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A	
  question?

2

Which	
  is	
  harder	
  (pick	
  a	
  reasonable	
  definition	
  of	
  “hard”)?

Finding	
  an	
  optimal	
  solution	
  
99%	
  of	
  the	
  time

Finding	
  a	
  solution	
  within	
  
99%	
  of	
  optimal	
  all	
  the	
  time

Which	
  is	
  more	
  practically	
  relevant?
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Which	
  is	
  harder	
  (pick	
  a	
  reasonable	
  definition	
  of	
  “hard”)?

Finding	
  an	
  optimal	
  solution	
  
99%	
  of	
  the	
  time

Finding	
  a	
  solution	
  within	
  
99%	
  of	
  optimal	
  all	
  the	
  time

Approximation	
  algorithm,	
  
or	
  approximation	
  scheme

“Average”-­‐case	
  analysis, 
rather	
  than	
  worst-­‐case



How	
  should	
  we	
  measure	
  success?
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Instances: D-Wave 2 Chimera graph 
with randomly chosen coupler weights
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FIG. 4. Speedup for ratio of quantiles for the DW2
compared to SA. A) For instances with range r = 1. B)
For instances with range r = 7. Shown are curves from the
median (50th quantile) to the 99th quantile. 16 gauges were
used. In these plots we multiplied Eq. (6) by 512 so that
the speedup value at N = 512 directly compares one DW2
processor against one classical CPU.

the DW2 does not exhibit a speedup over SA for this
particular benchmark.

3. Wall-clock time

While not as interesting from a complexity theory
point of view, it is instructive to also compare wall-clock
times for the above benchmarks, as we do in Figure 5. We
observe that the DW2 performs similarly to SA run on a
single classical CPU, for su�ciently large problem sizes
and at high range values. Note that the large constant
programming overhead of the DW2 masks the exponen-
tial increase of time to solution that is obvious in the
plots of pure annealing time.

FIG. 5. Comparing wall-clock times A comparison of the
wall-clock time to find the solution with probability p = 0.99
for SA running on a single CPU (dashed lines) compared to
the DW2 (solid lines) using 16 gauges. A) for range r = 1,
B) for range r = 7. Shown are curves from the median (50th
quantile) to the 99th quantile. The large constant program-
ming overhead of the DW2 masks the exponential increase of
time to solution that is obvious in the plots of pure annealing
time. Results for a single gauge are shown in the Supplemen-
tary Material.

D. Instance-by-instance comparison

1. Total time to solution

We now focus on the question of whether the DW2
exhibits a limited quantum speedup for some fraction of
the instances of our benchmark set. To this end we per-
form individual comparisons for each instance and show
in Figure 6A-B the ratios of time to solution between
the DW2 and SA, considering only the pure annealing
time. We find a wide scatter, which is not surprising
since we previously found that DW1 performs like a sim-
ulated quantum annealer, but correlates less well with a
simulated classical annealer [25]. We find that while the
DW2 is sometimes up to 10⇥ faster in pure annealing
time, there are many cases where it is � 100⇥ slower.

Considering the wall-clock times, the advantage of the
DW2 seen in Figure 6A-B for some instances tends to

Optimal 99% of the time

LeQ:	
  Ronnow	
  et	
  al.,	
  Defining	
  and	
  detec.ng	
  quantum	
  speedup,	
  arXiv:1401.2910v1	
  (2014)

“Exponential”	
  scaling	
  as	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  both	
   
D-­‐Wave	
  2	
  and	
  simulated	
  annealing	
  	
  	
  	
  	
  

c
p
n
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  success?
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observe that the DW2 performs similarly to SA run on a
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and at high range values. Note that the large constant
programming overhead of the DW2 masks the exponen-
tial increase of time to solution that is obvious in the
plots of pure annealing time.
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quantile) to the 99th quantile. The large constant program-
ming overhead of the DW2 masks the exponential increase of
time to solution that is obvious in the plots of pure annealing
time. Results for a single gauge are shown in the Supplemen-
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D. Instance-by-instance comparison

1. Total time to solution

We now focus on the question of whether the DW2
exhibits a limited quantum speedup for some fraction of
the instances of our benchmark set. To this end we per-
form individual comparisons for each instance and show
in Figure 6A-B the ratios of time to solution between
the DW2 and SA, considering only the pure annealing
time. We find a wide scatter, which is not surprising
since we previously found that DW1 performs like a sim-
ulated quantum annealer, but correlates less well with a
simulated classical annealer [25]. We find that while the
DW2 is sometimes up to 10⇥ faster in pure annealing
time, there are many cases where it is � 100⇥ slower.

