
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

ASC	
 Panel	
 on	
 Run-me	

System	
 Topics	

ECI	
 Run-me	
 Systems	
 Workshop	

March	
 11-­‐13,	
 2015	
 –	
 Rockville,	
 MD	

	

Kevin	
 PedreI	

Sandia	
 Na-onal	
 Laboratories	

ktpedre@sandia.gov	

	

SAND2015-1864PE

Outline

§  Introduc-on	

§  Run-me	
 system	
 related	
 ac-vi-es	
 at	
 Sandia	

§  ATDM	

§  Qthreads	
 /	
 Kokkos	

§  DHARMA	

§  Power	
 API	
 /	
 Trinity	
 NRE	

§  Address	
 workshop	
 ques-ons	
 and	
 issues	

§  Sys	
 Arch	
 	
 	
 	
 	
 	
 /	
 Asynchrony	

§  Sys	
 Arch	
 	
 	
 	
 	
 	
 /	
 Rela-onship	
 between	
 OS	
 and	
 Run-me	

§  Evalua-on	

ASC Computing Strategy	

§  Approach: Two classes of systems
§  Advanced Technology: First of a kind systems that identify and

foster technical capabilities and features that are beneficial to
ASC applications

§  Commodity Technology: Robust, cost-effective systems to meet
the day-to-day simulation workload needs of the program

§  Investment Principles
§  Maintain continuity of production
§  Ensure that the needs of the current and future stockpile are met
§  Balance investments in system cost-performance types with

computational requirements
§  Partner with industry to introduce new high-end technology

constrained by life-cycle costs
§  Acquire right-sized platforms to meet the mission needs

A
dv

an
ce

d
Te

ch
no

lo
gy

S

ys
te

m
s

 (A
TS

)

Fiscal Year

‘12 ‘13 ‘14 ‘15 ‘16 ‘17

Use
Retire

‘19 ‘18 ‘20

C
om

m
od

ity

Te
ch

no
lo

gy

S
ys

te
m

s
(C

TS
)

Dev. &
Deploy

Cielo	
 (LANL/SNL)	

Sequoia	
 	
 (LLNL)	

ATS	
 1	
 –	
 Trinity	
 	
 (LANL/SNL)	

ATS	
 2	
 –	
 	
 (LLNL)	

ATS	
 3	
 –	
 	
 (LANL/SNL)	

Tri-­‐lab	
 Linux	
 Capacity	
 Cluster	
 II	
 (TLCC	
 II)	

CTS	
 1	

CTS	
 2	

‘21

System
Delivery

ASC Platform Timeline

Outline

§  Introduc-on	

§  Run-me	
 system	
 related	
 ac-vi-es	
 at	
 Sandia	

§  ATDM	

§  Qthreads	
 /	
 Kokkos	

§  DHARMA	

§  Power	
 API	
 /	
 Trinity	
 NRE	

§  Address	
 workshop	
 ques-ons	
 and	
 issues	

§  Sys	
 Arch	
 	
 	
 	
 	
 	
 /	
 Asynchrony	

§  Sys	
 Arch	
 	
 	
 	
 	
 	
 /	
 Rela-onship	
 between	
 OS	
 and	
 Run-me	

§  Evalua-on	

Advanced Technology Development
and Mitigation (ATDM)
§  ATDM	
 is	
 a	
 new	
 Tri-­‐lab	
 ASC	
 program	
 element	
 addressing	
 challenges	

of	
 next	
 genera-on	
 plaZorms,	
 leading	
 path	
 to	
 useful	
 exascale	

§  Massive	
 concurrency,	
 fat	
 nodes	

§  Heterogeneous	
 architectures,	
 parallelism,	
 performance,	
 …	

§  Mul--­‐level	
 memory	
 hierarchies	

§  Data	
 movement:	
 in-­‐situ/transit	
 analysis,	
 workflows	

§  SNL	
 effort	
 focusing	
 on	
 applica-ons	
 important	
 to	
 ASC	

§  Building	
 from	
 ground	
 up	
 over	
 task-­‐based	
 programming	
 model	

§  Building	
 suppor-ng	
 RTS	
 and	
 so`ware	
 infrastructure	

§  SNL	
 run-me	
 system	
 ac-vi-es	

§  Kokkos	
 –	
 on-­‐node	
 parallelism,	
 data	
 parallel,	
 data	
 virt	
 (PI:	
 Carter	
 Edwards)	

