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A question? ) .

Which is harder (pick a reasonable definition of “hard”)?

Finding an optimal solution Finding a solution within

99% of the time 99% of optimal all the time

Which is more practically relevant?




A question? )

Which is harder (pick a reasonable definition of “hard”)?

Finding an optimal solution Finding a solution within

99% of the time 99% of optimal all the time

“Average”-case analysis, Approximation algorithm,

rather than worst-case or approximation scheme
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How should we measure success? M.

Optimal 99% of the time

ARangel T T T T Instances: D-Wave 2 Chimera graph
with randomly chosen coupler weights

108

107
108 |
10° |

10t =
10% |

Total time [us]

10° F =~ ]
Vs Ve v vim v v vim van EXponential” scaling as c\/H for both

0 e D-Wave 2 and simulated annealing

107 F HH 99% H 75%
— 95% ] 50%

10*

"% 6
210°L 1 90%
Q
5
E10°f
= -
T Z
.}E 104 = = T R
o o=
= ® L=
ZZ5

103 = i—_g—»——"‘}’r
,/I/

102

V8 V32 V12 V128 V200 V288 V392 V512
Linear problem size V N




How should we measure success? M.

A)Rangel 55,000 random {-1,1}-weight instances
* on 509-qubit D-Wave Two

108

107
108 |

10° |
10t =
108 |

Total time [us]

10 F =~

10*

Vs V3 Jiz vizs Jao vass Vs V5

108

B) Range 7
107} HH 99% - 75%
1 95% [ 50%

Z10°F 1 90%

]

E100} g e . _
f VR S L —==7

o 107 ~E2ZZ

= 3737 96 97 98 99 100

103 = i—_g—,——"‘}’r
,/I/

2 % of optimal
W s V5 v Vi Va0 Vo Vewm o2

Linear problem size V N

Was always within 96% of optimal!
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We ask .

= What is an appropriate measure of success?
=  Which are of practical significance?

=  Which lead to good science?

= What classical algorithm(s) should be used for comparison?
= How should they be configured?

= Fair comparison of classical and quantum resources?

= How should one select appropriate benchmark instances?

= Are purely random instances meaningful?

= How do we bridge the gap to complex real-world instances?




Benchmarking goals ) .

= Assess current and projected future performance of D-Wave

= Compare against variety of classical algorithms, including real-
world heuristics on real-world-like instances

= |dentify barriers and work-arounds in formulating and
representing problems on AQCs

= Place D-Wave community benchmarking results in context
= Gap between quantum algorithms and quantum software

= (Theoretical) algorithms: worst-case, big-O running times and P vs NP issue
= (Real-world) software

= |nstances of NP-hard problems solved routinely

= Software engineering and factors hidden by big-O matter
= New field: Quantum Software Engineering

= Quantum software for specific architectures rather than pseudo-code

= Algorithms must be designed to leverage architectural limitations 7



The Elephant in the room ) i,

e Sandia focus: general D-Wave-agnostic (A)QC

e D-Wave is a specific technology (superconducting flux qubit) and
architecture

e We ask more general questions: how do quantum resources and
architectural implementations affect problem-solving capacity?

e Other qubit technologies at Sandia: silicon, trapped neutral atoms, and
trapped ions
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Comparison of Rainier and Vesuvius chips

Vesuvius
506/512
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D—Wave Two

D-Wave One

Images from D-Wave Systems: http://www.dwavesys.com .
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Eight qubit cell architecture ) i

R.Harris et al., Phys. Rev. B 82,02451 1 (2010)




QUBO
(Quadratic Unconstrained Binary Optimization)

QUBO: f(x) = min b'x+ x"Cx
xe{0,1}"

® Well-suited for discrete optimization
applications

® Variables correspond to qubits

3 y
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Solving problems with D-Wave: challenges [z,

=  Application graph must be embedded within Chimera graph
= Requires extra qubits; worst case: O(n?) qubits for n nodes
= Very hard to determine a good embedding for a given graph

= Typical approaches to embedding require large weights to force all
gubits corresponding to a node have same spin

= Efficiency: #(application graph nodes)/#(qubits in Chimera graph)
| o o0 ©

Cl) . ‘ Qubit interaction

Graph

Application
Graph
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e Random Ising instances on Chimera graph

Example: hard problem

T I I

& & D-Wave find once 99%
&9 D-Wave avg. time to sol.
&9 Selby avg. time to sol.
@9 Selby find and prove sol.

!

Vs V32 VT2

V128 V200 V392 V512

V 288
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e Pro: avoids embedding

e Con: limited practical significance

e Standard instances for D-Wave benchmarking

e We proved that these instances are NP-hard
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Example: easy problems
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Independent Set (IS) [left]: fundamental comb. opt. problem
Affinity Independent Set (AIS) [right]: new social network analysis variant
IS solvable in polynomial time on Chimera, yet appears hard for D-Wave
AlS likely solvable in polynomial time too, yet appears easy for D-Wave
AlS is just IS with -1,+1 linear-term weights rather than 0,1 as for IS
lllustrates difficulties in empirical benchmarking vs theoretical analysis &

impact of problem formulation




Example: open problem ) .