Considering the wall-clock times, the advantage of the
DW2 seen in Figure 6A-B for some instances tends to

Within 99% of optimal all of the timeOptimal 99% of the time

LeQ:	
  Ronnow	
  et	
  al.,	
  Defining	
  and	
  detec.ng	
  quantum	
  speedup,	
  arXiv:1401.2910v1	
  (2014)

Was	
  always	
  within	
  96%	
  of	
  optimal!



We	
  ask
▪ What	
  is	
  an	
  appropriate	
  measure	
  of	
  success?	
  

▪ Which	
  are	
  of	
  practical	
  significance?	
  
▪ Which	
  lead	
  to	
  good	
  science?	
  

▪ What	
  classical	
  algorithm(s)	
  should	
  be	
  used	
  for	
  comparison?	
  
▪ How	
  should	
  they	
  be	
  configured?	
  
▪ Fair	
  comparison	
  of	
  classical	
  and	
  quantum	
  resources?	
  

▪ How	
  should	
  one	
  select	
  appropriate	
  benchmark	
  instances?	
  
▪ Are	
  purely	
  random	
  instances	
  meaningful?	
  
▪ How	
  do	
  we	
  bridge	
  the	
  gap	
  to	
  complex	
  real-­‐world	
  instances?
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Benchmarking	
  goals
▪ Assess	
  current	
  and	
  projected	
  future	
  performance	
  of	
  D-­‐Wave	
  
▪ Compare	
  against	
  variety	
  of	
  classical	
  algorithms,	
  including	
  real-­‐

world	
  heuristics	
  on	
  real-­‐world-­‐like	
  instances	
  
▪ Identify	
  barriers	
  and	
  work-­‐arounds	
  in	
  formulating	
  and	
  

representing	
  problems	
  on	
  AQCs	
  
▪ Place	
  D-­‐Wave	
  community	
  benchmarking	
  results	
  in	
  context	
  
▪ Gap	
  between	
  quantum	
  algorithms	
  and	
  quantum	
  software	
  

▪ (Theoretical)	
  algorithms:	
  worst-­‐case,	
  big-­‐O	
  running	
  times	
  and	
  P	
  vs	
  NP	
  issue	
  
▪ (Real-­‐world)	
  software	
  

▪ Instances	
  of	
  NP-­‐hard	
  problems	
  solved	
  routinely	
  
▪ Software	
  engineering	
  and	
  factors	
  hidden	
  by	
  big-­‐O	
  matter	
  

▪ New	
  field:	
  Quantum	
  Software	
  Engineering	
  
▪ Quantum	
  software	
  for	
  specific	
  architectures	
  rather	
  than	
  pseudo-­‐code	
  
▪ Algorithms	
  must	
  be	
  designed	
  to	
  leverage	
  architectural	
  limitations 7



The	
  Elephant	
  in	
  the	
  room

• Sandia	
  focus:	
  general	
  D-­‐Wave-­‐agnostic	
  (A)QC	
  

• D-­‐Wave	
  is	
  a	
  specific	
  technology	
  (superconducting	
  flux	
  qubit)	
  and	
  
architecture	
  

• We	
  ask	
  more	
  general	
  questions:	
  how	
  do	
  quantum	
  resources	
  and	
  
architectural	
  implementations	
  affect	
  problem-­‐solving	
  capacity?	
  