§  DHARMA	
 –	
 distributed	
 asynchronous	
 many-­‐task	
 RTS	
 	
 (PI:	
 Janine	
 Benneb)	

§  Qthreads	
 being	
 used	
 to	
 add	
 tasking	
 to	
 Kokkos	
 (LDRD)	
 	

Qthreads:	
 Lightweight	
 On-­‐node	
 Thread	
 Run6me	

§  Model:	

§  Somebody	
 (app/run-me/compiler/…)	
 exposes	
 	

massive	
 numbers	
 of	
 lightweight	
 tasks	
 (qthreads)	

§  The	
 qthreads	
 dynamic	
 run-me	
 system	
 manages	
 the	

scheduling	
 of	
 tasks	
 for	
 locality	
 and	
 performance	

§  Capabili6es:	

§  Supports	
 loop-­‐based	
 and	
 task-­‐based	
 parallelism	

§  Full/empty	
 bit	
 primi-ves	
 for	
 lightweight	
 synchroniza-on	

(emulates	
 Tera/Cray	
 MTA/XMT)	

§  Locality-­‐aware	
 load	
 balancing	
 of	
 tasks	
 to	
 support	
 NUMA	
 and	
 complex	
 cache	

hierarchies	

§  Easy	
 to	
 embed	
 in	
 higher-­‐level	
 run-mes,	
 C	
 API	
 with	
 no	
 special	
 compiler	
 support	

§  Usage:	

§  Research:	
 locality-­‐based	
 scheduling,	
 dynamic	
 concurrency	
 throbling,	
 	

task	
 parallel	
 over	
 decomposi-on,	
 incorpora-ng	
 task	
 parallelism	
 into	
 Kokkos	
 	

§  OpenMP	
 over	
 Qthreads	
 (using	
 ROSE/XOMP	
 and	
 Intel	
 frontends)	

§  Default	
 tasking	
 layer	
 in	
 Chapel	

SNL contacts: Dylan Stark, Stephen Olivier

Goal: Unified Task-Data-Vector Manycore API

Performance portable C++ API for CSE and graph applications

Development of New Capabilities
Extend Kokkos API for task

parallelism and graph processing
Extend Qthreads for nested data

parallelism, Phi, GPU tasks

Existing SNL Technologies: Kokkos & Qthreads
Kokkos C++ API for efficient

manycore data-vector parallelism
Qthreads multithreading library for

scalable task parallelism

Kokkos	
 Task	
 Parallel	
 API	
 (LDRD)	

ATDM	
 DHARMA	
 project:	
 Distributed	
 asyncHronous	
 	

Adap6ve	
 Resilient	
 Management	
 of	
 Applica6ons	
 	

§  Project	
 Mission:	
 Assess	
 &	
 address	
 fundamental	
 challenges	

imposed	
 by	
 the	
 need	
 for	
 performant,	
 portable,	
 scalable,	
 fault-­‐
tolerant	
 programming	
 models	
 at	
 extreme-­‐scale	

§  Assess	
 rich	
 feature	
 sets/usability/performance	
 of	
 exis-ng	

Asynchronous	
 Many-­‐Task	
 (AMT)	
 run-mes	
 in	
 context	
 of	
 ASC	
 workloads	

§  Research	
 in	
 programmability,	
 dynamic	
 load-­‐balancing,	
 and	
 fault-­‐
tolerance	
 of	
 AMT	
 run-mes	

	

§  Current	
 Ac6vi6es:	