10°

& & D-wave find once 99%
9 D-Wave avg. time to sol,
&9 Selby avg. time to sol.
&9 Selby find and prove sol.
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e “Frustrated loop” instances by Itay Hen et al. [AQC Workshop, 2014]
e Potential example of a “win” for D-Wave

e However, we show solution value can be computed in polynomial time

15




Configuration matters (=

e Random instances on D-Wave hardware T ou
e {-1,1} coupler values z 4  cplo
e D-Wave Two finds optimal in 0.5 sec, a, :
while classical algorithms scale poorly ) ji¥ _____
[McGeoch and Wang, Conf. Computing Frontiers e
2013: 23] Instance Size n
o Claimed 3600X Speedup Figure 1: Success rates: proportion of best solutions

found in 491ms CPU time (tabu, amax, cplex soft-
ware) and exclusive access time (QA hardware).

e We observe classical Integer Program solvers
match performance with appropriate model
[also Dash, arXiv:1306.1202v2 (2013)]

o Speedup vanishes with proper configuration/usage

e QUBO vs Ising

e Random instance with linear term appear easy for
former but hard for latter! L N L

Chimera graph size (nodes)

6

e—e { 0,1}-variable QUBO
=—a {-1,1}-variable QUBO

CPLEX avg. CPU time (sec.)
w S~ w

N

-

Figure 2: We observed CPLEX performance on
random {0,1}-variable QUBO can match D-
Wave performance as reported above by
McGeoch and Wang.


http://www.informatik.uni-trier.de/~ley/db/conf/cf/cf2013.html#McGeochW13
http://arxiv.org/abs/1306.1202v2

D-Wave system scaling ) i
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Complex networks on the Chimera graph
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= New approach to circumvent embedding
= Generate complex network simultaneously while embedding it

= Efficiency for 512-node Chimera around 50% vs 6.25% worst

case 18
-



Generating complex networks on a 1 =
Chimera graph

= Mapping arbitrary graph to Chimera is hard
= |nstead, alter Chimera graph to have “real-world” properties

= Merge nodes to increase node degree
= Remove edges between nodes to selectively decrease degree
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Real-world complex networks

BGP | Twitter

Num Nodes




From weighted to unweighted QUBO @.

N 2{1511} Z Ajjxir; + Z CiTi

Weighted * 3.SAT * Independent Unweighted

QUBO Set Ising/QUBO
(Z,7) = y,J\/a:l\/xJ)/\(yw\/xl\/:cj)/\ min T 7

ijEE zi€{-1 ”32 o z‘ezx;f

(Yij Vi VT;) A (ysj VT V x5)

This reduction converts a weighted instance into an
unweighted but larger instance, enabling a trade off
between coupler precision and qubits. 21




Contributions ) .

Brought real-world problems and instances to bear

Developed more rigorous benchmarking methodology

= Exposed importance of success criterion and algorithm
selection and configuration

= Drawing from theoretical CS techniques and results
= Demonstrated formal hardness of widely used instances
= Techniques for circumventing D-Wave architectural limitations

= Novel technique for sidestepping embedding issues by
generating social network minors within Chimera graph

= Trading off coupler precision and qubits via NP reductions
= New QUBO formulations for complex network analysis problems

22




Concluding thoughts on D-Wave ) =

e Even if D-Wave’s machines are truly quantum computers, the user is
shielded from the quantumness

e Convenient to think of D-Wave as a QUBO-solving black box that
implements a particular meta-heuristic
(e.g. akin to simulated annealing)

e With the above perspective: benchmark and analyze D-Wave
performance as we do with other meta-heuristics

e Fair point of comparison would be against, e.g., best classical
(approximate/randomized) QUBO solvers

e Limited Chimera connectivity and coupler precision are most
significant barriers to solving interesting and real-world instances

e “Arms race” between classical and D-Wave/quantum is healthy




Supplementary slides
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Complexity of QUBO on Chimera ) .

(Decision version) NP-complete even with no linear term and
{-1, 0, 1} weights [Barahona, 1982]

We show NP-complete with no linear term and {-1,1} weights

= |nstances used in D-Wave benchmarking studies
Tree-width (path-width) is ©(y/n), yielding 0(2\/5) algorithm
= “Subexponential” exact algorithm even though NP-hard

= Approximation complexity?

= Polynomial-time approximation scheme (PTAS)
[Saket, 2013, arXiv:1306.6943]

= PTAS’s are rarely efficient; theory vs practice?
» Efficient approx algorithm for say, getting within 90%?

25




Limits of reducing to Chimera )

Can we do better than a quadratic blowup in qubits?
= Probably not, due to Exponential Time Hypothesis

= Problems like Max-Cut on general graphs are conjectured
to require O(2") time

= But we have a 0(2‘/5) time algorithm for Chimera Ising

= So in some sense quadratic factor is artifact of Chimera

= Weights make this worse: Choi embedding assumes (linearly)
large weights

= Reduction better than O(n2) for Max-Cut on bounded-degree
graphs would improve best-known classical algorithm

= Applies to any reduction, not just minor embeddings

26




Max-Cut as model problem ) .

= NP-complete on bipartite graphs with weights {-1,1}
= Replace each edge by a path of +1 and -1 edge
= Max-Cut essentially equivalent to Ising problem
= Can use an apex vertex to model linear term
We give reduction from weighted QUBO to unweighted QUBO
= Unroll and optimize existing chain of reductions

= Weights are a significant barrier in D-Wave benchmarking

Our reduction only incurs linear blowup on bounded-degree
graphs

= However, does not preserve Chimera structure

27




Weighted QUBO as 3-SAT ) e,




3-SAT as unweighted Ising ) .

= Standard reduction from 3-SAT to Independent Set

= Usual Ising formulation of Independent Set:
! ity — > dix;
LD iy = ) de
1JER eV
= New formulation on graph where each edge replaced
by 3-path circumvents linearly large weights above:

min




Independent set as Ising

o

WLOG: -1 side is an independent set

Objective value:
=51+ (VI =1S]) = 3[E| = [V| = 2[S| - 3|E]