• Other	
  qubit	
  technologies	
  at	
  Sandia:	
  silicon,	
  trapped	
  neutral	
  atoms,	
  and	
  
trapped	
  ions
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Comparison*of*Rainier*and*Vesuvius*chips*

Rainier*
108/128*
spins*

Vesuvius*
506/512*
spins*

Images	
  from	
  D-­‐Wave	
  Systems:	
  hdp://www.dwavesys.com	
  .	
  

http://www.dwavesys.com
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R. Harris et al., Phys. Rev. B 82, 024511 (2010)!
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QUBO 
(Quadragc	
  Unconstrained	
  Binary	
  Opgmizagon)

• Well-­‐suited	
  for	
  discrete	
  opgmizagon	
  
applicagons	
  

• Variables	
  correspond	
  to	
  qubits  
More	
  qubits	
  =	
  richer	
  problem	
  modeling	
  

• Matrix	
  C	
  corresponds	
  to	
  a	
  graph	
  

• AQC	
  architectural	
  constraints	
  and	
  hardware	
  
dictate	
  edges	
  and	
  weight	
  ranges

(b,C) QUBO	


AQC

x

f (x) = min
x2{0,1}n

b

T

x + x

T

CxQUBO:



Solving	
  problems	
  with	
  D-­‐Wave:	
  challenges

▪ Application	
  graph	
  must	
  be	
  embedded	
  within	
  Chimera	
  graph	
  
▪ Requires	
  extra	
  qubits;	
  worst	
  case:	
  O(n2)	
  qubits	
  for	
  n	
  nodes	
  
▪ Very	
  hard	
  to	
  determine	
  a	
  good	
  embedding	
  for	
  a	
  given	
  graph	
  
▪ Typical	
  approaches	
  to	
  embedding	
  require	
  large	
  weights	
  to	
  force	
  all	
  

qubits	
  corresponding	
  to	
  a	
  node	
  have	
  same	
  spin	
  
▪ Efficiency:	
  #(application	
  graph	
  nodes)/#(qubits	
  in	
  Chimera	
  graph)
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Fig. 2: Gemb(right) is a minor-embedding of G(left) in the square lattice U . Each vertex (called
a logical qubit) of G is mapped to a (connected) subtree of (same color/label) vertices (called
physical qubits) of U . G is called a (graph) minor of U .

Gemb of a graph G in the hardware graph U is a subgraph of U such that Gemb

is an “expansion” of G by replacing each vertex of G with a (connected) subtree
of U , or equivalently, G can be obtained from Gemb by contracting edges (same
color in Figure 2). In graph theory, G is called a (graph) minor of U . (see for
example [8]).

We now formally define minor-embedding.

Definition 1. Let U be a fixed hardware graph. Given G, the minor-embedding
of G is defined by

� : G �! U

such that

– each vertex in V(G) is mapped to a connected subtree T
i

of U ;
– there exists a map ⌧ : V(G) ⇥ V(G) �! E(U) such that for each ij 2
E(G), there are corresponding i

⌧(i,j) 2 V(T
i

) and j
⌧(j,i) 2 V(T

j

) with
i
⌧(i,j)j⌧(j,i) 2 E(U).

Given G, if � exists, we say that G is embeddable in U . When � is clear from
the context, we denote the minor-embedding �(G) of G by Gemb

1.

See Figure 2 for an example.
In particular, there are two special cases of minor-embedding:

– Subgraph-embedding: Each T
i

consists of a single vertex in U . That is, G is
isomorphic to Gemb (a subgraph of U ).

– Topological-minor-embedding: Each T
i

is a chain (or path) of vertices in U .

Remark: The embedding in [13,14] is the topological-minor embedding.
In [6], we have shown that the NP-hard quadratic unconstrained binary op-

timization problem [4,5] (which is equivalent to the Ising problem) on a graph
1 With slight abuse of terminology, Gemb is also referred as G-minor.

Applicagon	
  
Graph

Qubit	
  interacgon	
  
Graph



Example:	
  hard	
  problem
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Itay Hen June 14, 2014 AQC14 

D-Wave-specific problems 
� to construct a  
   problem with a planted 
   solution on the D-Wave 
   chip, of the form: 

� we first generate a  
   random bit configuration  
   on the Chimera graph. 

� this configuration will  
   be our planted solution.  

