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Introduction
Motivation

@ All models are wrong in principle
@ Models of physical systems rely on

@ Presumed theoretical framework
e Mathematical formulation

@ Practical models of complex physical systems rely on
e Simplifying assumptions
e Numerical discretization of governing equations
e Computational software & hardware

@ model error is frequently non-negligible

@ Estimating model error is useful for

@ model comparison & validation
e model improvement & scientific discovery
e reliable computational predictions
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Introduction
Statistical modeling of model error

Error framework:

Measurements: Vdata = Yuruth + €4
Model predictions: Yruth = Ymodel + €m
Thus: Ydata = Ymodel + €m + €4

Error modeling — example

Model: Ymodel :f(xa )‘)
Data Error: €q ~ N(0,0?)
Model Error: em ~ GP(u(x), C(x,x'))

Model calibration:
Estimate model parameters X along with those of ¢, ¢4
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Challenges — Physical Models

@ arbitrary choice of statistical model (e.g. GP) spatial
structure does not take the physical model into acct

e potential violation of implicit constraints in physical models
e e.g. incompressible flow: V-v =10

@ difficulty in disambiguation of model & data error

@ calibration of model error on measured observable does
not impact quality of other model predictions

@ Physical scientists are unlikely to augment their model with
a statistical model error term on select outputs
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Introduction

Key idea - Targeted model error embedding

@ Embed model error in specific submodel phenomenology
o (Berliner)
e a modified transport or constitutive law

e a modified formulation for a material property

@ Pros:

o Allows placement of model error term in locations where
key modeling assumptions and approximations are made

@ as a correction or high-order term
@ as a possible alternate phenomenology

e explore if it can explain discrepancy on observable
e naturally preserves model structure and associated
constraints

@ Cons:
e complex likelihood p(y|\) for general nonlinear f(x, A, €,,)
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Introduction

Consider a simple no-data-noise setting

Calibration of a (simple) model against a complex model
Let the complex model be presumed to represent the truth
In this context, the data has no noise

Discrepancy between model and data is all due to model
error

Ydata = Ytruth = Ycomplex_model = Ymodel 1 €m

€m = Ydata — Ymodel IS @ deterministic quantity

The only information as to the quality of the calibrated
uncertain model, e.g. via a posterior predictive check, is in
a unique ¢, for any x

\E} Calib



Proposed
model-to-model calibration

Model: y=f(x, X\ d(em))

— Random variable ¢ in augmented model components
carries model error

Data: D = {(xiyydata,i)ai: 1,...,N}

@ Goal:

e Establish A, p(¢) such that the likelihood of the data is high,
based on the posterior predictive p(y|D)

@ This puts us in a density estimation framework for ¢:

e The utility of additional data is to improve the specification
of A\, and p(¢)
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Proposed
Present Context

Embed ¢, in A
@ Model: y=f(x,\) with A : Q@ — RM
@ Density estimation problem for p(\)

@ Let the random variable \ be parameterized by o
e For example, define A as a polynomial chaos expansion

,
A=) o Wi(6)
k=0

@ Parameter estimation problem for o = (ag, - - , ap)
@ Bayesian setting

@ Prior m(«)
o Likelihood L(«) = p(D|«)
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Proposed

Likelihood construction — variants

@ Full Likelihood
L(a) = p(D|Oé) = p(ydata,la . 7ydata,N|05)

@ Marginalized Likelihood
N

L(a) = p(Dla) = [] pOasiler)

i=1
@ Approximate Bayesian Computation (ABC):
Seek to satisfy the constraints:
e p(y|D) is “centered" on the data

e The width of the distribution p(y|D) is “consistent" with the
spread of the data around the nominal model prediction
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Proposed

Approximate Bayesian Computation (ABC)

Employ a kernel density as a pseudo-likelihood to enforce
select constraints:

@ Uncertain prediction p(y|D) is centered on the data
o With pi(r) = Ee[f(xi, A(&; ))]:
minimize || pi(c) = yaaa,i 3
@ The width of the distribution p(y|D) is consistent with the
spread of the data around the nominal model prediction
e With o?(a) = V¢[f(xi, A&, @))]:
minimize || oi(e) = v]pi(e) = Yaaw,l II3

e ~ is a factor that specifies the desired match between o;
and the discrepancy |u;(a) — Yaan,i|, ON average
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ABC Likelihood

With p(S) being a metric of the statistic S, use the kernel
function as an ABC likelihood:

Lapc(o) = %K (p(S))

€

where e controls the severity of the consistency control

Propose the Gaussian kernel density:

1 (i) — ya)* + (oi(@) — ylpi(@) — yail)?
ev2r H =P <‘ 28 >

Le(a) =
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Test problem — Cubic data fit by a line

e o Complex model, g(z) e ¢ Complex model, g(z)
— MAP predictive mean, Z) () 1.° — MAP predictive mean, Z2* ()
d I MAP predictive stdev, 22 (z) d * I MAP predictive stdev, / 27 (z)
o o
g g
55 5 5
o o
S4 S4
o o
=3 =3

