ]]︸ ︷︷ ︸
∼ data noise
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Cubic-quadratic fitting – Classical Bayesian likelihood
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Cubic-quadratic fitting – Model Error ABC Likelihood
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Cubic-quadratic – Model Error – ABC
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Cubic-quadratic – Model Error – ABC
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Closure

Presented a strategy for dealing with model error
targeted at physical models

Density estimation framework – y = f (x;λ(ξ;α))

ABC : data model is constrained such that
nominal prediction is centered on the data
predictive uncertainty is consistent with discrepancy fr. data

Uncertain predictions with the calibrated model include
uncertainty due to both model-error and data-noise
Results suggest disambiguation of the two components
Uncertainty due to data-noise:

Manifested in Vα[Eξ[f ]] – Reducible with more/cleaner data
Uncertainty due to model-error:

Manifested in Eα[Vξ[f ]] – Not reducible
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