 

 

ܪ =෍ܬ௜௝ ௜ܵ ௝ܵ
௜௝

+෍݄௜ ௜ܵ
௜

 

• Random	
  Ising	
  instances	
  on	
  Chimera	
  graph	
  

• Pro:	
  avoids	
  embedding	
  

• Con:	
  limited	
  practical	
  significance	
  

• Standard	
  instances	
  for	
  D-­‐Wave	
  benchmarking	
  

• We	
  proved	
  that	
  these	
  instances	
  are	
  NP-­‐hard	
  



Example:	
  easy	
  problems
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• Independent	
  Set	
  (IS)	
  [left]:	
  fundamental	
  comb.	
  opt.	
  problem	
  

• Affinity	
  Independent	
  Set	
  (AIS)	
  [right]:	
  new	
  social	
  network	
  analysis	
  variant	
  

• IS	
  solvable	
  in	
  polynomial	
  time	
  on	
  Chimera,	
  yet	
  appears	
  hard	
  for	
  D-­‐Wave	
  

• AIS	
  likely	
  solvable	
  in	
  polynomial	
  time	
  too,	
  yet	
  appears	
  easy	
  for	
  D-­‐Wave	
  

• AIS	
  is	
  just	
  IS	
  with	
  -­‐1,+1	
  linear-­‐term	
  weights	
  rather	
  than	
  0,1	
  as	
  for	
  IS	
  

• Illustrates	
  difficulties	
  in	
  empirical	
  benchmarking	
  vs	
  theoretical	
  analysis	
  & 
impact	
  of	
  problem	
  formulation	
  



Example:	
  open	
  problem
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Itay Hen June 14, 2014 AQC14 

Frustrated loops instances 
� after constructing ܯ = ௟ܰ௢௢௣௦ such loop Hamiltonians  
௜ܪ     , we add them all up  
   to form one big cost  
   function: 

ܪ = ෍ ௜ܪ
ே೗೚೚೛ೞ

௜ୀଵ
 

� loops will generally  
   overlap. 

� final ܬ’s should fall within 
   precision bounds (this will 
   not be strictly enforced).  

• “Frustrated	
  loop”	
  instances	
  by	
  Itay	
  Hen	
  et	
  al.	
  [AQC	
  Workshop,	
  2014]	
  

• Potential	
  example	
  of	
  a	
  “win”	
  for	
  D-­‐Wave	
  

• However,	
  we	
  show	
  solution	
  value	
  can	
  be	
  computed	
  in	
  polynomial	
  time	
  

!



•Random	
  instances	
  on	
  D-­‐Wave	
  hardware	
  
• {-­‐1,1}	
  coupler	
  values	
  
•D-­‐Wave	
  Two	
  finds	
  opgmal	
  in	
  0.5	
  sec, 
while	
  classical	
  algorithms	
  scale	
  poorly 
[McGeoch	
  and	
  Wang,	
  Conf.	
  Compugng	
  Frongers	
  
2013:	
  23]	
  
•Claimed	
  3600x	
  speedup	
  

•We	
  observe	
  classical	
  Integer	
  Program	
  solvers	
  
match	
  performance	
  with	
  appropriate	
  model  
[also	
  Dash,	
  arXiv:1306.1202v2	
  (2013)]	
  
•Speedup	
  vanishes	
  with	
  proper	
  configuragon/usage	
  

•QUBO	
  vs	
  Ising	
  
•Random	
  instance	
  with	
  linear	
  term	
  appear	
  easy	
  for	
  
former	
  but	
  hard	
  for	
  lader!

Configuragon	
  maders
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For a given instance let S
x

be the cost of the best solution
found by solver x. CPLEX and AK were set to run to pre-
set timeout limits (usually 30 minutes) but stop early if they
can certify optimality. We distinguish between find time,
the first time S

x

is found by the solver, and certify or finish
time, the total time needed to find and certify a solution.
TABU always runs to a pre-set time limit, so finish times
are constant and independent of n; the above-mentioned
history data is used to obtain find times.