§  Implemen-ng	
 miniAero	
 in	
 Charm++,	
 Legion,	
 Unitah;	

Evaluate	
 performance,	
 programmability,	
 mutability	

§  Held	
 coding	
 bootcamps	
 at	
 U.	
 Utah,	
 Stanford,	
 SNL/CA	

§  Build-­‐out	
 of	
 DHARMA	
 v1.0	
 AMT	
 run-me,	
 transparently	

handle	
 fail-­‐stop	
 node	
 crashes	

Janine Bennett (PI), Jeremiah Wilke (Chief Architect), Robert Clay (PM), Ken Franko, Hemanth Kolla,
Paul Lin, Greg Sjaardema, Nicole Slattengren, Keita Teranishi

FY15	
 ASC	

Level	
 2	

MIlestone	
 	

	

Level	
 2	
 &	
 	

DHARMA	

run6me	

Applica6on	
 	

Developers	

Run6me	

Developers	

PowerAPI:	
 Portable	
 Power	
 Management	
 	

§  Need	
 portable	
 way	
 to	
 measure	
 and	
 control	
 power	

§  Today	
 there	
 are	
 several	
 power	
 interfaces,	
 every	
 system	
 is	
 different	

§  This	
 makes	
 it	
 harder	
 to	
 write	
 run-mes,	
 tools,	
 apps,	
 …	

§  Power	
 API	
 fills	
 this	
 gap,	
 input	
 from	
 community	
 and	
 vendors	

(FY14	
 L2	
 milestone)	

§  Covers	
 broad	
 spectrum	
 of	

use	
 cases,	
 from	
 plaZorm-­‐	

level,	
 to	
 resource	
 manager,	

to	
 run-me	
 system,	
 to	
 OS,	

to	
 applica-ons	

§  Will	
 be	
 implemented	
 for	

upcoming	
 Trinity	
 system	

§  Expect	
 to	
 be	
 there	
 	

on	
 future	
 DOE/NNSA	

ATS	
 systems	

§  Will	
 evolve	
 over	
 -me	

Outline

§  Introduc-on	

§  Run-me	
 system	
 related	
 ac-vi-es	
 at	
 Sandia	

§  ATDM	

§  Qthreads	
 /	
 Kokkos	

§  DHARMA	

§  Power	
 API	
 /	
 Trinity	
 NRE	

§  Address	
 workshop	
 ques-ons	
 and	
 issues	

§  Sys	
 Arch	
 	
 	
 	
 	
 	
 /	
 Asynchrony	

§  Sys	
 Arch	
 	
 	
 	
 	
 	
 /	
 Rela-onship	
 between	
 OS	
 and	
 Run-me	

§  Evalua-on	

Sys Arch: Asynchrony
§  Should	
 this	
 really	
 be	
 “Hardware	
 Performance	
 Variability”?	

§  Equal	
 work	
 doesn’t	
 take	
 equal	
 -me	

§  True	
 today,	
 expect	
 to	
 get	
 worse	

§  Different	
 types	
 of	
 variability	

§  Classic	
 “OS	
 Noise”	
 –	
 probabilis-c	
 nature,	
 affects	
 BSP	
 apps	

§  Manufacturing	
 variability	
 –	
 fairly	
 sta-c,	
 some	
 parts	
 beber	
 than	
 others	

§  Thermal	
 throbling	
 –	
 based	
 on	
 environmental	
 factors	

§  Conten-on	
 for	
 shared	
 resources	
 –	
 unpredictable	
 if	
 free	
 for	
 all	
 access	

§  Run-me-­‐induced	
 variability	
 –	
 non-­‐determis-c	
 scheduling	

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 10 20 30 40 50

G
FL

O
PS

Nodes (Sorted by ’Turbo On’ Performance)

Volta XC30 / Ivy Bridge - HPL Variability Across Compute Nodes

Turbo On
--p-state 2400000
--p-state 2000000
--p-state 1600000
--p-state 1200000

L
a
te

n
cy

 (
u
s)