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
X X

@ MAP predictive (MP) mean centered on data
@ MP standard deviation captures range of discrepancy

@ Increasing number of data points has a small effect on
both MP mean and stdev
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no-noise

Test problem — Cubic data fit by a quadratic

e o Complex model, g(z) e ¢ Complex model, g(z)
4 — MAP predictive mean, Z) () 7.0 — MAP predictive mean, Z2* ()
d I MAP predictive stdev, 22 (z) d I MAP predictive stdev, / 27 (z)
o o
A 3
EE 55
o o
34 34
o o
= = 0000
o o
. o
... .
®ee.
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

@ Quadratic has better fit to the data
@ Smaller MP stdev consistent with smaller discrepancy

\E} Calib



no-noise

Test problem — Cubic data fit by a cubic

e o Complex model, g(z) e ¢ Complex model, g(z)
— MAP predictive mean, Z) () . — MAP predictive mean, Z2* ()
\ I MAP predictive stdev, { 227 (z \ I MAP predictive stdev, / 27 (z)
o o
g gl \
3 3
2 \ o \
34 34
o o
= \ e = \\ ee0ettee,
W
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

@ Cubic has perfect fit to the data
@ Negligible MP stdev consistent with negligible discrepancy
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noise

Consider a noisy-data setting

@ Calibration of a model y,, = f(x, \) against noisy data
@ Synthetic noisy data is generated from a “truth" model +
Gaussian noise

@ Discrepancy between fit model prediction and data is due
to both model error & data noise

Y = Ydata = Ytruth + € :f(x, )\) + €

@ Modeling strategy:
e Model A as a random vector, represented with PC
e Represent the noise similarly using PC
e Estimate all PC coefficients using ABC
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noise

Model Error formulation — noisy data

y=f(x,\)+e
Let e ~ N(0,02). With N i.i.d. data points we have

yi=f(xi,\) +e, i=1,...,N

For Hermite-Gaussian PC:
P
A= Zak‘llk(£17"' 75&1’)7 CEE(O((),--- ,(XP)
k=0

) = Y flna) e, &)
k=0

P

yi = h(x,a,0,8) = ka(xi, a) Vi1, 5 &) + 0bavi

k=0

Augmented PC germ & = (&1, -+, &a, &av1s -+ 5 Eain)
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noise

Model Error Estimation — noisy data

Inverse problem:

@ Given:
e data:
D = {(x;,yi) }iL,
e data model:
fori=1,...,N:

yi = h(xi, ,0,8) =3 fulxi, ) Wi(&r, -+ §a) +08ari
@ estimate («, o).
Bayesian context:
@ posterior: p(«a, o|D)
@ options: Full Bayesian likelihood; Marginalized; ABC

@ ABC : Estimate («, o) s.t. mean and stdv of A(x, a, 0, &)
are consistent with D in an /,-sense
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Calibrated Uncertain Model Predictions

@ Calibrated model : y = f(x; A(§; )
@ Pushed forward posterior : p(f(x; A(§; «))|D)
@ PFP Mean :

Eprp[f (x; A(&; )] = Eq[Eef]]
@ PFP Variance:

Veeplf (3 A(& )] = Ea[Ve[f]] + ValEelf]]

~ model error  ~ data noise
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noise

Cubic-quadratic fitting — Classical Bayesian likelihood

8 sl A
7 7
6 . 6 -
5 5 N\ o .
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noise

Cubic-quadratic fitting — Model Error ABC Likelihood

N=10

-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

@ With additional data,
predictive uncertainty
around the wrong model is
not reducible

@ Predictive uncertainty is

indicative of discrepancy
from truth
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noise

Cubic-quadratic — Model Error — ABC

- M W A O N ®
- N W A O N ®

a=1.0
a0 05 0.0 05 1.0

@ Predictive uncertainty
composed of both
model-error and
data-noise components

@ The data-noise component
is reducible with
lower-noise in the data

g =0.1
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noise

Cubic-quadratic — Model Error — ABC

- M W A O N ®

- N W A O N ®

e With additional data,

|- A
predictive uncertainty due 7 \s&
to data noise is reducible  ° DX
@ Predictive uncertainty due .
to model error is not 3 .
reducible 2 *
N =20
1.0 0.5 0.0 0.5 1.0
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Closure
Closure

@ Presented a strategy for dealing with model error
e targeted at physical models
Density estimation framework — y = f(x; A(&; «))
ABC : data model is constrained such that
e nominal prediction is centered on the data
e predictive uncertainty is consistent with discrepancy fr. data

Uncertain predictions with the calibrated model include
uncertainty due to both model-error and data-noise

Results suggest disambiguation of the two components
Uncertainty due to data-noise:

e Manifested in V,,[E¢[f]] — Reducible with more/cleaner data
Uncertainty due to model-error:

e Manifested in E,[V¢[f]] — Not reducible
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