Our Blackbox tests ran as batch requests to a server that
carries out individual trials concurrently on an eight-core
platform. Because of demands on this resource it was not
feasible to replicate our single-core software test environ-
ment (which would have increased Blackbox times from days
to weeks). Although concurrency shrinks total batch times,
it inflates the reported elapsed (wall clock) times per in-
stance by introducing scheduler overhead and cache con-
tention; more importantly, the concurrent processes must
contend for access to the hardware chip. Therefore, we can-
not with any confidence make direct and precise time com-
parisons between Blackbox and the software solvers. In what
follows we take a conservative approach and describe only
rough bounds on Blackbox computation times.

New questions arise when it comes to definingcomputa-
tion times for the V5 chip. Here we report exclusive access
time, the total time used by the hardware to process a single
instance while other instances wait. Exclusive access time is
divided into overhead time t1 for initializing the hardware,
and sampling time t2, which is the time to anneal and re-
turn one sample solution. Thus the total time per input
is T = t1 + kt2, where k is the number of samples. Both
t1 and t2 can be changed by adjusting the annealing path;
however in normal practice they are set to default values
when the chip becomes operational. For a fixed path, t1
and t2 increase very slightly with the number of qubits that
must be stored and read. Throughout this section we re-
port maximum times necessary to process the full hardware
graph. These correspond to preset finish times that are in-
dependent of n; in Section 4 we describe a procedure for
estimating hardware find times.

3.2 Chimera-structured QUBO Instances
Our first experiment compares performance on instances

for Quadratic Unconstrained Binary Optimization: given a
matrix Q of weights Q

ij

, find an assignment of binary values
(0,1) to variables X = {x1 . . . xn

} to minimize

Q(X) =
X

i,j

Q
ij

x
i

x
j

. (2)

This problem has wide application in machine learning
and computer vision: Boros et al. [8] and Tavares [32]
present a long list of applications that have been formu-
lated as QUBO problems. Tavares also shows reductions
from several classic NP-Hard problems to QUBO. QUBO
instances can be transformed to and from IM instances by
simple arithmetic.

This test uses QUBO instances with connectivity graphs
G ⇢ H, which (after transformation to IM) can be solved
directly in hardware. The experiment takes 100 random in-
stances each at problem sizes n = 32, 119, 184, 261, 349, 439
(corresponding to subgrids of the hardware graph). Weights
are drawn uniformly from the set {�1,+1}.

100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Instance Size n

Su
cc

es
s 

R
at

e 
49

1m
s

● ● ● ● ● ●

● qa
tabu
akmax
cplex

Figure 1: Success rates: proportion of best solutions
found in 491ms CPU time (tabu, amax, cplex soft-
ware) and exclusive access time (QA hardware).
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Figure 2: Di↵erences between solution cost S
x

in
491ms runtime, and best solution B for each input.
Dotted lines connect means for each solver; vertical
bars show the range of observations. The numbers
at bottom are means B for each problem size.

Figure 2: We observed CPLEX performance on 
random {0,1}-variable QUBO can match D-
Wave performance as reported above by 
McGeoch and Wang.

http://www.informatik.uni-trier.de/~ley/db/conf/cf/cf2013.html#McGeochW13
http://arxiv.org/abs/1306.1202v2


D-­‐Wave	
  system	
  scaling
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• D-­‐Wave	
  scaling	
  projections	
  are	
  promising	
  
(relative	
  to	
  conventional	
  computing)	
  

• However,	
  Chimera	
  architecture	
  is	
  
significant	
  bottleneck	
  [top]	
  

• Algorithmic	
  tools	
  for	
  representing	
  real-­‐
world	
  problems	
  on	
  emerging	
  quantum	
  
architectures	
  are	
  critical!	
  

• We	
  initiate	
  such	
  an	
  endeavor



Complex	
  networks	
  on	
  the	
  Chimera	
  graph

▪ New	
  approach	
  to	
  circumvent	
  embedding	
  
▪ Generate	
  complex	
  network	
  simultaneously	
  while	
  embedding	
  it	
  
▪ Efficiency	
  for	
  512-­‐node	
  Chimera	
  around	
  50%	
  vs	
  6.25%	
  worst	
  

case 18



▪ Mapping	
  arbitrary	
  graph	
  to	
  Chimera	
  is	
  hard	
  
▪ Instead,	
  alter	
  Chimera	
  graph	
  to	
  have	
  “real-­‐world”	
  properties	
  