Overtime Run (NodeCount.RunNumber)

512 Node Runs
1024 Node Runs
2048 Node Runs

Avg and Stdev
 0

 5

 10

 15

 20

 25

512.1

512.2

512.3

512.4

1024.1

1024.2

1024.3

1024.4

1024.5

2048.1

2048.2

2048.3

2048.4

2048.5

XE/XK6 Latency Over Time
Runs are spaced at 1 hour intervals

Sys Arch: OS and Runtime Relationship
§  Compute	
 node	
 OS	
 kernel	

§  Gates	
 access	
 to	
 privileged	
 hardware	

§  Provide	
 two-­‐way	
 linkage	
 between	
 higher-­‐

level	
 “OS”	
 and	
 local	
 run-me(s)	
 instances	

§  Here’s	
 your	
 new	
 power	
 budget	

§  I	
 could	
 use	
 more	
 power	
 if	
 you	
 have	
 it	

§  Final	
 enforcer	
 if	
 run-me	
 doesn’t	
 obey	

§  Resource	
 nego-a-on	
 and	
 coordina-on	

Apps & Libraries

Runtime Systems

OS

Hardware

Compute Node
System Software Stack,

OS Bypass

libRIOS

LXK / Linux

Node Mgr.

RIOS

libRIOS

HPX instance

libRIOS

Analytics RTS

RIOS = Runtime Interface
to Operating System

Funded by ASCR X-stack,
XPRESS Project

Hobbes: Composition Examples (ASCR)

App 1 App 1

shared shared

Filter Filter

VisualizationVisualization

Portals

UPC

MPI

Enclave 2
 Linux

Enclave 1
 Kitten

Enclave 3
 Linux

Physical Node OS/R Instance Enclave

Legend

Inter-Node Enclave Composition

Net-
work

Com-
posi-
tion

Intra-Node Enclave Composition

Com-
posit-

ion
Com-
posit-

ion
Com-
posit-

ion
Com-
posit-

ion
Com-
posit-

ion

Com-
posit-

ion

Physical Nodes

Node Virtualization
Layers

Node OS/Rs

Enclave OS/Rs

Intra-node Composition Inter-node Composition

Example Use Cases:
•  Coupling CTH + Paraview/Catalyst on same node

•  CTH has few OS/R requirements
•  Paraview/Catalyst has some “full-OS” dependencies
•  Like previous in-transit case, but co-located like in-situ

•  Coupling high fidelity simulation and low fidelity model
•  Useful for combustion and fusion examples
•  Tight coupling or loose coupling, elastic enclaves

•  CASL multiphysics coupling, massive collisions
•  LAMMPS and SmartPointer Analysis Pipeline
•  Goldrush-style cycle stealing for analysis

Evaluation, Things that are Important

§  Tes-ng	
 at	
 scale	

§  Evalua-ng	
 real	
 applica-ons	

§  Interoperability	
 /	
 Composability	
 	

§  Stability	
 of	
 performance	
 /	
 run	
 to	
 run	
 repeatability	

§  Error	
 bars	
 are	
 important	

§  Compare	
 runs	
 in	
 dedicated	
 mode	
 vs.	
 produc-on	

§  Ability	
 to	
 tolerate	
 hardware	
 performance	
 variability	

§  Run	
 on	
 mixture	
 of	
 slow	
 and	
 fast	
 nodes	

§  Test	
 sta-c	
 configura-on	
 and	
 dynamically	
 changing	
 configura-ons	

Acknowledgements	

§  Janine	
 Benneb	

§  David	
 Bernholdt	

§  Ron	
 Brightwell	

§  Doug	
 Doerfler	

§  Ryan	
 Grant	

§  Sue	
 Kelly	

§  Brian	
 Kocoloski	

§  Jack	
 Lange	

§  Jim	
 Laros	

§  Ron	
 Oldfield	

§  Stephen	
 Olivier	

§  Dylan	
 Stark	

16	