▪ Merge	
  nodes	
  to	
  increase	
  node	
  degree	
  
▪ Remove	
  edges	
  between	
  nodes	
  to	
  selectively	
  decrease	
  degree

Generating	
  complex	
  networks	
  on	
  a 
Chimera	
  graph	
  



Real-­‐world	
  complex	
  networks

BGP Twitter



From	
  weighted	
  to	
  unweighted	
  QUBO

21

Weighted 
QUBO 3-SAT Independent 

Set
Unweighted 
Ising/QUBO

min
xi2{�1,1}

X

ij2E

0

x

i

x

j

�
X

i2V

0

x

i

min
xi2{0,1}

X

ij

A

ij

x

i

x

j

+
X

i

c

i

x

i

�1(~x, ~y) =
^

ij2E

(yij _ xi _ xj) ^ (yij _ xi _ xj)^

(yij _ xi _ xj) ^ (yij _ xi _ xj)

This	
  reduction	
  converts	
  a	
  weighted	
  instance	
  into	
  an	
  
unweighted	
  but	
  larger	
  instance,	
  enabling	
  a	
  trade	
  off	
  

between	
  coupler	
  precision	
  and	
  qubits.



Contributions

▪ Brought	
  real-­‐world	
  problems	
  and	
  instances	
  to	
  bear	
  
▪ Developed	
  more	
  rigorous	
  benchmarking	
  methodology	
  
▪ Exposed	
  importance	
  of	
  success	
  criterion	
  and	
  algorithm	
  

selection	
  and	
  configuration	
  
▪ Drawing	
  from	
  theoretical	
  CS	
  techniques	
  and	
  results	
  
▪ Demonstrated	
  formal	
  hardness	
  of	
  widely	
  used	
  instances	
  

▪ Techniques	
  for	
  circumventing	
  D-­‐Wave	
  architectural	
  limitations	
  	
  
▪ Novel	
  technique	
  for	
  sidestepping	
  embedding	
  issues	
  by	
  

generating	
  social	
  network	
  minors	
  within	
  Chimera	
  graph	
  
▪ Trading	
  off	
  coupler	
  precision	
  and	
  qubits	
  via	
  NP	
  reductions	
  

▪ New	
  QUBO	
  formulations	
  for	
  complex	
  network	
  analysis	
  problems
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Concluding	
  thoughts	
  on	
  D-­‐Wave

•Even	
  if	
  D-­‐Wave’s	
  machines	
  are	
  truly	
  quantum	
  computers,	
  the	
  user	
  is	
  
shielded	
  from	
  the	
  quantumness	
  

•Convenient	
  to	
  think	
  of	
  D-­‐Wave	
  as	
  a	
  QUBO-­‐solving	
  black	
  box	
  that	
  
implements	
  a	
  pargcular	
  meta-­‐heurisgc 
(e.g.	
  akin	
  to	
  simulated	
  annealing)	
  

•With	
  the	
  above	
  perspecgve:	
  benchmark	
  and	
  analyze	
  D-­‐Wave	
  
performance	
  as	
  we	
  do	
  with	
  other	
  meta-­‐heurisgcs	
  

•Fair	
  point	
  of	
  comparison	
  would	
  be	
  against,	
  e.g.,	
  best	
  classical	
  
(approximate/randomized)	
  QUBO	
  solvers	
  

•Limited	
  Chimera	
  connecgvity	
  and	
  coupler	
  precision	
  are	
  most	
  
significant	
  barriers	
  to	
  solving	
  interesgng	
  and	
  real-­‐world	
  instances	
  

•“Arms	
  race”	
  between	
  classical	
  and	
  D-­‐Wave/quantum	
  is	
  healthy
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Supplementary	
  slides
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Complexity	
  of	
  QUBO	
  on	
  Chimera

▪ (Decision	
  version)	
  NP-­‐complete	
  even	
  with	
  no	
  linear	
  term	
  and	
  
{-­‐1,	
  0,	
  1}	
  weights	
  [Barahona,	
  1982]	
  

▪ We	
  show	
  NP-­‐complete	
  with	
  no	
  linear	
  term	
  and	
  {-­‐1,1}	
  weights	
  
▪ Instances	
  used	
  in	
  D-­‐Wave	
  benchmarking	
  studies	
  

▪ Tree-­‐width	
  (path-­‐width)	
  is	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  yielding	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  algorithm	
  
▪ “Subexponential”	
  exact	
  algorithm	
  even	
  though	
  NP-­‐hard	
  

▪ Approximation	
  complexity?	
  
▪ Polynomial-­‐time	
  approximation	
  scheme	
  (PTAS)  

[Saket,	
  2013,	
  arXiv:1306.6943]	
  
▪ PTAS’s	
  are	
  rarely	
  efficient;	
  theory	
  vs	
  practice?	
  
▪ Efficient	
  approx	
  algorithm	
  for	
  say,	
  getting	
  within	
  90%?
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Limits	
  of	
  reducing	
  to	
  Chimera

▪ Can	
  we	
  do	
  better	
  than	
  a	
  quadratic	
  blowup	
  in	
  qubits?	
  
▪ Probably	
  not,	
  due	
  to	
  Exponential	
  Time	
  Hypothesis	
  
▪ Problems	
  like	
  Max-­‐Cut	
  on	
  general	
  graphs	
  are	
  conjectured	
  

to	
  require	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  time	
  
▪ But	
  we	
  have	
  a	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  time	
  algorithm	
  for	
  Chimera	
  Ising	
  
▪ So	
  in	
  some	
  sense	
  quadratic	
  factor	
  is	
  artifact	
  of	
  Chimera	
  

▪ Weights	
  make	
  this	
  worse:	
  Choi	
  embedding	
  assumes	
  (linearly)	
  
large	
  weights	
  

▪ Reduction	
  better	
  than	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  Max-­‐Cut	
  on	
  bounded-­‐degree	
  
graphs	
  would	
  improve	
  best-­‐known	
  classical	
  algorithm	
  
▪ Applies	
  to	
  any	
  reduction,	
  not	
  just	
  minor	
  embeddings
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Max-­‐Cut	
  as	
  model	
  problem

▪ NP-­‐complete	
  on	
  bipartite	
  graphs	
  with	
  weights	
  {-­‐1,1}	
  
▪ Replace	
  each	
  edge	
  by	
  a	
  path	
  of	
  +1	
  and	
  -­‐1	
  edge	
  

▪ Max-­‐Cut	
  essentially	
  equivalent	
  to	
  Ising	
  problem	
  
▪ Can	
  use	
  an	
  apex	
  vertex	
  to	
  model	
  linear	
  term	
  

▪ We	
  give	
  reduction	
  from	
  weighted	
  QUBO	
  to	
  unweighted	
  QUBO	
  
▪ Unroll	
  and	
  optimize	
  existing	
  chain	
  of	
  reductions	
  
▪ Weights	
  are	
  a	
  significant	
  barrier	
  in	
  D-­‐Wave	
  benchmarking	
  

▪ Our	
  reduction	
  only	
  incurs	
  linear	
  blowup	
  on	
  bounded-­‐degree	
  
graphs	
  
▪ However,	
  does	
  not	
  preserve	
  Chimera	
  structure
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Weighted	
  QUBO	
  as	
  3-­‐SAT
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�2(~y, ~w, k)

� = �1 ^ �2

y1, . . . , ym

x1, . . . , xn
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yij = xi � xj

{0, 1}

X

i
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�1(~x, ~y) =
^

ij2E

(yij _ xi _ xj) ^ (yij _ xi _ xj)^

(yij _ xi _ xj) ^ (yij _ xi _ xj)



3-­‐SAT	
  as	
  unweighted	
  Ising	
  

▪ Standard	
  reduction	
  from	
  3-­‐SAT	
  to	
  Independent	
  Set	
  
▪ Usual	
  Ising	
  formulation	
  of	
  Independent	
  Set: 
 

▪ New	
  formulation	
  on	
  graph	
  where	
  each	
  edge	
  replaced	
  
by	
  3-­‐path	
  circumvents	
  linearly	
  large	
  weights	
  above:	
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Independent	
  set	
  as	
  Ising
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WLOG:	
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  independent	
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